EVOLUTIONARY ALGORITHM BASED NETWORK CODING FOR OPTMIZATION OF INTELLIGENT VEHICULAR AD HOC NETWORK

PERPUSTAKAAN INIVERSITI MALAYSIA SABAH

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2017

EVOLUTIONARY ALGORITHM BASED NETWORK CODING FOR OPTMIZATION OF INTELLIGENT VEHICULAR AD HOC NETWORK

LEE CHUN HOE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE MASTER DEGREE OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS THESIS

JUDUL: EVOLUTIONARY ALGORITHM BASED NETWORK CODING FOR OPTMIZATION OF INTELLIGENT VEHICULAR AD HOC NETWORK

IJAZAH: SARJANA KEJURUTERAAN (ELEKTRIKAL DAN ELEKTRONIK)

Saya **LEE CHUN HOE**, Sesi Pengajian 2014-2017, mengaku membenarkan thesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Thesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuaan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan thesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumatyang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

TERHAD

SULIT

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Lee Chun Hoe

Disahkan oleh, NURULAIN BINTI ISMAIL LIBRARIAN ERSITI MALAYSIA SABAH ALA I

IENERY MALAYSIA SABAI

FERPUSTAKAAN

(Tandatangan Perpustakawan)

(Kenneth Teo Tze Kin) Penyelia

(Dr. Renee Chin Ka Yin) Penyelia Bersama

Tarikh: 10 Julai 2017

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries and references, which have been duly acknowledged.

30 September 2016

Lee Chun Hoe MK1411017T

CERTIFICATION

NAME : LEE CHUN HOE

MATRIC NO. : MK1411017T

- TITLE : EVOLUTIONARY ALGORITHM BASED NETWORK CODING FOR OPTMIZATION OF INTELLIGENT VEHICULAR AD HOC NETWORK
- DEGREE : MASTER OF ENGINEERING (ELECTRICAL AND ELECTRONIC ENGINEERING)
- VIVA DATE : 22 MARCH 2017 (WEDNESDAY)

CERTIFIED BY:

2. **CO-SUPERVISOR** Dr. Renee Chin Ka Yin

Signature

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to both my supervisors, Mr. Kenneth Teo Tze Kin and Dr. Renee Chin Ka Yin, for all their advices, guidance, caring, patience and support in this research work that lead to the completion of this thesis. Their advice, encouragement, motivation and valuable suggestions have provided me the necessary impetus to complete this research.

I wish to express my sincere thanks to my friends especially all my colleagues in Modelling, Simulations & Computing Laboratory (mscLab) for their cooperation and assistance. Thanks for their willingness in spending time to have wonderful discussion on my work.

My deep sense of gratitude goes to my family for their support and love throughout these years.

Lee Chun Hoe 30 September 2016

ABSTRACT

This project aims to improve the throughput, energy consumption and overhead of vehicular ad hoc network (VANET) by optimising the network coding (NC) using Genetic Algorithm and Particle Swarm Optimisation (GA-PSO). VANET shows a promising technology as it could enhance the traffic efficiency and promote traffic safety on the road systems. The conventional store-and-forward transmission protocol used in the intermediate node(s) simply stores the received packet and then send at a later time to the destination. However, the rapid changing in VANET topology has made the conventional store-and-forward approach inefficient to meet the throughput and reliability demand posed by VANET. Hence, NC is proposed to perform additional functions on the packet in the source or intermediate node(s). The results showed that the NC used in wireless network outperforms the conventional store-and-forward in terms of throughput and energy consumption. However, the chances to perform NC in wireless network is highly unlikely if the packet is not transmit to the potential NC node. Therefore, GA based network routing (GANeR) is embedded into network to search for shortest path from the source to the destination, and PSO based coding aware routing (CAR) is also proposed to further converge the solutions obtained from GANeR. It showed that the developed GA-PSO in this work provides a better route with coding opportunities and reduces energy consumption in the network. The total energy consumed by GA-PSO is 7.39% fewer than the store-and-forward approach and 4.77% fewer than NC in wireless network transmission and forwarding structure (COPE).

UNIVERSITI MALAYSIA SABAH

TABLE OF CONTENTS

		Page
TITLE	E	1
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	IOWLEDGEMENT	iv
ABST	RACT	v
ABS7	TRAK	vi
TABL	E OF CONTENTS	vii
LIST	OF TABLES	x
LIST	OF FIGURES	xii
LIST	OF ABBREVIATIONS	xv
LIST	OF SYMBOLS	xix
CHAP 1.1 1.2 1.3	 PTER 1: INTRODUCTION VERSITI MALAYSIA SABAH Vehicular Ad Hoc Network Recession of Vehicular Communication Research Aim and Objectives 1.3.1 To Model and Simulate the Intelligent in Vehicular Ad Hoc Networks with Network Coding 1.3.2 To Design and Compute the Genetic Algorithm Based Network Routing in Stochastic Vehicular Network Coding Networks 1.3.3 To Formulate the Fitness Function of Particle Swarm Optimisation based Optimiser for Coding-aware Routing 1.3.4 To Evaluate and Assess the Hybrid of Genetic Algorithm and Particle Swarm Optimisation through the Formulated Fitness 	1 4 6 6 7 7
1.4 1.5	Function Scope of Work Thesis Outline	7 8
CHAP 2.1 2.2 2.3	TER 2: REVIEW OF NETWORK CODING OPTIMIZATION FOR INTELLIGENT VEHICULAR AD HOC NETWORK An Overview of Intelligent Vehicular Ad Hoc Network Theorem of Network Coding Wireless Network Coding System	10 10 13 19

2.4 2.5	2.3.1 Development of Network Coding in Wireless Ad Hoc Network2.3.2 Coding-aware Routing in Multi-hop Wireless Ad Hoc NetworkEvolutionary Algorithm for Wireless Ad Hoc NetworkSummary for Network Optimization	19 24 30 38
СНА	APTER 3: COMPUTATIONAL INTELLIGENCE IN VEHICULAR AD	40
3.1	Framework of Vehicular Ad Hoc Network	40
3.2	Mobility Model and Road Traffic System	42
3.3	Structural of Vehicular Ad Hoc Network Communication Protocol	43
	3.3.1 Open Systems International Model	44
	3.3.2 IEEE 802.1p and IEEE 1609.x Transmission Protocol	47
3.4	Basic Components in Wireless Network	52
	3.4.1 Ad Hoc on Demand Distance Vector Routing Protocol	53
	3.4.2 Network Coding for Packet Dissemination	55
	3.4.3 Route Selection using Evolutionary Algorithm	60
3.5	Summary for Computational Intelligence in VANET	63
СНА	PTER 4: MODELLING AND SIMULATION OF NETWORK	64
	CODING BASED VEHICULAR AD HOC NETWORK	
4.1	Introduction to Modelling and Simulation of Network Coding	64
4.2	Modelling of Vehicular Ad Hoc Network	65
	4.2.1 Traffic Simulation	66
	4.2.2 Network Simulation	69
	4.2.3 Coupled Simulation	71
4.3	Vehicular Ad Hoc Network Model with Network Coding	72
	4.3.1 Transmission Protocol	73
	4.3.2 Coding Protocol	83
4.4	Simulation of Vehicular Ad Hoc Network Model	86
	4.4.1 Performance Metrics	87
	4.4.2 Evaluation and Assessment of Network Coding in Vehicular Environment	89
4.5	Summary for Modelling and Simulation of Network Coding	92
СНА	PTER 5: IMPLEMENTATION OF GENETIC ALGORITHM IN	93
	NETWORK CODING BASED WIRELES NETWORK	
5.1	Overview of Optimisation in Network Coding	93
5.2	Genetic Algorithm based Network Routing in Vehicular Ad Hoc	95
	Network	
	5.2.1 Route Selector	96
	5.2.2 Performance metric	101
5.3	Development of Genetic Algorithm based Network Routing	102
	5.3.1 Representation of Chromosome	106
	5.3.2 Fitness Function	110
	5.3.3 Genetic Operation	111
5.4	Evaluation and Assessment of the Developed Genetic Algorithm	116
	5.4.1 Simulation Setup	11/

5.4.2 Assessment of the Developed Genetic Algorithm based	117
5.5 Summary for Implementation of Genetic Algorithm	122
	100
6.1 Optimiser for Coding-aware Pouting	123
6.2 Computation of Particle Swarm Ontimisation	123
6.2.1 Swarm Intelligence Protocol	125
6.2.2 Path Weightage	128
6.3 Development of Genetic Algorithm-Particle Swarm Optimisation	130
based Coding-aware Routing	
6.3.1 Particle Representation	135
6.3.2 Particle Trajectories	136
6.3.3 Geometric Representation	137
6.4 Assessment of the Genetic Algorithm-Particle Swarm Optimisation	138
based Coding-aware Routing	
6.4.1 Parameter Settings for Developed Particle Swarm Optimization	139
6.4.2 Verification of the Developed Genetic Algorithm-Particle	140
Swarm Optimisation based Coding Aware Routing	1 4 4
6.5 Summary for Particle Swarm Optimization based Coding-Aware	144
Routing	
CHAPTER 7: CONCLUSIONS	145
7.1 Summary	145
7.2 Achievements	146
7.3 Recommendation for Future Work	148
UNIVERSITI MALAYSIA SABAH	
REFERENCES	149
APPENDIX A: AVERAGE PROCESSING TIME FOR VARIATION IN	157
POPULATION (GA)	
APPENDIX B: MATLAB SOURCE CODE FOR GAPSO	158
APPENDIX C: MAP SIMULATED FROM SUMO	162
APPENDIX D: MAILAB SOURCE CODE FOR TRACI	163
APPENDIX E: PUBLICATIONS	164

LIST OF TABLES

			Page
Table 2.1	3	Various type of network coding based protocols	24
Table 2.2	2	Various type of coding-aware routing protocols	30
Table 2.3	3	Equations for random process in the network	33
Table 2.4	:	The system transfer matrix of the network	34
Table 2.5	:	Various type of artificial intelligence based network coding techniques	38
Table 3.1		Simulation setup	44
Table 3.2	3	Parameter setting for different application categories	52
Table 3.3	Ċ	Logical operators of XOR	56
Table 4.1	;	Event structure	73
Table 4.2	ŀ	Pseudo code of upper layer for transmission	76
Table 4.3		Pseudo code of network layer for transmission	77
Table 4.4		Pseudo code of data link layer transmission	78
Table 4.5		Pseudo code of physical layer for transmission	79
Table 4.6	3	Pseudo code of physical layer for reception	80
Table 4.7	•	Pseudo code of data link layer for reception	82
Table 4.8	3	Pseudo code of network layer for reception	83
Table 4.9	3	Pseudo code for network coding in encode process	85
Table 4.10	:	Pseudo code for network coding in decode process	86
Table 4.11	:	Simulation setup	87
Table 5.1	:	Pseudo code of standard genetic algorithm	101
Table 5.2	:	Relationship between the nodes in terms of transmission range	108
Table 5.3	;	Relationship between the nodes in terms of angle	109

Table 5.4	:	Pseudo code of chromosome representation	110
Table 5.5	:	Pseudo code of tournament selection	113
Table 5.6	:	Pseudo code of arithmetic crossover operation	114
Table 5.7	:	Pseudo code of mutation operation	115
Table 5.8	:	Parameter settings for simulation	116
Table 5.9	:	Parameter settings for genetic algorithm	117
Table 5.10	:	Possible route selected by genetic algorithm	119
Table 6.1	ŧ	Pseudo code of standard particle swarm optimisation	127
Table 6.2	£	Parameter settings for particle swarm optimisation based coding aware routing	139
Table 6.3	i II	Parameter settings of wireless ad hoc networks	141

JIVID

LIST OF FIGURES

			Page
Figure 1.1	:	Single hop vehicular network with fixed infrastructure	3
Figure 1.2	:	Baseless station vehicular ad hoc network	3
Figure 2.1	ŧ	Accident index in Malaysia	10
Figure 2.2	:	Exchanging packet with bidirectional forwarding	14
Figure 2.3	ŧ	Exchanging packet with network coding	15
Figure 2.4	:	Illustration of network coding in butterfly topology	16
Figure 2.5	:	Illustration of conventional protocol in butterfly topology	17
Figure 2.6	:	Topologies with underlying network coding	18
Figure 2.7	Ū	Illustration of COPE in coding decision	21
Figure 2.8	:	Effect of routing decision on the potential coding opportunity	25
Figure 2.9		Topology of a point to point connection	33
Figure 2.10		Chromosome representative for node V_2 SIA SABAH	35
Figure 3.1	:	Research flow chart	41
Figure 3.2	:	Process of communication between nodes	45
Figure 3.3	;	Open systems interconnection model	46
Figure 3.4	:	The WAVE radio channel management	48
Figure 3.5	:	Relationship between OSI and WAVE reference model	49
Figure 3.6	:	Flowchart of random backoff procedure	51
Figure 3.7	:	The route request process of AODV protocol	54
Figure 3.8	;	The route reply process of AODV protocol	54
Figure 3.9	÷	Encode and decode of XOR operator	56
Figure 3.10	:	Store-and-forward based transmission	57

Figure 3.11	:	Network coding based transmission	58
Figure 3.12	;	Conversation in "X" topology	59
Figure 3.13	:	Queue flow in buffer	60
Figure 3.14	:	Process flow of genetic algorithm	61
Figure 4.1	:	Map of Jalan UMS, Kota Kinabalu, Sabah from Open Street Map	67
Figure 4.2	:	Traffic simulation using SUMO	69
Figure 4.3	:	Wireless access in vehicular environment protocol stack	70
Figure 4.4	;	Coupling simulation between SUMO and Matlab	72
Figure 4.5	:	Broadcast nature of vehicular node	74
Figure 4.6	:	Flow chart of event-driven based modelling for simulation	75
Figure 4.7	1.I	Simulation network topology	87
Figure 4.8	:	Simulation results of total number of transferred bits over time	89
Figure 4.9	÷	Simulation results of average throughput over time	90
Figure 4.10	54	Simulation results of energy consume over time	91
Figure 5.1	:	Flowchart of an evolutionary algorithm	93
Figure 5.2	:	Multicast and unicast transmission	97
Figure 5.3	:	Coding oblivious and aware transmission	99
Figure 5.4	:	Packet exchange in chain topology	102
Figure 5.5	:	The component of vector equation	104
Figure 5.6	:	Flow chart of genetic algorithm based network routing in vehicular ad hoc network	106
Figure 5.7	:	Example of a chain topology with defined relationship between nodes	108
Figure 5.8	:	Vehicle routing with genetic algorithm based network routing	109

Figure 5.9	:	Chromosome with random assigned links from source to destination	110
Figure 5.10	:	Flow of tournament selection	111
Figure 5.11		Interexchange of genetic information between two parents	113
Figure 5.12	:	Mutation in a chromosome	115
Figure 5.13		Network topology for genetic algorithm based network routing	118
Figure 5.14	ł	Comparison of data transmitted over time for GANeR and COPE	120
Figure 5.15	2	Average throughput for COPE and GANeR	121
Figure 5.16	:	Simulation results of energy consumption over time	122
Figure 6.1	:	Geometrical illustration of particle swarm optimisation	128
Figure 6.2	÷	Packet exchange in network coding topology	129
Figure 6.3	:	Coding opportunities on the path	130
Figure 6.4		Route selection in traffic topology	131
Figure 6.5	A.	Flow chart of genetic algorithm-particle swarm SABAH optimisation for route selection in vehicular ad hoc network	134
Figure 6.6	:	Particle representation with the shortest possible route	135
Figure 6.7	:	Geometric representation with particle position update	137
Figure 6.8	:	Block diagram of various method comparison	138
Figure 6.9	:	Total bit transmission over GA-PSO, COPE and store-and- forward protocol	141
Figure 6.10	:	Throughputs of store-and-forward, COPE, and developed GA-PSO	142
Figure 6.11	:	Total energy consumption between store-and-forward, COPE, and developed GA-PSO	143

LIST OF ABBREVIATIONS

ACO	Ant Colony Optimisation
AI	Artificial Intelligence
AIFS	Arbitration Inter-Frame Space
ANCHOR	Active Network Coding High-throughput Optimising Routing
AODV	Ad Hoc on Demand Distance Vector
BE	Best Effort Traffic
вк	Background Traffic
CAR	Coding-aware Routing
ссн	Control Channel
СОР	Combinatorial Optimization Problem
СОРЕ	Wireless Network Transmission and Forwarding Structure
	Coding-aware opportunistic Routing in Wireless Mesh Network
CRM	Coding-aware Routing Metric TIMALAYSIA SABAH
CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance
стѕ	Clear-to-send
CW	Contention Window
DCAR	Distributed Coding-aware Routing
DDCDS	Dynamic Directional Connected Dominating Set
DiFCode	Distributed Fountain Network Coding
DSRC	Dedicated Short-Range Communication
EA	Evolutionary Algorithm
EBCD	Efficient Broadcasting using Network Coding and Directional Antennas
EC	Evolutionary Computation

ECX	Expected Number of Coded Transmissions
EDCA	Enhanced Distributed Channel Access
ETX	Expected Transmissions Count Metric
FCC	Federal Communications Commission
FIFO	First In and First Out
GA	Genetic Algorithm
GA-PSO	Genetic Algorithm and Particle Swarm Optimisation
GANeR	Genetic Algorithm based Network Routing
GPS	Global Positioning System
IEEE-SA	Institute of Electrical and Electronics Engineers Standards Association
IPv6	Internet Protocol Version 6
ITS	Intelligent Transportation System
LLC	Logical Link Control
	Linear Network Coding
LPF	Linear Programming based Formulation
MAC	Medium Access Control
MANET	Mobile Ad Hoc Network
MOVE	Mobility Model Generator for Vehicular Network
MPR	Multi-Point Relay
NAV	Network Allocation Vector
NC	Network Coding
NCAR	Network Coding Aware Routing Protocol
NCP	Network Coding Problem
NeR	Network Routing
NJCAR	Network Joint Coding-aware Routing

OFDM	Orthogonal Frequency Division Modulation
OSI	Open System Interconnection
OSM	Open Street Map
PDP	Partial Dominant Pruning
PDU	Protocol Data Unit
РНҮ	Physical Layer
PSO	Particle Swarm Optimisation
QoS	Quality of Service
RERR	Route Error
RLNC	Random Linear Network Coding
ROCX	Routing with Opportunistically Coded Exchanges
	Route Reply
RREQ	Route Request
RTS	Request-to-send
SCH	Service Channel UNIVERSITI MALAYSIA SABAH
TIGER	Topologically Integrated Geographic Encoding and Referencing
TTL	Time to Live
VANET	Vehicular Ad Hoc Network
VI	Video Traffic
vo	Voice Traffic
V2V	Vehicle-to-vehicle
WAVE	Wireless Access in Vehicular Environment
WMN	Wireless Mesh Network
WSMP	Wireless Access in Vehicular Environment Short Message Protocol
WSM	Wireless Access in Vehicular Environment Short Message

WSN Wireless Sensor Network

XOR Exclusive Or

LIST OF SYMBOLS

α	Weighting factor of crossover
β	Free space path-loss exponent
CRM _l	Expected number of transmissions for successfully transmitting of existing and incoming packet for each new flow
CW _{max}	Maximum size of the contention window
CW _{min}	Minimum size of the contention window
<i>c</i> ₁	Acceleration constant for cognitive learning factor
<i>c</i> ₂	Acceleration constant for social learning factor
D _{sd}	Distance between the source and the destination node
€ _e	Energy consumed on radio circuitry
Ed	Euclidean distance to determine the distance between nodes
E _{Rx}	Energy used to receive n bits data from transmitter
E _{Tx}	Energy used to transmit n bits packet over a distance of d
Ευ	Euclidean vector to calculate the angle between relay node and its destination node
g	Total bit of the segment node <i>i</i>
G_n	Number of gene
i	Number of nodes that are potential to become network coding node
j	Incoming flow of node <i>i</i>
k	Outgoing flow / current attempt to transmit the packet
l	Link
L	Path
m	Maximum size of the window
$MIQ_d(l)$	Dynamic queue length of a transmitter on <i>l</i>

n	Total number of received packets in destination or packet size
n _{max}	Total number of all the possible coding nodes in the network
n _{node}	Total number coding nodes present in chromosome
P _i	Previous best position
P _G	Global best position
P _l	Packet loss probability on l
R	Transmission range of a node
r ₁ , r ₂	Random number distributed in the range of 0 to 1
r _{i,j}	probability of a successful two-way delivery between node i and node j
Т	Total simulation time
T _d	Total time of a packet to travel from source to its destination
TR	Throughput
v _i	Velocity of the <i>i</i> th particle
v _{max}	Maximum velocity
x _i	Position of the <i>i</i> th particle

CHAPTER 1

INTRODUCTION

1.1 Vehicular Ad Hoc Network

Over the last few years, an increasing trend in number of on-road vehicles has been observed. This trend has led to the increase of interest towards the use of computer and communication technologies in transportation system, especially when the roads are becoming saturated and driving has become not only challenging, but also dangerous. Thus, Intelligent Transportation System (ITS) has been introduced by the researchers as an effort to advance car technology towards a sustainable transportation system aimed at reducing the traffic congestion and accidents happened on the road.

ITS plays a vital role in providing different means of traffic management and enables users to be better informed of traffic condition, promoting safer, coordinated and efficient use of transport network. ITS can be beneficial to many as it could help to improve the transportation operating environment by expanding the capabilities of transport infrastructure and traffic information sharing services. Many countries and automobile manufacturers are actively developing ITS-related technologies such as autonomous cruise control, electronic toll collection, intelligent parking system and many more. These features are no longer limited to laboratories study and testing. One of the many examples of such services has been envisaged into vehicles like Mercedes Benz Class-S (Benzshops, 2016): It can detect if the car is straying from the lane and alerting the driver by vibrating the steering wheel, and if necessary, it can apply the brakes to bring the car safely back into its lane. Meanwhile, the Audi A8 is capable of responding autonomously to help avoid collisions with other vehicles and pedestrians (Autocar, 2016); park assist pilot that is featured in the Volvo XC90 offers automatic parking by using multiple sensors to make sure the car is properly positioned for parking (Volvo Car Group, 2014). Other than that, ITS can provide traveller and weather information to the driver, displaying local signage such as stop sign and school zone on the display unit in the car, providing other traffic management such as pothole management, ramp metering and signal timing

optimization. Electronic payment system for parking, toll and gas collection is also another ease of access feature highlighted in ITS.

Successful deployment of ITS strongly depends on the wireless communication technology. ITS projects often target short-to-medium range wireless technology to establish communication between wireless infrastructures and mobile nodes. These establishments are important to disseminate the collected real-time traffic information in order to recuperate the efficiency and road safety in transportation system (Faye and Chaudet, 2016; Sommer and Dressler, 2015).

Different names have been adopted for wireless network according to their specific application, such as wireless sensor network (WSN), wireless mesh network (WMN) and mobile ad hoc network (MANET). These wireless networks are used as a part of the novel approach for ITS technology (Anaya et al., 2015; Anisi and Abdullah, 2016; You et al., 2016; Zelikman and Segal, 2015). Among these wireless networks, vehicular ad hoc network (VANET) has been gaining popularity and attention from both research and industry communities in recent years due to its inexpensive, flexibility, fault tolerance and ability to function in high mobility pattern and rapid changing topology. An ad hoc network can be defined as a representation of a network with minimal infrastructure or no infrastructure, which is formed by two nodes or more, with the capabilities to relay information and function as a network router, data source or data destination. VANET is a subclass of MANET and it uses vehicles as mobile nodes. It is a crucial fragment of ITS, which uses short-to-medium range wireless technology such as the Global Positioning System (GPS) and Dedicated Short-Range Communication (DSRC) or IEEE 802.11p radio for information interchange.

In VANET applications, vehicles on the road exchange their information with one another, either through fixed infrastructure units along the roadsides or with the roadside sensors as shown in Figure 1.1. The infrastructure plays as a coordination role in VANET by gathering relevant traffic information from the sensors planted on the roadside before distributing it to all the related nodes or vehicles, but it is infeasible considering the infrastructure cost involved.

2

Figure 1.1: Single Hop Vehicular Network with Fixed Infrastructure.

Another architecture that is commonly used in VANET is the car-to-car communication. This approach allows the moving cars to participate or engage in communicating with one another, creating a wide range network. The advantage of this approach is that when any car falls out of the transmission range or drop out of the network, another car can come in and reform the connection in the network. The communication and distribution of information can also be either broadcasted or pickup by any vehicle within the transmission range. However, a wireless link is required to provide a sufficient throughput, energy and reliability for each vehicle.

UNIVERSITI MALAYSIA SABAH

These vehicle-to-vehicle (V2V) communications network allows data transfer operations without the need of any network infrastructure as illustrated in Figure 1.2. It is based on the multihop ad hoc paradigm, where it could self-organizing and adapt dynamically to any atypical features of the vehicular field, without the need of predeployed infrastructure (Han *et al.*, 2008; Jiang *et al.*, 2015). A hybrid of these architectures enhances all the vehicles and roadside wireless devices capabilities to communicate with one another, either through single-hop or multi hop links and enable them to always remain connected to the world.

Figure 1.2: Baseless Station Vehicular Ad Hoc Network.