EVALUATION OF SOLAR PHOTOVOLTAIC PANEL PERFORMANCE AND ESTIMATION OF SOLAR ENERGY POTENTIAL IN KOTA KINABALU, SABAH

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

EVALUATION OF SOLAR PHOTOVOLTAIC PANEL PERFORMANCE AND ESTIMATION OF SOLAR ENERGY POTENTIAL IN KOTA KINABALU, SABAH

KARTINI BINTI SUKARNO

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations and summaries, which have been acknowledged.

23th August 2017

KARTINI BINTI SUKARNO MS1411004T

CERTIFICATION

- NAME : KARTINI BINTI SUKARNO
- MATRIC NO. : **MS1411004T**
- TITLE : EVALUATION OF SOLAR PHOTOVOLTAIC PANEL PERFORMANCE AND ESTIMATION OF SOLAR ENERGY POTENTIAL IN KOTA KINABALU, SABAH
- DEGREE : MASTER IN SCIENCE (PHYSICS WITH ELECTRONICS)
- VIVA DATE : **16 JUNE 2017**

Ag. Sufiyan Abd Hamid

ACKNOWLEDGEMENT

Firstly, All Praise to Allah S.W.T because of Allah's will I have finally finished the whole writing of this thesis. I would like to express my deepest gratitude and appreciation to my supervisor, Associate Professor Dr. Jedol Dayou and my CO-supervisor Mr. Ag Sufiyan Abd Hamid of the Faculty of Science and Natural Resources, Universiti Malaysia Sabah, who has been patient enough to advice, guide me and give the moral support throughout my study for this past two years. This thesis would not have been possible without continual encouragement from them.

I would like to thank the Ministry of Higher Education (MOHE) and Centre for Postgraduate Study, Universiti Malaysia Sabah for financially supporting this study.

Finally, I wish to express my deep appreciation and many thanks to my parents, my father Sukarno Mansur, my mother Norpiah Saraban, my brothers and my friends for their love, patience, understanding and continuously encouragement for me to complete this work.

UNIVERSITI MALAYSIA SABAH

KARTINI SUKARNO 23th August 2017

ABSTRACT

The world is currently facing environmental damages partially caused by increasing in energy consumption from conventional energy sources such as fossil fuels. Hence, renewable energy such as solar energy, which is regenerated naturally, is currently receiving considerable attention for energy generation. To sustain electricity generation from solar energy, consistent solar radiation is preferable throughout the year, and complete information on the daily, monthly and yearly radiation profile are required for further development planning. Kota Kinabalu, the capital city located in the west coast of Sabah, was claimed to be one of the areas that receives the highest solar radiation every year in Malaysia. This research was carried out to assess the potential of electricity generation in Kota Kinabalu that may serves as guidelines for future planning. The global solar radiation was first measured and acquired for the year 2014 and 2015 in Kota Kinabalu. Concurrently, electrical power generation was assessed using solar photovoltaic panels at certain period of time. From these data, prediction was carried out to assess the potential electrical generation in Kota Kinabalu for that years. It was found that total energy received in 2014 was 1.6MWh/m² with the average of 133.4kWh/m² and the maximum peak of the global solar radiation was 1065.4W/m² on 2nd November 2014. On the other hand, the total global solar radiation received in 2015 was $2.1 \text{MWh}/\text{m}^2$ with the average of $175 \text{kWh}/\text{m}^2$ and the maximum peak was 1086.98W/m² on 12th March 2015. For electrical energy generation, it was found that the actual efficiency of energy conversion for uncooled and fixed solar photovoltaic panel was 13%. As a comparison, continuous cooling of the fixed solar panel had increased the efficiency to up to 16.7% whereas for uncooled dual tracking solar panel, the efficiency was slightly low which is 15.1%. With this efficiency, over 200kWh/m² of electricity could have been generated in each year in 2014 and 2015 using uncooled and fixed solar photovoltaic panel. On the other hand, almost 300kWh/m² could have been generated in 2014 and over 300 kWh/m² in 2015 when the solar panel was fixed but continuously cooled. However, just over 200kWh/m² and 300kWh/m² could have been generated in 2014 and 2015, respectively, when the solar panel has dual axis sun tracking system, without incorporating the cooling system. These amounts of electricity are quite substantial which shows the potential for developing solar energy power in Kota Kinabalu.

٧

ABSTRAK

PRESTASI PENILAIAN PANEL FOTOVOLTAN SOLAR DAN ANGGARAN POTENSI TENAGA SOLAR DI KOTA KINABALU, SABAH

Dunia kini menghadapi pencemaran alam sekitar disebabkan oleh peningkatan penggunaan tenaga konvensional seperti bahan api fosil. Oleh itu, tenaga boleh diperbaharui seperti tenaga solar adalah tenaga dijana semula secara semulajadi dan mendapat perhatian untuk generasi penjanaan tenaga. Untuk mengekalkan penjanaan elektrik daripada tenaga solar, radiasi solar yang konsisten adalah lebih baik dan maklumat yang lengkap untuk radiasi harian, bulanan dan tahunan diperlukan untuk perancangan pembangunan selanjutnya. Kota Kinabalu ialah ibu kota yang terletak di pantai barat Sabah, merupakan salah satu kawasan yang menerima radiasi solar yang tertinggi setiap tahun di Malaysia. Kajian ini telah dijalankan untuk menilai potensi penjanaan elektrik di Kota Kinabalu yang boleh dijadikan panduan untuk perancangan masa depan. Radiasi solar global telah diukur dan diperolehi bagi tahun 2014 dan 2015 di Kota Kinabalu. Pada masa yang sama, penjanaan kuasa elektrik telah dinilai menggunakan panel fotovoltek solar pada tempoh masa tertentu. Daripada data tersebut, generasi potensi elektrik di Kota Kinabalu telah diramal dan dinilai pada tahun tersebut. Didapati bahawa, jumlah tenaga diterima pada tahun 2014 adalah 1.6MWh/m² dengan purata sebanyak 133.4kWh/m² dan nilai maksimum radiasi solar global adalah 1065.4W/m² pada 2 November 2014. Sebaliknya, jumlah tenaga radiasi solar global diterima pada tahun 2015 adalah 2.1MWh/m² dengan purata 175kWh/m² dan nilai maksimum iaitu 1086.98W/m² pada 12 Mac 2015. Untuk generasi tenaga elektrik, didapati bahawa kecekapan sebenar penukaran tenaga untuk sistem panel fotovoltek tanpa penyejukan dan paksi tetap adalah 13%. Secara perbandingan, kecekapan sistem penyejukan berterusan untuk panel solar yang tetap meningkat sehingga 16.7% manakala kecekapan penjejakan paksi dwi tanpa penyejuk sedikit rendah iaitu 15.1%. Dengan kecekapan tersebut, lebih 200kWh/m² elektrik telah dijana pada tahun 2014 dan 2015 menggunakan solar fotovoltek tanpa penyejuk dan paksi tetap. Sebaliknya, hampir 300kWh/m² pada tahun 2014 dan lebih 300kWh/m² pada tahun 2015 untuk panel solar sejuk berterusan tetapi tetap. Bagaimanapun, lebih 200kWh/m² and 300kWh/m² yang boleh dijana apabila panel solar menggunakan sistem penjejakan paksi dwi tanpa menggabungkan sistem penyejukan. Jumlah elektrik yang agak besar menunjukkan potensi untuk pembangunan tenaga kuasa solar di Kota Kinabalu.

LIST OF CONTENTS

		Page
TITLE	E	i
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	IOWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vi
LIST	OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF ABBREVIATIONS	xvi
LIST	OF SYMBOLS	xviii
LIST	OF APPENDICES	хх
CHAP 1.1 1.2 1.3 1.4 1.5	TER 1: INTRODUCTION Overview Problem statement Objective Research Scope Outline of the thesis	1 6 7 8 9
СНАР	TER 2: LITERATURE REVIEW	11
2.1	Introduction	11
2.2	Global Solar Radiation	11
	2.2.1 The Solar Energy Source	12
2.3	Extraterrestrial and Principle of Solar Radiation	13
	2.3.1 The Solar Spectrum	13
	2.3.2 Solar Constant	15
	2.3.3 Normal Extraterrestrial Radiation	15
	2.3.4 The Horizontal Extraterrestrial Radiation	16
	2.3.5 Global Radiation on Horizontal Surface	16

	2.3.6 Diffuse Radiation on Horizontal Surface	16
	2.3.7 Beam Radiation on Horizontal Surface	16
	2.3.8 Radiation on Inclined Surface	17
	2.3.9 Beam radiation on inclined surface	17
	2.3.10 Diffuse Radiation on Inclined Surface	17
	2.3.11 Ground Reflected Radiation	18
	2.3.12 Global Radiation	18
2.4	Solar Time and Solar Position	18
	2.4.1 Solar Time	19
	2.4.2 Sun Declination	19
	2.4.3 Equation of Time	20
	2.4.4 Solar Time and Hour Angle	20
	2.4.5 Zenith, Solar Altitude and Azimuth Angles	21
	2.4.6 Surface Azimuth and Slope Angles	21
	2.4.7 Angle of Incidence	21
2.5	Photovoltaic Module	21
Â	2.5.1 The Photovoltaic Cell	22
Z	2.5.2 Types of PV Cell	23
E	2.5.3 Semiconductor of PV Cell	26
	2.5.4 Principle of Operation of Solar Cell	28
	2.5.5 The Photovoltaic Module	29
	2.5.6 Characteristic of PV Panel	30
	2.5.7 I-V Curves of Solar PV Panel	32
	2.5.8 Performance Analysis of PV Modules	35
	i. The Effect of Solar Irradiance on IV Curve of PV Module	35
	ii. The Effect of Temperature on IV Curve of PV Module	35
	iii. Efficiency Characteristic of the PV Cell and PV Module	36
	2.5.9 Standard Test Conditions	36
2.6	Latest Trend on PV Technology	36
2.6.1	Water Cooling System of Solar PV Panel	36
	2.6.2 Sun Tracking System	38
	i. Rotation Around Horizontal E-W Axis and Movement in	
	the N-S Direction	40

	ii.	Rotation Around Horizontal N-S Axis and Movement in the	
		E-W Direction	41
	iii.	Rotation Around Inclined N-S Axis and Movement in the	
		E-W Direction	42
СНАР	TER	3: METHODOLOGY	44
3.1	Intro	oduction	44
3.2	Expe	erimental Design for Harvesting of Global Solar Radiation Data	44
3.3	Mea	surement of global solar radiation in Kota Kinabalu	48
3.4	Perf	ormance of Solar PV Panel for Indoor Test	52
	3.4.	1 Solar Mapping of Solar PV Panel for Indoor Test	52
	3.4.	2 IV and PV Curve of Solar Photovoltaic Panel	53
	3.4.	3 IV an PV on Solar Photovoltaic at different Solar Intensity	
		Solar Simulator	55
	3.4.	4 Angle effect on solar photovoltaic panel	55
	3.4.	5 Cooling Effect System on Solar Photovoltaic Panel	56
3.5	Perf	ormance of Solar Photovoltaic Panel for Outdoor Test	57
Z	3. <mark>5</mark> .	1 Cooling Effect of Solar Photovoltaic Panel Outdoor Test	58
P	3 <mark>.</mark> 5.	2 Sun Tracking System of Solar Photovoltaic Panel (Fixed,	
	Ľ	Single and Dual tracking) Outdoor Test	60
3.6	Eval	luation of Electrical Power Generation from Global Solar	
	Rad	iation in Kota Kinabalu	61
CHAP	TER	4: RESULTS AND DISCUSSIONS	63
4.1	Intro	oduction	63
4.2	Mea	surement of global solar radiation in 2014 in UMS	63
4.3	Data	a collection of Global Solar Radiation from Meteorology	
	Dep	artment at Kota Kinabalu in 2015	71
4.4	Valio	dation of solar PV panel performance for indoor test	78
	4.4.	1 Solar Mapping	78
	4.4.	2 Evaluation of IV and PV Curve of Solar PV Panel	80
	4.4.	3 Performance of IV and PV Curve of Solar PV Panel for	
		Different Solar Intensity of Solar Simulator	82

	4.4.4 Evaluation of Optimum Tilt Angle Effect on Solar	
	Photovoltaic Panel	84
	4.4.5 Comparison of IV and PV curve of solar PV panel at	
	different tilt angle	86
	4.4.6 Evaluation of Water Cooling System on Performance of	
	Solar PV Panel	88
4.5	Evaluation of Solar PV Panel by Applying Cooling and Non-Cooling	
	Effect	92
	4.5.1 Comparison between non-cooling system and cooling	
	system effect on solar PV panel performance	94
4.6	Evaluation of Solar PV Panel Performance by Applying Sun Tracking	
	Systems	98
	4.6.1 Comparison between Fixed Axis, Single Axis and Dual Axis	
	of Sun Tracking System on Solar PV Panel Performance	100
4.7	Evaluation of potential for Electrical Power Generation from Global	
	Solar Radiation in Kota Kinabalu	104
E		
СНАР	PTER 5: CONCLUSION	109
5.1	Overview // U U U U U	109
5.2	Recommendation UNIVERSITI MALAYSIA SABAH	110
REFE	RENCES	112
APPE	NDICES	122

LIST OF TABLES

		Page
Table 2.1:	Characteristic of various PV technologies	25
Table 4.1:	Comparison of monthly average of global solar radiation between real time data and quadratic modeling in 2014	67
Table 4.2:	Comparison of monthly average of global solar radiation between real time data and quadratic modeling in 2015	74
Table 4.3:	Comparison of water cooling system (indoor) with different operation time	89
Table 4.4:	Comparison between different independent variable of non- cooling and cooling system	95
Table 4.5:	Comparison between different independent variable of sun tracking system	101
Table 4.6:	Total monthly energy generation from solar radiation in kWh/m ²	105
Table 4.7:	The potential of electrical power generation applying non- cooling system and fixed axis system in Kota Kinabalu	106
Table 4.8:	The potential of electrical power generation applying continuous water cooling system in Kota Kinabalu	107
Table 4.9:	The potential of electrical power generation applying dual axis sun tracking system in Kota Kinabalu	108

LIST OF FIGURES

		Page
Figure 1.1:	Main energy use in different regions of the world between	2
Figure 1.2:	Contribution of different resources to the total main energy	3
Figure 1.3:	Photovoltaic installed capacity versus production cost in the	5
Figure 1.4:	Global PV installations	6
Figure 1.5:	The study area Faculty Science and Natural Resource, UMS (6.0367°N, 116.1186°E, 13.1064m above sea level)	8
Figure 1.6:	Average Daily Global Solar Radiation (MJ/m ²) in Malaysia	9
Figure 2.1:	The orbit of the earth and the declination at different times of year	13
Figure 2. <mark>2:</mark>	Standard Solar Spectra for space and terrestrial use	14
Figure 2.3:	Solar cell model	23
Figure 2.4:	PV technology classes	24
Figure 2.5:	Functional principle of photovoltaic system	26
Figure 2.6:	Schematic of the energy bands for electrons	27
Figure 2.7:	Functional principle of photovoltaic	28
Figure 2.8:	Structure of a PV module with 36 cells connected in series	29
Figure 2.9:	Connection of identical PV cells: (a) In series (b) In parallel	30
Figure 2.10:	Single diode model of a PV cell	30
Figure 2.11:	IV and PV curve characteristic of single PV cell	32
Figure 2.12:	The IV and PV characteristic curve of solar cells under different light intensity and temperature	33

Figure 2.13:	Schematic representation of the sun tracking systems	39
Figure 2.14:	Schematic diagram of collector rotation around horizontal E- W axis and movement in the N-S direction	40
Figure 2.15:	Schematic diagram of collector rotation around horizontal N- S axis and movement in the E-W direction	42
Figure 2.16:	Schematic diagram of collector rotation around an inclined N-S axis and its movement in the E-W direction	43
Figure 3.1:	Experimental setup over the study area, Faculty of Science and Natural Resources (6.0367°N, 116.1186°E, 13.1064m above sea level)	46
Figure 3.2:	The flowchart of the experimental procedures of estimation of solar energy potential and evaluation of solar photovoltaic performance in Kota Kinabalu, Sabah.	47
Figure 3.3:	LI-200 pyranometer data logger Instrument	48
Figure 3 <mark>.4</mark> :	View of Symphonie Data Retriever when being executed	49
Figure 3.5:	Schematic of experimental setup of solar simulator and halogen lamp buPlb used in the solar simulator	53
Figure 3.6:	Schematic diagram of experiment setup for evaluation of IV and PV curve at different solar intensity	54
Figure 3.7:	Experiment setup of optimization of tilt angle on solar PV panel	56
Figure 3.8:	Schematic diagram of cooling system under solar simulator	57
Figure 3.9:	Schematic diagram of experimental setup for outdoor test applying cooling and non-cooling system respectively	59
Figure 3.10:	The schematic diagram of sun tracking systems on solar PV panel	61

Figure 4.1:	Monitoring of hourly global solar radiation data in year 2014	65
Figure 4.2:	Monthly average global solar radiation data in January 2014 using real time data and quadratic modeling	66
Figure 4.3:	Daily average and daily maximum global solar radiation in 2014	68
Figure 4.4:	Total daily global solar radiation for a duration of 12 months	68
Figure 4.5:	Monthly average and monthly peak of global solar radiation at Kota Kinabalu in year 2014	70
Figure 4.6:	Total monthly global solar radiation in year 2014	70
Figure 4.7:	Monitoring of hourly global solar radiation data in year 2015	72
Figure 4.8:	Monthly average global solar radiation in January 2015 using real time data and quadratic modeling	73
Figure 4.9:	Daily average and maximum of global solar radiation in 2015	75
Figure 4.10:	Total daily global solar radiation in 2015 for duration of 12 months	76
Figure 4.11:	Monthly average and monthly maximum peak of global solar radiation at Kota Kinabalu in 2015	77
Figure 4.12:	Total monthly global solar radiation in 2015	78
Figure 4.13:	Solar mapping of solar simulator	79
Figure 4.14:	Experiment setup for evaluation of IV and PV curve of solar PV panel	80
Figure 4.15:	Average Temperature, IV and PV curve of solar PV panel	81
Figure 4.16:	IV and PV curve for different light intensity from solar simulator	83

Figure 4.17:	Fill factor of PV panel at different light intensity from solar simulator	84
Figure 4.18:	Experimental setup of tilts angle effect of solar photovoltaic panel	85
Figure 4.19:	IV, PV and FF at different of tilt angle on solar PV panel	88
Figure 4.20:	Experimental setup of indoor test cooling system of solar PV panel	89
Figure 4.21:	Water cooling system at indoor test	92
Figure 4.22:	Setup of non-cooling and cooling system on solar PV panel for outdoor test	93
Figure 4.23:	Environmental condition of outdoor experiment	94
Figure 4.24:	Comparison between non-cooling system and water cooling system effect on performance of solar PV	98
Figure 4.25:	Setup of sun tracking system on solar PV panel	99
Figure 4.26:	Environmental condition during experimental setup of sun tracking system	100
Figure 4.27:	The comparison between fixed axis, single axis and dual axis of sun tracking system	103

LIST OF ABBREVIATIONS

AC	-	Alternating current
AM	-	Air mass
Btu	-	British Thermal Unit
с	-	speed of light
cm	-	Centimeter
CO ₂	-	Carbon dioxide
cos	-	Cosine
DC	-	Direct current
E	-	East
E	-	Equation of time
eV	-	Electron volt
FF	-	Fill factor
GW		Giga Watt
h 🔬	<u></u>	Hour
IV	-92	Current voltage
к	-	Kelvin
km 🥄 🍊	K.	Kilometer
kW 🔪		Kilo Watt
kWh/m ²	<u>a B</u>	Kilo Watt hour per meter square
m	-	Meter
m²	-	Meter square
mA	-	mili Ampere
min	-	Minutes
MJ/m ²	-	Mega joule per meter square
MW	-	Mega Watt
mW/cm ²	-	Mili Watt per centimeter square
N	-	North
PV	-	Photovoltaic
PV	-	Power voltage
S	-	South
SBE	-	Solar Beam Experiments
SDR	-	Symphonie Data Retriever

sin	-	Sine
STC	-	Standard Test Conditions
Т	-	Cell working temperature
tan	-	Tangent
UMS	-	Universiti Malaysia Sabah
V	-	Volt
W	-	West
W/m ²	-	Watt per meter square
Wh/m²/d	-	Watt hour per meter square per day
Wp	-	Peak Watt

LIST OF SYMBOLS

%	-	Percent
±	-	Plus minus
Σ	-	Sum/total
o	-	Degree
°C	-	Degree Celsius
Α	-	Ampere
А	-	Ideality factor
Ē	-	Global radiation
G	-	Irradiance
\bar{G}_{b}	-	Direct radiation
\bar{G}_{bt}	-	Beam radiation on tilted surface
\bar{G}_{d}	-	Diffuse radiation
\bar{G}_{dt}	-	Diffuse irradiance on tilted surface
G _{oh}	(SP)	Average extraterrestrial horizontal radiation
Gon	7- 6	Normal extraterrestrial radiation
G _r −	-	Ground reflected
G _{sc}		Extraterrestrial radiation
Γ̄ _t	- 199	Global radiation on tilted surface
h		Planck's constant
I_{cell}	-	PV cell output current
\mathbf{I}_{d}	-	Diode current
\mathbf{I}_{max}	-	Maximum current
\mathbf{I}_{MPP}	-	Maximum power point current
\mathbf{I}_{ph}	-	Photon current
I_{PV}	-	PV panel output current
\mathbf{I}_{s}	-	Saturation of current diode
\mathbf{I}_{sc}	-	Short circuit current
K _B	-	Boltzmann's constant
n _p	-	Number of strings connected in parallel in panel
n _s	-	Number of cell connected in series per string
фi	-	Interval electrical field
P _{in}	-	Power input

P_{MPP}	-	Maximum power point power
P_{out}	-	Power output
P_λ	-	The energy radiated per unit time per unit area
q	-	Electron charge
R_b	-	Geometric factor
R_s	-	Series resistant
R_{sh}	-	Shunt resistant of the cell
t _c	-	Convert civil time
ts	-	Solar time
V_{cell}	-	PV cell output voltage
V_{d}	-	Diode voltage in Volts
V_{max}	-	Maximum voltage
V_{MPP}	-	Maximum power point voltage
V_{oc}	-	Open circuit voltage
V_{PV}	at	PV panel output voltage
w /	92-	Watt
x ₁ , x ₂		x-intercept
Z _c	-	Time zone East of GMT
β		Surface inclination
Y	-07	Surface azimuth angle FRSITI MALAYSIA SARAL
γs	-	Solar azimuth angle
δ	-	Declination of the sun
η	-	Efficiency ratio
θ	-	Incident angle
Θ_z	-	Zenith angle
λ	-	Wavelength of light
μ	-	Micro
μA	-	Micro Ampere
п	-	pi
ρ	-	Rho
φ	-	Phi
Ψ	-	Line of longitude
ω	-	Hour angle

LIST OF APPENDICES

Appendix A1:	List of Publication	122
Appendix A2:	Specification of LI-2100 Pyranometer	124
Appendix A3:	Specification of solar panel module	124
Appendix A4:	Specification of fluke 179 True RMS	
	Multimeter	125
Appendix A5:	Calibration of Infrared Thermometer	125
Appendix A6:	Specification of HoldPeak HP-720 Infrared	
	Thermometer	126
Appendix A7:	Specification of KTJ Thermometer	126
Appendix A8:	Specification of MASTECH MS6612 Digital	
	Light Meter	127
Appendix A9:	Specification of TES 1333R Data Logging Solar	
A S	Power Meter	128
Appendix B1:	Solar mapping measurement using MASTECH	
RAP	MS6612 Digital Light Meter	129
Appendix B2:	Solar mapping measurement using TES 1333R	
ABA	Data Logging Solar Power Meter	130

CHAPTER 1

INTRODUCTION

1.1 Overview

Energy is necessary in all aspect of commercial as well as activities manage by human. Energy generation is one of the main issues in economic and social growth worldwide. Contamination of the environment and climate change are huge challenges faced humankind. Concurrently, Earth is facing environmental destruction caused by increasing energy utilization from high contaminating energy sources, such as oil, gas and coal. The environmental harm such as global warming, green-house effect and others can be minimized with renewable energy

source.

Currently, our world is facing huge challenges with the increasing usage of main energy. The increasing of the main energy usage in worldwide is as shown in Figure 1.1.

Figure 1.1: Main energy use in different regions of the world between 1965 and 2007

Source : Statistical review of world energy

Figure 1.1 shows the growth of main energy use throughout the last 40 years in different place of the world. Europe and North America ranked for the major parts all over the period. On the other hand, over the last periods, there has been a noticeable rise in Asia and the Pacific, follow by economic growth in India and China. This development is estimated to speed up (International Energy Agency, 2008). The existing combination of main resources is greatly controlled by fossil fuels as shown in Figure 1.2. The leading usage of fossil fuels is liable for the two main complications with the current energy system. Oil, natural gas and coal make up as much as 88% of the used resources. Fossil fuels are made over long periods and despite new resource deposits may be revealed, the utilization of the resources is rapidly than the propagation (Kraushaar, 1993). Supporters of Peak Oil declare that the oil manufacture is near or at its maximum and that the world will experience speed up in reduction amount of oil production in the upcoming future (Höök, 2009). Combustion of these fuels creates energy which is transformed into

electrical energy. As the product of incineration, it will increase the pollutants such as carbon dioxide and sulphur dioxide that lead to several pollution problems.

Figure 1.2: Contribution of different resources to the total main energy claim in the world in 2007

Source C: Statistical review of world energy

Intergovernmental Panel on Climate Change, IPCC, expects that the increase in global mean temperature throughout the 21st century will be less than 1°C from the era of 1980-1999. Whenever the CO₂ concentrations continue at the year 2000 levels, but probably as high as 6°C with the most horrible situation (IPCC, 2007). The expected implications for the climate, ecosystems and society are profound include sea level rise, freshwater dearth, corrosion, risky weather events and causing straining on world economy (IPCC, 2007).

The possibility of severe environmental and economic problems can be improved by alternative energy that is renewable energy. Renewable energy resources have enormous potential and can satisfy the present world energy demand. It is also the solution for a sustainable, clean, cheaper energy and environmentally friendly since they have a much lower environmental effect than conventional sources (Salsabila, 2013 and Bulent, 2015). Categories of renewable