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ABSTRACT 

Titanium oxide (TiO2) is a promIsIng semiconductor material with wide energy 
bandgap and it is extensively applied in dye-sensitised solar cells and photocatalytic 
devices. TiO2 nanofibre offers better electron transfer and hence it is vital to apply 
nanofibres in the solar cell to improve its efficiency. The study aims to produce 
electrospun TiO2 nanofibres using custom-made electrospinning system. The study 
focuses on the investigation of the operational parameters of the developed 
electrospinning system on the fibres' diameter experimentally and using response 
surface methodology. A horizontal-oriented electrospinning system was developed to 
produce TiO2 nanofibres. Electrospun TiO2 nanofibres were produced from the 
ethanolic solution contains polymer carrier, polyvinylpyrrolidone (PVP), alkoxide 
precursor, titanium tetraisopropoxide (TTIP) and acetic acid as the stabiliser. TiO2 
nanofibres with mean diameter range from 110±51 nm to 263±78 nm were produced 
based on the measurement using JMicroVision from scanning electron microscope 
(SEM) micrographs. Crystalline TiO2 nanofibres with anatase-rutile phases were 
established after the calcination process in the furnace for 3 hours at 450 °C and the 
TiO2 phases were confirmed with X-ray diffractometer (XRD). The relationship 
between fibre diameters and various parameters were investigated, such as supplied 
voltage, feeding rate, tip-to-collector distance, the rotation speed of custom-made 
drum collector and solution concentration. The PVP concentration was added from 4 
to 9 wt. % and caused the average fibre size increased as much as 124%. It is also 
observed that increase in feeding rate resulted in elevating the fibres diameter. On 
the other hand, a reduction of 27% in fibres diameter occurred with an increment of 
tip-to-collector distance from 6 to 14 cm. Shrinkage of the fibre diameter occurred 
when the applied voltage increased. However, the rotation speed of drum collector 
had no significant effect on the fibres size. At the same time, a response surface 
model was developed by considering the variables of applied voltage, flow rate and 
tip-to-collector distance to estimate the fibres diameter. Based on the response 
surface plots, tip-to-collector distance is the most significant factor which contributed 
up to 66% influence in determining the fibres diameter. Whereas applied voltage 
plays a less weighty role at approximately 8% of influence in fibres diameter 
prediction. 
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ABSTRAK 

PENGHASILAN MEMBRAN GENTIAN NANO DENGAN PROSES 

ELECTROSPINNING DALAM APLIKASI TENAGA 

DIPERBAHARUI 

Titanium Oksida (7702) merupakan sejenis bahan semikonduktor yang mempunyai 
Jurang tenaga yang tinggi. O/eh itu/ TiO2 digunakan dalam sel suria sensitif pewama 
dan peranti pemangkin cahaya. Gentian nano TiO2 mempunyai aliran elektron yang 
baik dan meningkatkan efisiensi sel suria sensitif pewama dan peranti pemangkin 
cahaya. Kajian ini bertujuan untuk menghasilkan gentian nano 7702 dengan kaedah 
electrospinning. Kajian ini juga bertujuan untuk menyelidik implikasi factor operasi 
electrospinning terhadap saiz gentian secara uji kaji dan permodelan ''response 
surface'� O/eh yang demikian sistem e/ectrospinning berorientasi mendatar diguna 
untuk menghasilkan gentian nano 7702 hablur satu dimensi. Gentian nano 7702 boleh 
dihasilkan daripada /arutan etanol yang mengandungi alkoksida titanium 
tetraisopropoxide/ pembawa polimer polyvinylpyrrolidone dan penstabil asid asetik. 
Saiz gentian nano diukur dengan perisian ]Micro Vision daripada gambar mikroskop 
imbasan e/ektron (SEM). Pura ta gentian nano yang dihasi/kan adalah antara 110±51 
nm dan 263±78 nm. Hablur gentian nano TiO2 dengan campuran fasa anatase-rutile 
menunjukkan kecekapan penukaran tenaga yang lebih tinggi. Hablur ini dihasilkan 
mela/ui proses pemanasanan dengan memanaskan gentian nano TiO2 dalam re/au 
selama 3 jam dengan suhu 45fYC Penukaran fasa TiO2 disahkan dengan analisa X­
ray diffraction (XRD). Perhubungan antara pemboleh ubah seperti kuasa elektri� 
kelajuan aliran Jarak antara }arum dengan pemungut, kelajuan putaran pemungut 
dan kepekatan larutan ke atas saiz gentian nano telah dikaji. Penambahan kepekatan 
PVP daripada 4 wt% kepada 9 wt.% menyebabkan purata saiz gentian bertambah 
sebanyak 124%. Peningkatan kelajuan aliran juga memperbesarkan saiz gentian TiO2. 
Manakala/ penambahan jarak antara }arum dengan pemungut dari 6 cm ke 14 cm 
menyebabkan pengurangan diameter gentian sebanyak 27%. Pada masa yang sama/ 
saiz kecutan gentian berlaku dengan peningkatan kuasa elektrik. Namun demikian 
kelajuan putaran pemungut tidak membawa sebarang kesan terhadap saiz gentian. 
Permodelan ''response surface" telah disampaikan dengan mempertimbangkan kuasa 
elektri� kelajuan a Ii ran dan jarak antara jarum dengan pemungut sahaja untuk 
menjangka diameter gentian nano 7702. Dalam permodelan tersebut, jarak antara 
}arum dengan pemungut merupakan faktor utama dalam penentuan diameter saiz 
gentian manaka/a kuasa elektrik memberi pengaruh yang terendah. Jarak antara 

}arum dengan pemungut menyumbang sebanyak 66% terhadap saiz gentian 
manaka/a kuasa e/ektrik menyumbang hanya 8% da/am penentuan diameter gentian. 
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1.1 Research Overview 

CHAPTER 1 

INTRODUCTION 

The total world electricity generation throughout the year 2013 is 23,322 TWh 

(terawatt-hours), with an hourly mean of 2.66 terawatts during the year 

(International Energy Agency, 2015). Of this amount, 67.4% of electricity generation 

is produced by fossil fuels. Fossil fuels such as coal, oil and natural gas will not 

replenish in our lifetimes. In addition, electricity generation from fossil fuels is harmful 

to the environment especially air pollution. Therefore, researchers are looking for a 

suitable and alternative way to generate electricity. A photovoltaic system is one of 

the valid and sustainable option for electricity generation if the efficiency of the 

photovoltaic system can be improved (Gardner, 2008). 

In order to fabricate a low-cost photovoltaic system, nanotechnology is 

introduced to the solar cell. In the year 1991, O'Regan and Gratzel developed a 

nanostructured solar cell for electricity generation. This nanostructured solar cell is 

based on dye-sensitised colloidal titanium dioxide films and known as a dye­

sensitised solar cell (DSSC) or Gratzel cell (Brinker and Ginger, 2011; O'regan and 

Gratzel, 1991). Later on, the nanostructured solar cells have been fabricated from 

different semiconductors by using nanoparticles such as zinc oxide and titanium oxide 

(Kim et al., 2007). In addition, nanofibres can be applied to the fabrication of DSSC 

instead of nanoparticles to improve the efficiency of the solar cell. 



One-dimensional (1D) nanostructured materials such as nanofibres, 

nanowires, nanorods and nanotubes have a greater surface-to-volume ratio. This 

property can improve the rate of absorption, desorption and reaction. In addition, 

nanofibres are higher in aspect ratio and having better pore interconnectivity which 

is applicable for energy conversion and storage (Wu et al., 2012; Shi et al., 2015; 

Behera and Chandra, 2016). 

Recently, 1D nanostructures especially titanium oxide (TiO2) nanofibres are 

applied in the dye-sensitised solar cell (DSSC) because nanofibres gain the electron 

transport and enhance the charge collection owing to their properties such as lower 

transport resistance and larger specific surface area (Elayappan et al., 2015). TiO2 

has wide band gap semiconducting material that possesses high photocatalytic 

activities and absorbs UV light. In addition, TiO2 is a non-toxic material with strong 

oxidising power, exceptional chemical and biological stability as well as low cost and 

good corrosion resistance in aqueous solution. Therefore, it is a promising material 

in photocatalysis, solar cell, optical filter and antimicrobial surface coating (Mishra et 

al., 2012; Elayappan et al., 2015; Tang et al., 2016). 

Nanofibres can be produced by using drawing, template synthesis, self­

assembly, phase separation and electrospinning (Nayak et al., 2011). Among these 

process methods, electrospinning is a simple and novel approach with high versatility 

method to produce nanofibres down to nanometers. Various nanofibres can be 

produced by using electrospinning such as polymers fibres, metal oxide fibres and 

composites fibres (Reneker and Chun, 1996; Sigmund et al., 2005, Li and Wang, 

2013, Tang et al., 2016). In general, an electrospinning system consists of three 

main components: a high voltage power supply (in kV range), an electrically 

conducted spinneret (a syringe pump and a syringe with a metal needle) and a 

grounded collector. Electrospinning process can be summarised into three stages: jet 

initiation, jet instability and jet solidification to form fibres (Bhardwaj and Kundu, 

2010; Miao et al., 2010; Karimi et al., 2015). Electrospinning process is suitable for 

fibre fabrication due to the ease of setting up and requirements. Commercially, some 

of the companies provide industrial level scale electrospinning machines for fibre 

fabrication. 
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The focus of the study is based on the experimental investigation on 

electrospun TiO2 fibres fabrication and their morphology characteristics from different 

fabrication parameters. The fibres fabrication is done based on the developed lab­

scale electrospinning system. Other than that, the effects of system parameters 

including applied voltage, flow rate and tip-to-collector distance on fibres' diameter 

are investigated using response surface methodology. 

1.2 Problem Statement 

Dye-sensitised solar cell (DSSC) has gained the interest among the researchers owing 

to cost effective and its notable conversion efficiency. However, nanoparticle-based 

TiO2 solar cell has lower efficiencies as compared to the nanofibre-based solar cell 

(Shi et al., 2015). Nanoparticles have a higher density of grain boundaries between 

the particles. Thus, the electron diffusion through nanoparticles was in a random 

electrical pathway and lead to low electron transport rate and poor charge collection 

efficiency. In contrast, nano-fibrous morphology has lower grain boundaries with 

improved dye absorption and offer better charge transport rate for the electrons 

which could improve the efficiency. This is because the electrons were constrained 

to move directionally (Jose et al., 2009; Cao et al., 2016). Thus, it is vital to introduce 

TiO2 nanofibre in the solar cell. 

In general, five approaches were employed to fabricate nanofibres. The 

technique includes drawing, phase separation, self-assembly, template synthesis and 

electrospinning. However, these approaches possess their limitations such as 

discontinuous fabrication process, selective solution process, complex process and 
. . 

lack of control on the fibres diameter (Ramakrishna et al., 2005; Vasita and Katti, 

2006; Nayak et al., 2011). Thus, in order to rectify the aforementioned disadvantages, 

electrospinning has been introduced. A custom-made electrospinning system is 

required in order to fabricate fibres from a polymer solution and polymer melts with 

controllable fabrication parameters and tunable fibre size. However, jet instability 

may occur if the fabrication parameters are not controlled properly. 

3 



In electrospinning process, jet instability plays an important role in forming 

continuous fibres. When the jet instability is not regulated properly, the jet from the 

needle tip tends to break and causing difficulties in electrospinning process, viz 

forming discontinuous fibres and forming beaded structures. This problem can be 

solved by offering suitable parameters during the fabrication process. These 

parameters are solution concentration, solution viscosity, applied voltage, flow rate, 

tip-to-collector distance, type of collector, ambient temperature and humidity. As the 

parameters are tuned properly, the continuous fibre is formed with desirable size. 

In addition, the interrelationship of the parameters also contributes in 

adjusting the fibre size. Ray and Lalman (2011) estimated and predicted that the 

electrospun fibres' diameter using the developed quadratic model from response 

surface methodology. This quadratic model is merely suitable for their 

electrospinning system within the parameters boundaries. Thus, a specified model is 

required to investigate the interrelationship of the fabrication parameters for the 

custom-made electrospinning system. 

1.3 Project Objectives 

The objectives of projects are as below. 

i. To investigate the operational parameters of custom-made electrospinning

system in nanofibres production.

ii. To characterise the morphology and structural properties of the produced

nanofibers.

iii. To model and validate the nanofibres diameter for the developed

electrospinning system using response surface methodology.

4 



1.4 Scope of Study 

Generally, the project consists of three scopes of works. The first part is to develop 

the custom-made electrospinning system. The second part is to produce nanofibres 

from the solution containing precursor alkoxide, polymer and solvent with stabiliser. 

After that, the morphology of nanofibres is characterised and analysed with scanning 

electron microscope (SEM). The fibres samples are further characterised by X-ray 

Diffraction (XRD) analysis. Lastly, the parameters are modelled to produce a desirable 

size of fibres. Each of the parts is briefly explained in the following subsections. 

1.4.1 Development of the Electrospinning System 

A custom-made electrospinning system was developed which consists of a high 

voltage power supply, syringe pump, syringe, needle and a grounded collector. In 

this system, the rotating drum collector was developed to replace the static plate 

collector. 

1.4.2 Fabrication of Fibres Samples and the Characterisations 

In this study, the solution prepared was titania based formulation to produce TiO2 

nanofibres. The solution was prepared with the mixture of alkoxide precursor 

titanium tetraisopropoxide (TTiP) and carrying polymer polyvinylpyrrolidone (PVP) in 

ethanolic solution with acetic acid as a stabiliser. The parameters were supplied at 

different ranges: applied voltage (10-25 kV), flow rate (1.0-3.0 ml/hr), tip-to-collector 

distance (6-14 cm), the rotation speed of collector (105-321 rpm) and PVP content 

(4-9 wt.%). 

The electrospinning system was placed in a closed chamber, the air flow in 

the system was considered as none. The humidity and ambient temperature were 

assumed to have no effect on the diameter and morphology of the fabricated fibres. 

The samples preparation was done in an air-conditioning lab with constant 

temperature and humidity. The temperature was measured with the thermometer in 

the lab. For this study, amorphous and mixture anatase/rutile crystalline TiO2 were 

produced. Anatase/rutile TiO2 is well known for its photocatalytic activities. 
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