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ABSTRACT 

The main objective of this research is to investigate the charge transport in organic 

devices by simulating the 2-D design structure of the device using TCAD tools. As 

organic transistors are preparing to make improvements towards flexible and low 

cost electronics applications, an accurate models and simulation methods were 

demanded to predict the optimized performance and circuit design. The extraction 

and analysation of the transistor parameters from the electrical characterization of 

the 2-D organic semiconductor device were done to learn the behavior of the 

device itself. The characterization can describe the behavior of the transistor in the 

linear and saturation region, which is determining the drain current for any applied 

voltages. One of the important parameter for organic transistor devices is field 

effect mobility, the extraction of gate voltage dependence and the contact effects. 

Acknowledging the contact effect is very significant since it contribution on the 

device performance. Varied temperature research on organic transistor also has 

been used to characterize charge transport. There few common established model 

for charge transport in organic semiconductors because the exposed on thermally 

activated charge transport which is activation energies. Thus, the analysis of the 

effect of contact resistance and thermal activation energy of organic transistor also 

been investigated. The contact resistance obtained then fitted into the linear region 

equation for modified mobility, µ1110d, which obtain higher mobility than those 

obtained from the common linear region mobility model, proves that contact 

resistance should be considered while estimating the mobility. The observed 

temperature dependence of mobility can be explained by empirical MNR while there 

is an inverse relationship between £0 and µMN• The µo reveals that lower 

temperature region has lower mobility than the higher temperature region. 
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ABSTRAK 

SIMULASI DAN PENCIRIAN PENGANGKUTAN PEMBAWA CAS DALAM 

TRANSISTOR SEMIKONDUKTOR ORGANIK 

Objektif utama kajian ini adalah untuk menyiasat angkutan cas dalam peranti 

organik oleh simulasi reka bentuk struktur 2-D peranti menggunakan alat-alat 

TCAD. Sejak akhir ini, transistor organik telah mengalami penambahbaikan ke arah 

aplikasi elektronik fleksibel dan kos rendah, mempunyai model yang tepat dan 

kaedah simulasi telah digunakan untuk meramalkan prestasi dan reka bentuk litar 

untuk dioptimumkan. Pengekstrakan dan analisis parameter transistor dari 

pencirian elektrikal di dalam 2-D peranti semikonduktor organik telah dijalankan 

untuk mengetahui bagaimana keputusan peranti itu sendiri. Pencirian boleh 

menggambarkan keadaan transistor di kawasan linear dan tepu, yang menentukan 

arus salir bagi mana-mana voltan digunakan. Salah satu parameter yang penting 

untuk peranti transistor organik adalah mobiliti efektif medan elektrik, 

pengekstrakan pada kerbergantungan voltan dan kesan kontak. la telah pon diakui 

bahawa kesan kontak mempunyai hubungan yang sangat ketara kepada prestasi 

peranti. Penyelidikan suhu pada pelbagai tahap untuk transistor organik juga telah 

digunakan untuk mencirikan pengangkutan caj. Terdapat beberapa model yang 

dihasilkan untuk pengangkutan caj dalam semikonduktor organik kerana terdedah 

kepada pengangkutan caj yang diaktifkan secara haba yang merupakan tenaga 

pengaktifan bagi sesuatu transistor tersebut. Oleh itu, analisis kesan rintangan 

kontak dan tenaga pengaktifan haba transistor organik juga telah disiasat. 

Rintangan kontak yang diperolehi telah diaplikasikan ke dalam persamaan kawasan 

linear untuk mobiliti yang diubah suai, µmod, yang mendapatkan mobiliti yang lebih 

tinggi berbanding yang diperolehi dari linear model mobiliti kawasan tepu yang 

sama, membuktikan bahawa rintangan kontak perlu dipertimbangkan semasa 

menganggarkan mobiliti. Pergantungan pada suhu juga diperhatikan pada mobiliti 

dapat dijelaskan oleh model MNR yang menunjukkan terdapat hubungan songsang 

antara Ea dan µMN• Pendapatan nilai µ0 juga telah mendedahkan bahawa kawasan 

suhu yang lebih rendah mempunyai mobiliti lebih rendah daripada suhu yang lebih 

tinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

As the organic semiconductors were introduced on the early years of its discovery, 

the structure of organic semiconductor is proven compatible with thin film 

transistor (TFT) but have limitation on the organic material which have low mobility 

in device performances of initial device (Calvetti et al., 2005). Many techniques 

were introduced to improve organic semiconductor performance especially on the 

charge-carrier mobility and pulling the interest of industrial group board into 

research programs on organic transistor (Li and Kosina, 2005). Even though the 

carrier mobility of organic materials makes their performance characteristics lag 

behind traditional inorganic semiconductors by a thousand times or more, the 

organic semiconductors offer easier low-temperature processing than silicon, 

resulting in lower cost semiconductors with highly tunable properties (Johnson, 

2010). 

As the interest getting bigger, the physical dimensions of organic 

semiconductor device were scaling down. For example, the channel length in 

organic thin film transistor is getting shorter, which can lead to substantial 

deviations of the device such as short channel effects (Li and Kosina, 2005). It is 

estimated that the carriers move at a much higher velocity and produced very high 

current (BrUtting, 2006). Hence, an accurate extraction of certain type of organic 

transistor model parameters is benefits from modelling and circuit simulation and 

could be a give significantly higher performance value as it will be more reliable 

according to the specified configuration (Weis et al., 2013). 


