ENHANCING PHOTOCATALYTIC ABILITY OF TITANIUM DIOXIDE THROUGH INCORPORATION OF MIL-53(Fe) TOWARDS DEGRADATION OF METHYL ORANGE AND METHYLENE BLUE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

ENHANCING PHOTOCATALYTIC ACTIVITY OF TITANIUM DIOXIDE THROUGH INCORPORATION OF MIL-53(Fe) TOWARDS DEGRADATION OF METHYL ORANGE AND METHYLENE BLUE

NURUL WAFA BINTI OTHMAN

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excepts, equations, summaries and references, which have been duly acknowledged.

1st November 2016

Nurul Wafa Binti Othman MS1311007T

CERTIFICATION

- NAME : NURUL WAFA BINTI OTHMAN
- MATRIC NO. : **MS1311007T**
- TITLE : ENHANCING PHOTOCATALYTIC ACTIVITY OF TITANIUM DIOXIDE THROUGH INCORPORATION OF MIL-53(FE) TOWARDS DEGRADATION OF METHYL ORANGE (MO) AND METHYLENE BLUE (MB)
- DEGREE : MASTER OF SCIENCE (INDUSTRIAL CHEMISTRY)

DATE OF VIVA : 28 APRIL 2017

ACKNOWLEDGEMENTS

It would not have been possible to completely write this thesis without the help and support from all the kind people around me. I am very grateful to be able to work and learn many useful knowledge and skills throughout my master project. I would like to take this opportunity to express my sincere appreciation and gratitude to my supervisor, Dr. Moh Pak Yan, who was willing to guide me during my master research journey, enhancing my critical thinking skills, his continuous support, his patience, motivation, enthusiasm and immense knowledge. Next, I would like to express my gratitude to Faculty of Science and Human Resources and Water Research Unit that provides instruments and equipments that aid me during my research. Not forgetting to lab assistant Mr. Jerry Alexander for his cooperation in providing me all the apparatus needed in my research, Mr. Abdul Rahim of XRD laboratory and Mdm. Marlenny of SEM laboratory for their patience with me.

I would also like to thanks the Ministry of Education for the provision of grant: ERGS0032-STG-1-2013. My sincere thanks to my colleagues Suzanna Wong, Nguang Sing Yew, Hasmira Radde, Cheong Von Fei and Michelle whom worked closely together with me in completing my research study, sharing knowledge and ideas to solve problems and cooperation in many ways.

Last but not least, I would love to express my deepest gratitude and love towards my parents, Othman bin Abdul Hamid and Rusnah binti Dahalan, my husband, Umair bin Muhammad Tahar, my siblings for their continuous love and support, encouraging me to complete my master research study. Once again, I am grateful for everything and hope for the best in the future.

Nurul Wafa Binti Othman 1st November 2016

ABSTRACT

MIL-53(Fe) is an iron(III) carboxylate compound fall under the subclass of metalorganic frameworks (MOFs). This compound was incorporated to TiO_2 , a non-toxic and highly efficient semiconductor for photocatalysis application. MIL-53(Fe) was synthesized by reflux method for 3 hours. The obtained MIL-53(Fe) powder was dispersed in ethanol and water mixture, sonicated and injected with a titanium(IV) butoxide. The mixture was then further heated in Teflon-lined autoclave to produce MIL-53(Fe)/TiO₂. To produce MIL-53(Fe) derived Fe₂O₃/TiO₂ composite, the powder was calcined at 500 °C. XRD pattern confirmed the obtained powder corresponds to the MIL-53(Fe)/TiO₂ with characteristic feature of an anatase and MIL-53(Fe), while the XRD pattern of the calcined MIL-53(Fe)/TiO₂ powder suggested that the derived material were Fe₂O₃/TiO₂ composite. EDX data proved that there was MIL-53(Fe) material incorporated to the TiO₂. Scanning Electron Microscope (SEM) image of MIL-53(Fe) showed a triangular prism-shaped with particle size in the range of 0.2 to 0.25 μ m. A spherical morphology were observed on MIL-53(Fe)/TiO₂ and MIL-53(Fe) derived Fe_2O_3/TiO_2 composites with the particle size in the range of 0.73 to 0.94 μ m and 0.61 to 0.81 µm respectively. The photocatalytic activity of photocatalyst MIL-53(Fe)/TiO₂, MIL-53(Fe) derived Fe₂O₃/TiO₂ and a control sample of TiO₂ nano powder were evaluated towards methyl orange (MO) and methylene blue (MB) dye in water under UV-vis light irradiation at different time interval for 6 hours time. The results revealed that both MIL-53(Fe)/TiO₂ and MIL-53(Fe) derived Fe₂O₃/TiO₂ materials exhibit better photocatalytic activity compared to the bare TiO₂. MIL-53(Fe)/TiO₂ has slightly increased the photocatalytic performance of TiO₂ for about 6% towards MO and 11% towards MB while MIL-53(Fe) derived Fe₂O₃/TiO₂ has successfully increased the photocatalytic performance of bare TiO₂ for about 75% in MO and 30% in MB dye. The results obtained show that, the MIL-53(Fe) derived Fe₂O₃/TiO₂ has good photocatalytic degradation efficiency compared to MIL-53(Fe)/TiO₂. This implies that MIL-53(Fe) derived Fe₂O₃/TiO₂ is a potential material for environmental remediation such as water purification and air purification.

ABSTRAK

PENINGKATAN KEUPAYAAN FOTOPEMANGKINAN TITANIUM DIOKSIDA MELALUI PERGABUNGAN MIL-53(Fe) KE ARAH DEGRADASI METIL JINGGA DAN METILEN BIRU

MIL-53(Fe) adalah merupakan sebatian karboksilat besi(III) di bawah pengkelasan rangka logam organik. Sebatian ini telah digabungkan ke dalam titanium dioksida, semikonduktor yang tidak toksik dan cekap dalam aplikasi fotopemangkinan. MIL-53(Fe) disintesis menggunakan kaedah refluks selama 3 jam. Serbuk MIL-53(Fe) yang diperoleh di suraikan, di sonikasi, dan disuntik dengan titanium(IV) butoksida. Campuran tersebut kemudiannya dipanaskan di dalam autoklaf Teflon untuk menghasilkan MIL-53(Fe)/TiO₂, Manakala untuk menghasilkan komposit Fe₂O₃/TiO₂ terbitan MIL-53(Fe), serbuk tersebut telah dikalsinasi pada suhu 500 °C. Corak XRD membuktikan serbuk yang diperoleh merupakan MIL-53(Fe)/TiO₂ dengan ciri anatasa manakala corak XRD MIL-53(Fe)/TiO₂ yang dikalsinasi menunjukkan bahawa bahan terbitan tersebut merupakan komposit Fe₂O₃/TiO₂. Data dari spektroskopi tenaga serakan sinar-x membuktikan bahawa MIL-53(Fe) bergabung pada TiO₂. Gambar SEM MIL-53(Fe) menunjukkan bentuk prisma segi tiga dengan saiz zarah pada kadar 0.2 kepada 0.25 µm. Morfologi sfera dapat dilihat pada komposit MIL-53(Fe)/TiO₂ dan Fe_2O_3/TiO_2 terbitan MIL-53(Fe) masing-masing dengan kadar saiz antara 0.73 kepada 0.94 µm dan 0.61 kepada 0.81 µm. Aktiviti pemangkinanfoto MIL-53(Fe)/TiO₂, Fe₂O₃/TiO₂ terbitan MIL-53(Fe) dan sampel serbuk TiO₂ telah dinilai ke atas larutan pewarna metil jingga dan metilen biru dibawah pancaran cahaya UV pada selang masa yang berbeza selama 6 jam. Keputusan tersebut menunjukkan bahawa kedua-dua pemangkin foto MIL-53(Fe)/TiO₂ dan Fe₂O₃/TiO₂ terbitan MIL-53(Fe) mempamerkan aktiviti pemangkinan foto yang lebih baik jika dibandingkan dengan TiO₂. MIL-53(Fe)/TiO₂ telah meningkatkan prestasi fotopemangkinan TiO₂ pada kadar 6% di dalam MO dan 11% pada MB manakala Fe₂O₃/TiO₂ terbitan MIL-53(Fe) telah berjaya menigkatkan prestasi fotopemangkinan TiO₂ pada kadar 75% di dalam MO dan 30% pada MB. Daripada keputusan yang diperoleh, Fe₂O₃/TiO₂ terbitan MIL-53(Fe) menunjukkan keberkesanan degradasi fotopemangkinan yang lebih baik berbanding MIL-53(Fe)/TiO₂. Ini menunjukkan bahawa Fe₂O₃/TiO₂ terbitan MIL-53(Fe) adalah bahan yang berpotensi untuk pe/mulihan alam sekitar seperti pembersihan air dan udara.

TABLE OF CONTENTS

TITL	.E	i
DEC	LARATION	ii
CER	TIFICATION	iii
ACK	NOWLEDGEMENTS	iv
ABS ⁻	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	x
LIST	OF FIGURES	xi
LIST	OF SYMBOLS AND ABBREVIATIONS	xiv
LIST	OF APPENDICES	xv
СНА	PTER 1: INTRODUCTION	1
1.1	Photocatalytic Degradation of Organic Pollutants by Titanium	1
CHAPTER 1: INTRODUCTION11.1Photocatalytic Degradation of Organic Pollutants by Titanium11.2Problems of TiO2 as Photocatalyst21.3Modification of TiO2 with Metal-Organic Frameworks (MOFs)31.4Objectives51.5Scope of StudySABAH		2
1.2 Problems of TiO ₂ as Photocatalyst 2 1.3 Modification of TiO ₂ with Metal-Organic Frameworks (MOFs) 3 1.4 Objectives 5 1.5 Scope of Study 5		
1.4	Objectives	5
1.5	Scope of Study UNIVERSITI MALAYSIA SABAH	5
CHA	PTER 2: LITERATURE REVIEW	7
2.1	Advanced Oxidation Processes (AOP)	7
	2.1.1 Titanium Dioxide (TiO ₂) Assisted Heterogeneous Photocatalysis	10
2.2	Titanium Dioxide (TiO ₂)	12
	2.2.1 Structure and Properties of TiO_2	13
	2.2.2 Synthesis of TiO_2	15
	2.2.3 Applications of TiO_2	17
2.3	Metal-organic Frameworks (MOFs)	21
	2.3.1 Introduction to Metal-organic Frameworks	22
	2.3.2 Structure and Properties of MOFs	23
	2.3.3 Synthesis of MOFs	25
	2.3.4 Application of MOFs	29

		Page
	2.3.5 MIL-53(Fe)	30
	2.3.6 MOF-Derived Metal Oxide	32
2.4	Photocatalytic Degradation of Dyes	34
	2.4.1 Dyes	34
	2.4.2 Kinetics of Photocatalytic Degradation of Dyes	35
CHAP	PTER 3: METHODOLOGY	36
3.1	Chemicals and Instrumentation	36
	3.1.1 Chemicals	36
	3.1.2 Instruments	37
3.2	Preparation of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe_2O_3/TiO_2 Photocatalysts	38
	3.2.1 Synthesis of MIL-53(Fe) powder	37
	3.2.2 Synthesis of TiO_2 powder	38
ß	3.2.3 Synthesis of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂ photocatalysts	40
3.3	Characterization of MIL-53(Fe), TiO ₂ , MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂ Photocatalysts	41
80	3.3.1 Confirmation of materials by using XRD	40
13	3.3.2 Morphology of materials analysis by using SEM-EDX	41
3.4	Photocatalytic Degradation of Organic Dyes by MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe_2O_3/TiO_2 Photocatalysts	44
	3.4.1 Preparation of MB solution	43
	3.4.2 Preparation of MO solution	43
	3.4.3 Setup of batch photoreactor	43
	3.4.4 Photocatalytic degradation of organic dyes by MIL-53 (Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂ photocatalyst	45
CHAF	PTER 4: PREPARATION AND CHARACTERIZATION OF MIL- 53(Fe)/TiO ₂ AND MIL-53(Fe) DERIVED Fe ₂ O ₃ /TiO ₂	49
4.1	Synthesis of MIL-53(Fe) and TiO ₂	47
	4.1.1 MIL-53(Fe)	47
	4.1.2 TiO ₂	48
4.2	Synthesis of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) Derived Fe ₂ O ₃ /TiO ₂ Photocatalyst	51

Page

4.2.1 Phase Identification of MIL-53(Fe), TiO ₂ , MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂ Photocatalyst	53
4.2.2 EDX Analysis of MIL-53(Fe), TiO ₂ , MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂ Photocatalyst	56
4.2.3 Surface Morphology of MIL-53(Fe), TiO ₂ and MIL-53(Fe) /TiO ₂ Photocatalyst	60
CHAPTER 5: PHOTOCATALYTIC ACTIVITY OF MIL-53(Fe)/TiO ₂ AND MIL-53(Fe) DERIVED Fe ₂ O ₃ /TiO ₂	64
5.1 Introduction	61
5.1.1 Effect of MIL-53(Fe) to TiO ₂ ratio	61
5.1.2 Effect of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂ amount	69
5.1.3 Efficiency of material in different type of dye solutions	69
5.1.4 Effect of Initial Hydrogen Peroxide Concentrations Towards Reactivity of MIL-53(Fe)/TiO ₂	75
5.2 Kinetics Study of MO and MB Dye Degradation	76
5.3 Photocatalytic Mechanism of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂	83
CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS	84
6.1 Conclusion	84
6.2 Future Recommendations	85
REFERENCES	
APPENDICES	101

LIST OF TABLES

Pa	age
Table 2.1: Comparison of relative oxidation power of some oxidizing species.	8
Table 2.2: Types and classification of advanced oxidation processes.	10
Table 2.3: Crystal structure data of rutile, anatase and brookite.	15
Table 3.1: List of chemicals.	36
Table 3.2: List of instruments.	37
Table 3.3: Photocatalytic degradation of MO and MB solutions by different type of catalysts, photocatalyst amount, amount of MIL-53(Fe) incorporated into TiO ₂ and effect of H ₂ O ₂ .	46
Table 5.1: Summary for degradation efficiency of different ratio of	66
MIL-53(Fe) to TiO ₂ ratio of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived	
Fe_2O_3/TiO_2 in photocatalytic degradation of MO and MB in water	
after 6 hours.	
Table 5.2: Summary for degradation efficiency of different amount of MIL-	69
53(Fe)/TiO ₂ of MIL-53(Fe)/TiO ₂ and MIL-53(Fe) derived Fe ₂ O ₃ /TiO ₂	
in photocatalytic degradation of mo and mb in water after 6 hours.	
Table 5.3: Summary for degradation efficiency of MIL-53(Fe)/TiO ₂ and	72
MIL-53(Fe) derived Fe_2O_3/TiO_2 in photocatalytic degradation of MO	
and MB in water after 6 hours.	
Table 5.4: Summary for degradation efficiency with addition of different	75
concentration of H_2O_2 in MIL-53(Fe)/TiO ₂ towards photocatalytic	
degradation of MO and MB in water after 4 hours.	
Table 5.5: Kinetic parameter of pseudo-first order and pseudo-second order	79
kinetic model in MO dye.	
Table 5.6: Kinetic parameter of pseudo-first order and pseudo-second order	81
kinetic model in MB dye.	

LIST OF FIGURES

Figure 2.1. Characteristics of hydroxyl radical	Page	
Figure 2.1. Characteristics of Hydroxy radical.	12	
Figure 2.2: A photocatalytic mechanism during irradiation of UV light.	12	
Figure 2.3: Titanium dioxide powder.	13	
Figure 2.4: Crystalline structures of titanium dioxide (a) anatase,	14	
Figure 2.5: Various applications of TiO ₂ photocatalysis in environment and energy fields.	18	
Figure 2.6: Degrading process on self-cleaning surfaces.	19	
Figure 2.7 : Decomposition of malodorous substances by photocatalytic air	21	
purifier.		
Figure 2.8: Formation of a crystalline metal-organic framework from a	22	
combination of a metal ion with an organic linker.		
Figure 2.9:Structural representations of several coordination geometries of	24	
metal nodes including (a) trigonal planar, (b) square planar, (c)		
tetrahedral and (d) tetragonal paddlewheel.		
Figure 2.10:Examples of common organic linkers used in construction	25	
of MOFs.		
Figure 2.11: Solvothermal synthesis of MOF structures.	26	
Figure 2.12: Microwave-assisted synthesis of MOF structures.	27	
Figure 2.13: Sonochemical synthesis of MOF structures.	28	
Figure 2.14: Mechanochemical synthesis of MOF structures.	29	
Figure 2.15: Potential application of MOFs.	30	
Figure 2.16: Chemical structure of MIL-53(Fe).	31	
Figure 2.17: Methyl orange.		
Figure 2.18: Methylene blue.	35	
Figure 3.1: Synthesis of MIL-53(Fe) through reflux method.	38	
Figure 3.2: Schematic diagram of X-ray diffractometer.	41	
Figure 3.3: Hitachi S-3400 N Scanning electron microscope.	42	
Figure 3.4: Photoreactor setup.	44	
Figure 4.1: Mixture solution colour at the (a) beginning (clear dark brown)	47	
and at the (b) end (light orange) of reflux process.		
Figure 4.2: MIL-53(Fe) powder.	48	

	Page
Figure 4.3: TiO ₂ powder.	48
Figure 4.4: MIL-53(Fe)/TiO2 at (a) 0.25% MIL-53(Fe); (b) 0.50% MIL-53(Fe)	
(c) 0.75% MIL-53(Fe) to TiO ₂ ratio; and MIL-53(Fe) derived	
Fe ₂ O ₃ /TiO ₂ at (d) 0.25% MIL-53(Fe); (e) 0.50% MIL-53(Fe);	
(f) 0.75% MIL-53(Fe) to TiO ₂ ratio.	
Figure 4.5: XRD pattern of MIL-53(Fe). Simulated MIL-53(Fe) for comparison	50
from Du <i>et al.</i> , (2011).	
Figure 4.6: XRD pattern of as-synthesized MIL-53(Fe), hydrothermally	51
annealed TiO ₂ , 0.25% MIL-53(Fe)/TiO ₂ compared with XRD	
pattern of reference for anatase (Viswanathan & Raj, 2009).	
Figure 4.7: XRD pattern of as-synthesized MIL-53(Fe), calcined TiO ₂ , 0.75%	52
MIL-53(Fe) derived Fe_2O_3/TiO_2 compared with XRD pattern of	
reference for anatase (Viswanathan and Raj, 2009).	
Figure 4.8: EDX spectrum of as-synthesized MIL-53(Fe).	54
Figure 4.9: EDX spectrum of as-synthesized hydrothermally annealed TiO_2 .	55
Figure 4.10: EDX spectrum of as-synthesized hydrothermally annealed	55
0.25%MIL-53(Fe)/TiO ₂ .	
Figure 4.11: EDX spectrum of as-synthesized calcined TiO ₂ .	56
Figure 4.12: EDX spectrum of as-synthesized calcined 0.75% MIL-53(Fe)/TiO ₂	
Figure 4.13: SEM micrographs of as-synthesized MIL-53(Fe).	58
Figure 4.14: SEM Micrograph of Hydrothermally Annealed TiO ₂ under 20,000	
magnifications.	
Figure 4.15: SEM Micrograph of Hydrothermally Annealed 0.25% MIL-53(Fe)/	59
TiO ₂ under 25,000 magnifications.	
Figure 4.16: SEM Micrograph of Calcined TiO ₂ under 25,000 magnifications.	
Figure 4.17: SEM Micrograph of Calcined 0.75% MIL-53(Fe)/TiO ₂ under 20,000) 60
magnifications.	
Figure 5.1: Effect of MIL-53(Fe) to TiO ₂ ratio of MIL-53(Fe)/TiO ₂ in	62
photocatalytic degradation of (a) MO and (b) MB in water over	
period of 6 hours.	
Figure 5.2: Effect of MIL-53(Fe) to TiO_2 ratio synthesized of MIL-53(Fe)	64
derived Fe_2O_3/TiO_2 by in photocatalytic degradation of (a) MO	
and (b) MB in water over a period of 6 hours.	
xii	

Figure 5.3: Photocatalytic activity of different amount of 0.25% MIL-53(Fe)	67
/TiO ₂ towards (a) MO and (b) MB in water over a period of 6 hours.	
Figure 5.4: Photocatalytic activity of different amount of 0.75% MIL- 53(Fe)	68
derived Fe_2O_3/TiO_2 towards (a) MO and (b) MB in water over	
a period of 6 hours.	
Figure 5.5: Photocatalytic activity of (a) 0.25% MIL-53(Fe)/TiO ₂ and	71
(b) 0.75% MIL-53(Fe) derived Fe_2O_3/TiO_2 towards MO and MB	
in water over a period of 6 hours.	
Figure 5.6: Effect of H_2O_2 in degradation of (a) MO and (b) MB in water by	75
0.100 g/L 0.25% MIL-53(Fe)/TiO ₂ .	
Figure 5.7: (a) Pseudo-first Order Kinetic and (b) Pseudo-second Order	78
Kinetic of 0.25% MIL-53(Fe)/TiO ₂ in 20 ppm MO solution.	
Figure 5.8: (a) Pseudo-first order kinetic and (b) pseudo-second order	80
kinetic of 0.25% MIL-53(Fe)/TiO ₂ in 20 ppm MB solution.	
Figure 5.9: schmematic diagram for the photocatalytic activity mechanism	82
of MIL-53(Fe)/TiO ₂ under UV-A Light irradiation.	

UNIVERSITI MALAYSIA SABAH

LIST OF SYMBOLS AND ABBREVIATIONS

- AOP Advance oxidation process
- D_{abs} Photodegradation efficiency
- EDX Energy-dispersive X-ray
- eV Electronvolt
- h⁺ Photogenerated holes
- MB Methylene blue
- MIL Materials of Institute Lavoisier
- MO Methyl orange
- MOFs Metal-organic frameworks
- SEM Scanning electron microscopy
- TGA Thermogravimetric analysis
- UV-A Ultraviolet A

XRD

wt %

 λ_{max}

- UV-Vis Ultraviolet-visible
 - X-ray diffractometer
 - Weight percentage
 - Maximum wavelength

UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

			Page
Appendix	А	Calculation of MIL-53(Fe) to TiO ₂ Ratio	
Appendix	В	Preparation of MO Dye Solution	
Appendix	С	Preparation of MB Dye Solution 1	
Appendix D Parameters for plotting first-order kinetics of			106
		Langmuir- Hinshelwood for photocatalytic degradation	
		of MO dye.	
Appendix E		Parameters for plotting first-order kinetics of	108
		Langmuir-Hinshelwood for photocatalytic degradation	
		of MB dye.	
Appendix F Parameters for plotting second-order kinetics for photocata		Parameters for plotting second-order kinetics for photocatalytic	110
		degradation of MO dye.	
Appendix G Parameters for plotting second-order kinetics for photocataly		Parameters for plotting second-order kinetics for photocatalytic	113
degradation of MB dye.			
UNIVERSITI MALAYSIA SABA			

CHAPTER 1

INTRODUCTION

1.1 Photocatalytic Degradation of Organic Pollutants by Titanium Dioxide

Photocatalytic degradation has been considered as an efficient way to solve the environmental pollution worldwide due to its ability to convert solar energy into chemical energy (Akple *et al.*, 2015; Xiang *et al.*, 2015). In water treatment field, advanced oxidation processes (AOPs) were proven to be very effective for the degradation of organic pollutant in the wastewater (Arslan *et al.*, 1999; Bergamini *et al.*, 2009). AOP in wastewater treatment generates sufficient quantity of hydroxyl radicals (•OH) with very high oxidizing power which capable to degrade recalcitrant organic pollutants (Banerjee *et al.*, 2007; Da Silva *et al.*, 2011) to CO₂ and H₂O (Rathi *et al.*, 2003). Moreover, the removal and degradation of pollutants are very difficult using conventional treatment methods. Conventional water treatment methods such as adsorption on activated carbon, coagulation, and membrane separation has several disadvantages such as high operating costs and generate secondary pollutants resulting from transferring pollutants towards a new medium process (Damardji *et al.*, 2009).

Photocatalyst such as TiO₂ is one of the materials (Kangwansupamonkon *et al.*, 2010) which were mostly applied in AOPs process. TiO₂ penetrated by UV light give rise to hydroxyl radicals (•OH) that is important for the degradation of organic pollutants. This process is called AOP. In AOP, TiO₂ can be photo-excited by radiation with a wavelength below 380 nm producing positive hole (h^+) at the valence band and electron at the conduction band of TiO₂ which will then react with water molecules or hydroxide ions (OH⁻) to produce hydroxyl radical (•OH). The •OH has high oxidizing properties that capable of degrading and eventually mineralizing organic contaminants into CO₂ and H₂O (Rathi *et al.*, 2003).

Nowadays, modification of TiO₂ has been extensively investigated aiming for more unique properties and functionality of the photocatalyst. Various approaches have been implemented such as impurity doping, noble metal deposition, coupling with narrow gap materials and modification with nanostructures (Qi *et al.*, 2016). The main objectives of the TiO₂ modifications are to improve the charge carrier separation yielding more •OH species that enhance the photocatalytic performances and to overcome wide band gap of the photocatalyst (Qi *et al.*, 2016; Kumar and Rao, 2017).

Beside TiO₂, other metal oxides photocatalyst such as ZnO and WO₃ are also studied and been modified due to their stability, non-toxicity, ease of preparation, biocompatibility and their structure-electronic properties. These metal oxides are widely applied in heterogeneous photocatalysis owing to their valence band (VB) ability to generate •OH radicals and their identical band gap excitation mechanism (Kumar and Rao, 2017). However, among these metal oxides photocatalyst, TiO₂ is proven to generate the highest amount of hydroxyl radicals and has the highest activity compared to other semiconductor photocatalyst which contribute to more efficient photocatalytic activity (Xiang *et al.*, 2011; Kumar and Devi, 2011).

1.2 Problems of TiO₂ as Photocatalyst | MALAYSIA SABAH

TiO₂ is one of the most used semiconductor materials owing to its non-toxicity, chemical stability, inexpensive and high efficiency in photocatalysis applications. However, TiO₂ photocatalyst facing several problems that limit its photocatalytic performance such as rapid electron-hole recombination, fast desorption of organic pollutants which can slow down the photocatalytic degradation and wide band gap energy of 3.2 eV where ultraviolet (UV) light is needed as an excitation source (Ganesh *et al.*, 2012; Kokila *et al.*, 2011). However, the high recombination rate which limits its catalytic performance is the major problem.

Recombination of electron and holes takes place either on the surface or in the bulk of the TiO_2 which are caused by impurities or defects resulting in the imperfection of the crystals surface or bulk (Choi *et al.*, 1994; Serpone, 1997).

Once the recombination occur, the excited electron will return back to the valence band without reacting with the adsorbed species (Sclafani and Herrmann, 1996).

Thus, the design of highly efficient photocatalyst with the ability to decrease the recombination rate semiconductor along with high mobility of electron and hole including having a numerous active sites is focused in this research. The photocatalytic activity will increase accordingly as the density of the surface •OH increases due to its high oxidizing power capable to degrade organic pollutants into harmless materials such as CO_2 and H_2O . Sufficient amount of •OH are crucial to enhance the photocatalytic degradation efficiency of the TiO₂ (Banerjee *et al.*, 2007; Rathi *et al.*, 2003). Therefore, modifying the TiO₂ surface is rationale to study the its effect and eventually increase the concentration of •OH in enhancing the photocatalytic efficiency.

1.3 Modification of TiO₂ with Metal-Organic Frameworks (MOFs)

Numerous study and efforts in modifying TiO₂ photocatalyst has been devoted aiming to improve and overcome the critical problems of unmodified TiO₂ such as fast electron hole recombination and low efficiency in visible light absorption (Nasirian and Mehrvar, 2016; Qi *et al.*, 2016). To date, there has been a growing number of publications on the modification of TiO₂ photocatalyst such as integrating with metal and non metal, impurity doping, noble metal deposition, coupling with narrow gap materials and modification with nanostructures (Qi *et al.*, 2016; Kumar *et al.*, 2014; Sun *et al.*, 2013). In this research, we aim to enhance the photocatalytic property of TiO₂ by reducing the electron-hole recombination and increasing the active sites of photocatalyst through incorporation of metal-organic frameworks.

Metal-organic frameworks (MOFs) are new generation of inorganic-organic porous solids. They are hybridized materials constructed by metal nodes coordinated with organic linkers as bridging molecules to give three-dimensional (3D) structures (Zhou *et al.*, 2012). The variability of organic and inorganic components, highly crystalline and porous properties makes MOFs as promising

materials for versatile applications such as energy storage, molecules adsorption and separation, catalysis and drugs delivery (Czaja *et al.*, 2009).

Due to the MOFs unique characteristics such as high surface areas ranging from 1000 to 10,000 m₂/g and high adsorption affinities (for example by Zn-based metal-organic frameworks, TMU-5 and TMU-6 which adsorb 96.2% and 92.8% of 100 ppm rhodamine B dye respectively), it can be considered as a good support for materials with photocatalytic properties which favor the diffusion of foreign species from water (Li *et al.*, 2009; Furukawa *et al.*, 2013; Masoomi *et al.*, 2016). MOFs have been reported as potential photocatalysts for the photocaatlytic degradation of organic pollutants (Wang *et al.*, 2014). Owing to the significant properties of MOFs such as high density of active sites and high tunable properties, MOFs can serve as the potential candidate in photocatalysis (Corma *et al.*, 2010; Stock and Biswas, 2012). The combination of MOFs and TiO₂ might therefore improve the performance of TiO₂ in photocatalysis.

MIL-53(Fe) is a subclass of MOFs which were built up from chains of Fe(III) octahedra and 1,4-benzenedicarboxylic acid. This iron-based MOF has been selected to be incorporated into TiO₂ since it contain high iron oxoclusters and has been proof to be effective for common application in both catalysis and photocatalysis process (Liang *et al.*, 2015; Wang and Wang, 2015; Sciortino, *et al.*, 2015). Apart from that, low recombination rate are expected due to the small size of the Fe(III)-oxide cluster thus contributes to the enhancement of the photocatalytic degradation efficiency (Liang *et al.*, 2015). Moreover, the MIL-53(Fe) consisting of Fe(III) as the metal nodes where the empty *d* orbitals will form conduction band when mix with the organic ligands. This property was similar to the TiO₂ where its conduction band was built by empty Ti 3*d* orbitals (Gascon *et al.*, 2008). It is believed that the incorporation of MIL-53(Fe) in TiO₂ through hydrothermal and calcinations which produce MIL-53(Fe)/TiO₂ and MIL-53(Fe) derived Fe₂O₃/TiO₂ respectively favours the appearance of many active sites for photocatalytic degradation.

1.4 Objectives

The objectives of this study are to:

- (i) Prepare and characterize MIL-53(Fe)/TiO₂ and MIL-53(Fe) derived Fe_2O_3/TiO_2 composite,
- (ii) Evaluate the photocatalytic activity of MIL-53(Fe)/TiO₂ and MIL-53(Fe) derived Fe_2O_3/TiO_2 towards the degradation methyl orange (MO) and methylene blue (MB) dye in water,
- (iii) Determine the reaction kinetics of the MIL-53(Fe)/TiO₂ photocatalyst towards MO and MB.
- (iv) Evaluate the effect of H_2O_2 towards the reaction kinetics of the MIL-53(Fe)/TiO₂ photocatalyst towards MO and MB.

1.5 Scope of Study

MIL-53(Fe) powder was synthesized by solvothermal-reflux method reported by Munn *et al.* (2013) while TiO_2 was prepared under hydrothermal synthesis according to Yang et al., (2015). The product were further used to synthesis MIL- $53(Fe)/TiO_2$ by hydrothermal annealing and MIL-53(Fe) derived Fe₂O₃/TiO₂ photocatalyst by calcination using furnace. In this study, the optimum conditions for preparing MIL-53(Fe)/TiO₂ composites/nanoparticles were investigated. Four parameters/conditions were optimized consisted of: (i) amount of MIL-53(Fe) incorporated into TiO₂; (ii) effect of photocatalyst amount; (iii) effect towards the degradation of MO and MB dyes; (iv) effect of initial concentration of H₂O₂ towards the photocatalytic degradation of MO and MB dyes. All the synthesized samples were then characterized by X-ray diffractometer (XRD) to confirm the crystal structure of the samples and energy dispersive x-ray spectroscopy (EDX) to provide the elemental concentrations in the samples. The morphology of all samples was observed under scanning electron microscope (SEM). The photocatalytic activity of photocatalysts MIL-53(Fe)/TiO₂, MIL-53(Fe) derived Fe₂O₃/TiO₂ and a control sample of TiO₂ were evaluated towards the degradation of methyl orange (MO) and

methylene blue (MB) dyes in aqueous solution under UV-vis light irradiation at different time interval. Due to their toxicity, it is very crucial to remove them from water. For that reason, throughout this research, MO and MB were selected as the representative acidic (anionic) dye and basic (cationic) dye respectively. The absorbances were recorded by ultraviolet-visible (UV-Vis) spectroscopy. Langmuir-Hinshelwood model and pseudo-second order were studied for the degradation kinetics of the photocatalysts.

CHAPTER 2

LITERATURE REVIEW

2.1 Advanced Oxidation Processes (AOP)

Oxidation is a chemical reaction which involves the transfer of one or more electrons from an electron donor to an electron acceptor. A chemical transformation of both the oxidant and reactant occurred due to the electron transfer process which in some cases producing chemical species with an odd number of valence electrons known as radicals. Radical species is an unpaired electron which is highly unstable and reactive. It will undergo additional oxidation with organic or inorganic reactants to form stable oxidation products (Carey, 1992).

Over the past three decades, advanced oxidation processes (AOPs) have earned a significant level of interest for the treatment of drinking water and wastewater industry. Advanced oxidation processes (AOPs) are technologies which involved the generation of highly reactive and non-selective oxidant, hydroxyl radicals, primarily used to destroy a wide range of toxic organic compound that cannot be oxidized by conventional oxidant present in wastewater, soil and air (Glaze et al., 1987). The toxic pollutants will eventually oxidized into mineral endproducts which will yield CO_2 and inorganic ions. Table 2.1 shows the comparison of relative oxidation power of several oxidizing species. Hydroxyl radicals which are one of the strongest oxidants in an aqueous medium able to oxidize a wide range of recalcitrant pollutants into harmless compound such as mineral salts, carbon dioxide and water through mineralization process (Chen et al., 2000). Figure 2.1 shows some interesting characteristics of hydroxyl radical that brings AOPs as a powerful chemical treatment procedure to remove organic contaminants. A common reaction for the initial attack once the hydroxyl radicals generated is the abstraction of hydrogen atom from water to initiate a radical chain oxidation (Munter, 2001). The reactions were shown in Equation 2.1 to 2.5.

Oxidizing species	Relative oxidation power
Chlorine, C ₂	1.00
Hypochlorous acid, HOCL	1.10
Permanganate, MnO₄	1.24
Hydrogen peroxide, H ₂ O ₂	1.31
Ozone, O ₃	1.52
Atomic oxygen, O	1.78
Hydroxyl radical (•OH)	2.05
Fluorine, F ₂	2.25
Positively-charged hole on titanium dioxide, TiO_2^+	2.35

Table 2.1: Comparison of relative oxidation power of some oxidizing

species

Source: Carey (1992); Zhou and Smith (2002)

AOP can be classified into two classes which are homogeneous and heterogeneous (Huang *et al.*, 1993). Table 2.2 shows a classification of AOP. Heterogeneous photocatalysis applying the usage of semiconductor such as zinc oxide (ZnO), tin dioxide (SnO₂) and TiO₂ in the presence of UV irradiation and hydrogen peroxide (H₂O₂). The main advantages of these methods are high rates of pollutant oxidation, flexibility concerning water quality variations, and small dimension of the equipment.