EFFECT OF WS₂ AND TiO₂ NANOPARTICLES ON THE TRIBOLOGICAL CHARACTERISTICS OF ta-C COATING

YEOH CHIN EAN

UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL:EFFECT OF WS2 AND TiO2 NANOPARTICLES ON THE
TRIBOLOGICAL CHARACTERISTICS OF ta-C COATING

IJAZAH: MASTER OF ENGINEERING (MECHANICAL ENGINEERING)

Saya <u>YEOH CHIN EAN</u>, Sesi <u>2016-2017</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat Salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat Salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tadakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

YEOH CHIN EAN MK1511044T

Tarikh: 21 Ogos 2017

Disahkan Oleh, NURULAIN BINTI ISMAIL LIBRARIAN LIBRARIAN

(Tandatangan Pustakawan)

(Prof. Dr. Kim Seock Sam) Penyelia

(Assoc.Prof.Dr.Willey Liew Yun Hsien) Penyelia Bersama

DECLARATION

I hereby declare that the material in this thesis is my own except for the equations, summaries, and references, which have been duly acknowledged.

28 March 2017

Yeoh Chin Ean MK1511044T

PERPUSTAKAAN

CERTIFICATION

- NAME : YEOH CHIN EAN
- NO. MATRIC : MK1511044T
- TITLE : EFFECT OF WS₂ AND TiO₂ NANOPARTICLES ON THE TRIBOLOGICAL CHARACTERISTICS OF ta-C COATING
- DEGREE : MASTER OF ENGINEERING (MECHANICAL ENGINEERING)

DATE OF VIVA: 11 AUGUST 2017

CERTIFIED BY;

1. MAIN SUPERVISOR

Prof. Dr. Seock-Sam Kim

Signature

JNIVERSITI MALAYSIA SABAH

2. CO-SUPERVISOR

Assoc. Prof. Dr. Willey Liew Yun Hsien

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to my dearest supervisors, **Prof. Dr. Seock-Sam Kim**, and **Assoc. Prof. Dr. Willey Liew Yun Hsien** for all the advises guidance and support in this research work that leads to the completion of this thesis. Regarding the technical support, I would like to credit the grateful appreciations on the help of **Dr. Kim Jong Hyoung and Mr. Choi Si Geun** from Korea Institute of Industrial Technology, **KITECH**; **Dr. Kim Jong Kuk** and **Dr. Jang Young Jun** from Korea Institutes of Materials Science, **KIMS**. Without their technical training and knowledge sharing, I would not be able to complete this research smoothly. I would like to thank the **Centre of Research and Innovation** from my university, **University Malaysia Sabah** and the **MyGrant** from the **Highest Education Department in Malaysia**, which providing us the research grant (**SBK-0232** and **FRG0451**) for the financial support. So, we have enough budget to purchase the research materials for this research.

Special thanks to all my family's members, due to their hard work in supporting me for my daily expenses and mentally support while I am carrying this research. Because of them, I had a great and fruitful journey in my study life. Besides, I would like to express my appreciation to my friend. It is great to have a friend like she, my life motivator, Ms. Lee Sze Fern. Without her motivation to me, I would not be able to complete this thesis in a short period.

Yeoh Chin Ean 28 March 2017

ABSTRACT

Tetrahedral amorphous carbon (ta-C) coating is one of the Diamond-like Carbon (DLC) coating which display some excellent properties of a diamond, such as high hardness properties, high wear resistivity and chemically inertness. It is widely used in engineering applications. The interaction of the lubricant additive could affect the tribological performance of the ta-C coating layer with its intrinsic factor. This project was carried out to investigate the effect of tungsten disulphide (WS₂) and titanium dioxide (TiO₂) nanopowder separately in Poly-alpha-olefin (PAO4) oil on the friction and wear behavior of the ta-C coating films. PAO4 base oil blended with different weight ratio of a WS_2 and TiO_2 was used (0 wt%, 0.1 wt%, 0.5 wt%, and 1.0 wt% TiO₂ blended with PAO4, and 0 wt%, 3.0 wt%, 4.0 wt%, and 5.0 wt% WS₂ blended with PAO4). The ta-C coating was deposited on the bearing steel using the Filtered Cathodic Vacuum Arc (FCVA) method. The hardness and young modulus value of this coated films were measured to be 64.53 GPa and 418.23 GPa, respectively. A ball-on-disc tester was used to investigate the friction and wear behavior of ta-C films. Under boundary lubrication condition, the presence of the WS₂ and TiO₂ additives in the base oil reduced the wear of the ta-C films. The specific wear rate obtained under PAO4 lubrication was the highest at 0.2816 X 10⁻⁶ mm³/mN. This lubrication condition had the lowest lambda ratio of 0.551 indicating of boundary lubrication resulting in severe interaction of the asperities and a significant shear properties of the lubricant film onto the ta-C surface. In contrast, sliding under PAO4 containing 3.0 wt% of WS₂ with lambda ratio of 0.851 resulted in micro-elastrohydrodynamic lubrication condition and a lower specific wear rate of 0.1494 X 10⁻⁶ mm³/mN. Among all the PAO4 blended with TiO₂ lubricant, the lubricant containing 1.0 wt% of TiO₂ with the highest lambda ratio value of 0.989 gave the lowest wear rate of 0.1314 X 10⁻⁶ mm³/mN. The TiO₂ and WS₂ had different effects on the friction coefficient and the specific wear rate. Increasing the weight percentage of WS₂ led to a reduction in the COF but an increasing specific wear rate. However, for PAO4 blended with TiO₂ lubricants, higher content of TiO₂ resulted in higher COF but lower specific wear rate. The Raman result showed that the presence of the additives had significant effect on the graphitization of the ta-C structure. Higher amount of additives caused more sp³ bond structure to break into

sp² bonds which had adverse effect on its wear resistance. On the other hand, the additives could form a protective layer capable of reducing the wear of the ta-C film. Overall effect was these was a reduction in wear.

ABSTRAK

KESAN WS2 DAN TIO2 NANOPARTIKEL TERHADAP CIRI-CIRI TRIBOLOGI SALUTAN ta-C

Tetrahedral amorphous carbon, ta-C adalah salah satu jenis salutan untuk Diamond-like carbon (DLC). Salutan ta-C ini menpunyai sifat-sifat yang baik seperti berlian, contohnya, salutan ini mempunyai kekuatan menghalang haus yang tinggi dan tidak berkesan sama bahan kimia. Oleh sebab itu, salutan ini banyak digunakan dalam aplikasi kejuruteraan. Kebelakangan ini, kesan untuk salutan ta-C bersama perlinciran telah menarik perhatian kebanyakan penyelidik. Oleh sebab, penambahan bahan seperti sebuk yang bersiaz nano meter dapat mengesankan kebeberapa perubahan dalam sifat -sifat tribologi untuk salautan ta-C. Dengan pertimbangan untuk menemui pengubahan sifat-sifat tribologi untuk salutan ini, penambahan sebuk seperti titanium dioxide (TiO₂) dan tungsten disulphide (WS₂) telah pun dibuat. Dalam projek ini, TiO₂ telah disediakan dalam 4 jenis peratusan berat badan, adalah seperti, 0 wt%, 0,1 wt%, 0.5 wt%, dan 1.0 wt%. Bagi sebuk berjenis WS₂, juga disedia bagi 4 jenis peratusan berat badan, adalah seperti, 0 wt%, 3.0 wt%, 4.0 wt%, dan 5.0 wt%. Salutan-salutan ta-C telah disediakan dengan kaedah Filtered Cathodic Vacuum Arc, FCVA. Nilai-nilai kekerasan dan elastic modulas untuk salutan ta-C adalah 64.53 GPa dan 418.23 GPa. Ujian tribo telah dilakukan dengan pengunaan ball-on-disc dalam projek ini. Kehadiran bahan tambahan dapat mengurankan kadar haus untuk salutan ta-C, sebagai buktinya, untuk kes hanya minyak sintetik, PAO4, kadar hausnya didapati pada 0.2816 X 10⁵ mn^{*}/mN. Manakala untuk peratusan berat badan bagi TiO₂ dan WS₂ yang mencapai kelajuan haus yang terendah adalah, 1.0 wt% dan 3.0 wt%. Dengan kadar haus 0.1314 X 10⁶ mm³/mN bagi 1.0 wt% TiO₂, dan 0.1494 X 10⁶ mm³/mN bagi 3.0 wt% WS2. Dalam kajian ini, hasil untuk pekali geseran dan kadar haus tertentu menunjukkan hasil yang berbeza. Ini disebabkan oleh kekuatan permukaan filem ta-C di mana bahan tambahan ditambah pelincir boleh berkelakuan seperti lapisan perlindungan semasa ujian dengan ball-on-disc. Kerana pekali geseran yang diukur adalah interaksi antara lapisan perlindungan dan (bola

bearing) badan kaunter. Dengan lapisan perlindungan ini, tribofilms kurang ditarik dari permukaan salutan ta-C. Secara kesimpulannya, penambahan sebuk-sebuk yang bersaiz nano dapat menambah-baikan sifat sifat tribologi untuk salutan ta-C.

TABLE OF CONTENTS

	Page
TITLE	ľ
DECLARATION	ii.
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRACT	vii
LIST OF CONTENTS	ix
LIST OF TABLES	A SABAH xv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xx
LIST OF SYMBOLS	xxii
LIST OF APPENDIX	xxiii
CHAPTER 1: INTRODUCTION	1
1.1 Project Background	1
1.2 Project Statement	2

1.3	Object	ives	3
1.4	Impor	tant of Research	3
1.5	Chapte	er Organisation	4
1.6	Projec	t Flow Chart	5
СНАР	TER 2:	LITERATURE REVIEW	7
2.1	Overvi	ew	7
2.2	Diamo	nd Like Carbon Films	7
2.3	Structi	ure of DLC	8
2.4	Depos	ition Techniques of DLC	12
	2.4.1	Physical Vapor Deposition	15
	2.4.2	Chemical Vapor Deposition	18
	2.4.3	Arc Vapor Deposition UNIVERSITI MALAYSIA SABAH	19
2.5	Tribolo	ogical Behavior of DLC	20
	2.5.1	Tribological Properties	21
	2.5.2	Wear Mechanisms	22
2.6	Lubrica	ation	22
2.7	Additiv	/es	24
	2.7.1	Titanium Dioxide, TiO ₂	24
	2.7.2	Tungsten Disulphide, WS ₂	26

2.8 Summary

CHAPTER 3: THEORY

3.1	Overview	29
3.2	Friction	29
3.3	Wear	31
	3.3.1 Adhesive Wear	31
	3.3.2 Abrasive Wear	31
	3.3.3 Fatigue Wear	32
	3.3.4 Fretting Wear	33
	3.3.5 Erosive Wear	33
	3.3.6 Corrosive Wear	33
3.4	Lubricant	34
	3.4.1 The Stricbeck Curve	36
3.5	Solid Lubricant	37
26	Theoretical Calculations	20
3.0		20
	3.6.1 Friction Coefficient	38
	3.6.2 Hertzian Contact	39
	3.6.3 Specific Wear Rate	41
	3.6.4 Minimum Thickness of Lubricant Film	41
	3.6.5 Lamda ratio	42

3.7 Summary

43

CHAPTER 4: METHODOLOGY

4.1	Overvi	iew	44
4.2	Test P	ieces Preparation	45
	4.2.1	Substrate Properties	45
	4.2.2	FCVA System	46
	4.2.3	DLC Deposition Procedures	47
	4.2.4	Lubricant Preparation	47
4.3	DLC C	haracterizations	50
	4.3.1	Raman Spectroscopy	50
	4.3.2	Scratch-test	51
	4.3.3	Nano Indentation	54
	4.3.4	Ball-on- Disc Test	55
4.4	Surfac	e Morphology Investigation	57
	4.4.1	Scanning Electron Microscopy, SEM and Characterisation X-ray, EDX	57
	4.4.2	Surface Profiler	59
	4.4.3	Atomic Force Microscopy, AFM	59
4.5	Summ	nary	60
СНА	PTER 5	RESULT AND DATA ANALYSIS	61
5.1	Overv	iew	61
5.2	The E	ffect of Different Bias Voltage in FCVA Method	61
	5.2.1	Mechanical Behaviour as the Function of Different Bias	62

V	0	lta	a	e
			_	

	5.2.2	Graphitization of ta-C Films at Different Bias Voltage	63
	5.2.3	Tribological Behaviour as the Function of Different Bias Voltage	66
	5.2.4	Wear Behaviour as the Function of Different Bias Voltage	67
	5.2.5	Surface Roughness as the Function of Bias Voltage	70
	5.2.6	Summary of Preliminary Study of ta-C Coating	70
5.3	Mecha Films	nical Behaviour and Tribological Behaviour of ta-C Coating on Bearing Steel	71
	5.3.1	Hardness and Young Modulus of ta-C Films	71
	5.3.2	Adhesion Strength	72
	5.3.3	Friction and Wear Behaviour	73
	5.3.4	Surface Morphology	74
	5.3.5	Wear Mechanisms	75
	5.3.6	Raman Result for Before and After Test	75
	5.3.7	Summary of Mechanical Behaviour and Tribological Behaviour of ta-C Coating on Bearing Steel	76
		UNIVERSITI MALAYSIA SABAH	
5.4	Tribol	ogical Behaviour of ta-C Films under PAO4	77
	5.4.1	Function of Friction Coefficient and Wear Behaviour Against Sliding Time	77
	5.4.2	Surface Morphology	77
	5.4.3	Wear Mechanisms	78
	5.4.4	Raman Spectrum	79
	5.4.5	Summary of Tribological Behaviour of ta-C Films under PAO4	79
5 5	Tribol	ogical Rohaviour of ta-C Films under RAO4 with WS-	80
J.J		Function of Fristian Coefficient Appinet Cliding Time	00
	5.5.1		00
	5.5.2		81
	5.5.3	Surface Morphology	82
	5.5.4	Wear Mechanisms	83

	5.5.5	Raman Spectrum	85
	5.5.6	Summary of Tribological Behaviour of ta-C Films under	86
5.6	Tribolo	paical Behaviour of ta-C Films under PAO4 with TiO ₂	87
	5.6.1	Function of Friction Coefficient Against Sliding Time	87
	5.6.2	Wear Behaviour	89
	5.6.3	Surface Morphology	89
	5.6.4	Wear Mechanisms	90
	5.6.5	Raman Spectrum	97
	566	Summary of Tribological Behaviour of ta-C Films under	93
	51010	PAO4 with TiO ₂	55
5.7	Stribed	ck Diagram	94
5.8	Result	of Lamda Ratio	95
5.9	Summ		96
		UNIVERSITI MALAYSIA SABAH	
СНАР	TER 6:	CONCLUSIONS	98
6.1	Conclu	isions	98
6.2	Future	Work	100
REFE	RENCE	S	102
APPE	NDIX		112

LIST OF TABLES

		Page
Table 2.1	List of Deposition Method of Diamond Like Carbon	12
Table 2.2	Classification of Lubrication Base Oil	22
Table 2.3	Properties of Titanium Dioxide, TiO ₂	24
Table 2.4	Properties of Tungsten Disulphide, WS ₂	26
Table 4.1	Properties of ANSI 52100 Bearing Steel	45
Table 4.2	Chemical Composition of ANSI 52100 Bearing Steel	46
Table 4.3	Properties of PAO4	48
Table 4.4	Dynamic Viscosity of Lubricant with Additives	49
Table 4.5	Scratch Test Parameter	53
Table 4.6	Properties of ANSI Bearing Steel Ball	56
Table 4.7	Type of Lubricant Mixture	56
Table 5.1	Hardness and Young Modulus Results of ta-C Films	71
Table 5.2	Inten <mark>sity of D</mark> -peak and G-peak for ta-C Films under PAO4 Adding with WS ₂ -	86
Table 5.3	Intensity of D-peak and G-peak for ta-C Films under PAO4 Adding with TiO ₂	93
Table 5.4	Result of Lamda Ratio	96

LIST OF FIGURES

		Page
Figure 1.0	Project Flow Chart	6
Figure 2.1	Carbon's ground state configuration to excitation state	8
Figure 2.2	Configuration of (a) sp^3 , (b) sp^2 , and (c) sp^1	9
Figure 2.3	The sp ¹ , sp ² and sp ³ hybridised bonding	9
Figure 2.4	Ternary phase diagram of bonding in amorphous carbon hydrogen alloys	10
Figure 2.5	Two-dimensional representation of diamond-like carbon film structure	11
Figure 2.6	Schematic model of hydrogenated carbon structure based on NMR.	12
Figure 2.7	Configuration of vacuum deposition	15
Figure 2.8	Configuration of sputter deposition	16
Figure 2.9	Configuration of ion plating deposition	17
Figure 2.10	Configuration of Pulsed laser deposition	17
Figure 2.11	Wear Properties and friction coefficient of each specimens.	20
Figure 2.12	CoF of a-C:H/steel contact and ta-C/steel contact at three test temperatures.	21
Figure 2.13	Wear Coefficient of a-C:H/steel contact and ta-C/steel contact at different temperatures.	21
Figure 2.14	Friction Coefficient of casting iron under SF oil with and without nanoparticles.	26
Figure 2.15	Variation of the friction coefficient of PAO6 with increasing contents of nano-size of WS_2 powders.	27
Figure 3.1	Schematic of adhesive wear	31
Figure 3.2	Schematic of abrasive wear	32
Figure 3.3	Schematic of fatigue wear	32
Figure 3.4	Schematic of fretting wear	33
Figure 3.5	Schematic of erosion wear	33
Figure 3.6	Schematic of corrosion wear	34
Figure 3.7	Schematic of the three main lubrication regimes	35

Figure 3.8	Schematic of Stribeck Curve	36
Figure 3.9	Friction coefficient of Ball-on-disc	38
Figure 3.10	Spheres in elastic contact	39
Figure 3.11	The resulting semi-elliptical pressure distribution	40
Figure 4.1	Substrate, ANSI 52100 Bearing steel	45
Figure 4.2	KIMS BD Unit 8, FCVA	46
Figure 4.3	LPS-500 Ultrasonic agitator	48
Figure 4.4	Viscometer (BHN)	49
Figure 4.5	Raman Spectrometer (Horiba Co. Ltd, Japan)	51
Figure 4.6	Principle of scratch testing	52
Figure 4.7	Scratch Tester (CSM. Co. Ltd.)	52
Figure 4.8	VDI 3198 standard test indentation result of, (a) HF 1	54
	, (b) HF 2, (c) HF 3, (d) HF 4, (e) HF 5, and (f) HF 6.	
Figure 4.9	Nano-Indenter (CSM. Co. Ltd.)	54
Figure 4.10	Tribometer, Ball-on-disc (Magnum Engineers)	55
Figure 4.11	Tribometer layout	55
Figure 4.12	Various signal produced from different depths of specimen	58
Figure 4.13	Scanning electron microscope, SEM (Hitachi S-4700)	58
Figure 4.14	Surface Profiler (ACCRETECH-TOKYO SEIMITSU)	59
Figure 4.15	PSIA XE-100 Scanning Probe Microscope (Park System Corp.)	60
Figure 5.1	Hardness as the function of bias voltage	63
Figure 5.2	Elastic Modulus as the function of bias voltage.	63
Figure 5.3	Raman shift of the specimens coated with bias voltage at:	64
	(a) 0 V; (b) 40 V; (c) 80 V; (d) 120 V; and (e) 160 V.	
Figure 5.4	G-peak and intensity ratio, I_D/I_G of ta-C Films coated at various bias voltage.	65
Figure 5.4 (a)	Raman date of ta-C coating with different bias voltage.	66
Figure 5.5	Fricition coefficient of different bias voltage.	66

Figure 5.6	Average friction coefficient for different bias voltage.	67
Figure 5.7	Specific wear rate of ta-C coated disk against different bias voltage.	68
Figure 5.8	Optical microscope image of counterpart and ta-C films.	69
Figure 5.9	Surface roughness behaviour as the function of bias voltage	70
Figure 5.10	Cross-section image of the specimen after coating.	71
Figure 5.11	Result generated by CSM Scratch tester for Normal load and friction, and Acoustic Emission, AE against scratch distance	72
Figure 5.12	Optical Microscope image of scratch test indentation and the critical load of ta-C film.	73
Figure 5.13	VDI 3198 standard test result.	73
Figure 5.14	Friction Coefficient of ta-C film under dry sliding condition.	74
Figure 5.15	Surface morphology of ta-C film before and after dry sliding test.	74
Figure 5.16	SEM Image of ta-C film after dry sliding test	75
Figure 5.17	Raman spectrum of ta-C film under dry sliding condition.	76
Figure 5.18	Friction coefficient of ta-C film under PAO4.	77
Figure 5.19	Surface morphology of ta-C film after slidng test under PAO4.	78
Figure 5.20	SEM image of ta-C film after sliding test under PAO4 with magnification at (a) 320 times, and (b) 2000 times.	78
Figure 5.21	Raman spectrum of ta-C film under PAO4.	79
Figure 5.22	Friction coefficient of ta-C film under PAO4 adding with WS_2 .	80
Figure 5.23	Average Friction Coefficient of ta-C films under PAO4 adding with WS ₂ .	81
Figure 5.24	Wear rate of ta-C coating film under PAO4 adding with WS_2 .	81
Figure 5.25	Surface morphology of ta-C coating film under PAO4 adding with WS ₂ at (a) 3.0 wt%, (b) 4.0 wt%, and (c) 5.0 wt%.	83

Figure 5.26	SEM image of ta-C coating film under PAO4 adding by With WS ₂ at (a) 3.0 wt%, (b) 4.0 wt%, and (c) 5.0 wt%.	84
Figure 5.27	EDS result from wear surface of ta-C films for case 5.0 wt% WS_2	85
Figure 5.28	SEM Image of WS_2 agglomeration.	85
Figure 5.29	Raman Spectrum of ta-C film under PAO4 adding with WS_2 .	86
Figure 5.30	Friction coefficient of ta-C films under PAO4 adding with TiO_2 .	88
Figure 5.31	Average of friction coefficient of ta-C films under PAO4 adding with TiO_2 .	88
Figure 5.32	Average wear rate of ta-C films under PAO4 adding with TiO_2 .	89
Figure 5.33	Surface morphology of ta-C films under PAO4 adding with TiO_2 at (a) 0.1 wt%, (b) 0.5 wt%, and (c) 1.0 wt%.	90
Figure 5.34	SEM image of ta-C coating film under PAO4 by adding with TiO_2 at (a) 0.1 wt%, (b) 0.5 wt%, and (c) 1.0 wt%	91
Figure 5.35	SEM image of the lubricant with additive of TiO ₂	92
Figure 5.36	Raman Spectrum of ta-C films under PAO4 adding with TiO_2 .	92
Figure 5.37	Average Friction Coefficient Values as the Function of TiO_2 Viscosity.	94
Figure 5.38	Average Friction Coefficient Values as the Function of WS_2 Viscosity	95

LIST OF ABBREVIATIONS

a-C:H	-	amorphous hydrogenated carbon
AE	-	Acoustic Emission
AFM	-	Atomic Force Microscope
ANSI	- 1	American National Standard Institute
САР	-	Circumferencial Antenna Plasma
CVD	-	Chemical Vapour Deposition
COF	-	Coefficient of Friction
DG	-	Defected Graphite
DLC	-	Diamond-Like Carbon
DNA	-	Deoxyribonucleic Acid
DOMS	-	Deep Oscillation Magnetron Sputtering
ECR	-	Electron Cyclotron Resonance
EDX	-	Characteristic X-Ray
FCVA		Filter Cathodic Vacuum Arc
FIB-CVD	-/_/	Focused Ion-Beam Chemical Vapor Deposition
НСР	B A H	Hollow Cathode Discharge SIA SABAH
HiPIMS	-	High Power Impulse Magnetron Sputtering
IBAD	-	Ion Beam Assisted Deposition
LPCVD		Low Pressure Chemical Vapor Deposition
MW SWP	-	Microwave Surface-Wave Plasma
NMR	-	Nuclear Magnetic Resonance
PAO4	-	Poly-alpha-olefins Group IV
PACVD	-	Plasma Assisted Chemical Vapour Deposition
PC	-	Personal Computer
PCVD	-	Plasma Chemical Vapor Deposition
PECVD	4	Plasma Enhance Chemical Vapour Deposition
PIID	-	Plasma Immersion Ion Deposition
PLD	-1-1	Pulsed Laser Deposition

PVD	-	Physical Vapor Deposition
PW 6		Pigment White 6
RCN	-	Random Covalently Network
RF	-	Radio-Frequency
RMS	•	Root Mean Square
SEM	•	Scanning Electron Microscope
ta-C	8	tetrahedral amorphous Carbon
TiO ₂		Titanium Dioxide
UV	-	Ultra-Violet
WS₂	-	Tungsten Disulphide
XRD		X-Ray Power Diffraction

LIST OF SYMBOLS

η_D	Α.	Refractive index
η		lubricant viscosity
ω	-	Rotational speed of the motor
p_0	-	Maximum Hertzian contact pressure
R	-	Reduce radius of curvature
R_{1}, R_{2}	-	Radii of two bodies
Ε		Reduce modulus, contact modulus
E ₁ , E ₂		Elastic modulus of two bodies
<i>F</i> _{<i>N</i>} ,	-	Normal load
F_{s}	-	Frictional force
<i>v</i> ₁ , <i>v</i> ₂	-	Poisson's ratio of two bodies
а	-	Radius of contact circle
P		Normal load applied
k		Specific wear rate
rs		Sliding radius
h _{min}	ABAH	Minimum films thickness
η_0	•	Dynamic viscosity of lubricant
α	-	Viscosity pressure coefficient
U _m	14	Mean velocity of two moving surfaces
<i>k</i> ₁		Ellipticity parameter
Λ	-	Lamda ratio
μ_s		Dimensionless Friction coefficient
R _a	-	Centre line average roughness
R _q	•	Root mean square roughnes
R_{q1}, R_{q2}	-	Root mean square roughness of two solid surfaces
W _{powder}	-	Weight of additives powder
W _{PAO4}	-	Weight of Poly-alpha-olefin oil

LIST OF APPENDIX

Appendix A

List of Publications

Page

