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ABSTRACT 

 

Iron oxide sludge formation, high pH dependency, and poor catalyst reusability 
have always been critical drawbacks of Fenton’s reagent. In this work, titanium-
terephthalate metal organic framework, NH2-MIL-125(Ti), was proposed as 
heterogeneous Fenton-like catalyst for methylene blue degradation. NH2-MIL-
125(Ti) is a metal-organic compound possessing high surface area, photocatalytic 
properties and unique dual-porosity. MIL-125(Ti) and NH2-MIL-125(Ti) was 
prepared through reflux method and activated using conventional solvent exchange 
method. Both samples were confirmed by XRD and FTIR. SEM images showed that 
NH2-MIL-125(Ti) has spherical morphology with size ranging from 250 to 500 nm 
which is at least half of the size of MIL-125(Ti). NH2-MIL-125(Ti) is stable under 
water with superior adsorption and photocatalytic activities upon visible and UV-A 
irradiation. Furthermore, the results revealed that NH2-MIL-125(Ti) is an effective 
non-ferrous Fenton-like catalyst. Synergistic effect was observed between NH2-MIL-
125(Ti) and H2O2, with 84 % of removal efficiency in 40 ppm of methylene blue. 
Results showed that •OH and h+ are the dominant species in Fenton-like oxidation 
of NH2-MIL-125(Ti)/H2O2 catalytic system. Photoenhancement was proven to be 
effective where up to 92 % removal was obtained when exposed to UV-A light. 
NH2-MIL-125(Ti) showed low pH dependency with stable degradation from pH 3 to 
9. Negligible amount of titanium leaching was detected which indicates the high 
stability of heterogeneous NH2-MIL-125(Ti) catalyst with reusability up to three 
runs. The heterogeneous titanium-terephthalate metal organic framework catalyst 
can overcome the disadvantages of traditional homogeneous Fenton catalyst. The 
results indicate that NH2-MIL-125(Ti) can be a new material for Fenton-like 
oxidation processes.  
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ABSTRAK 

 

PEMANGKIN PENGOKSIDAAN HETEROGEN BAGI METILENA BIRU 
MELALUI KERANGKA ORGANIK LOGAM BERFUNGSIAN-AMINA TITANIUM 

TEREFTALAT, NH2-MIL-125(Ti) 
 

Pembentukan enapcemar ferum oksida, kebergantungan kepada pH dan guna 
semula pemangkin yang lemah merupakan beberapa kesusahan reagen Fenton 
yang ketara. Dalam kajian ini, kompaun logam-organik titanium-tereftalat, NH2-
MIL-125(Ti), telah dicadangkan sebagai pemangkin heterogen “Fenton-like” untuk 
degradasi metilena biru. NH2-MIL-125(Ti) adalah satu sebatian logam-organik yang 
mempunyai luas permukaan yang tinggi, sifat-sifat fotomangkin dan juga dua jenis 
liang yang unik. MIL-125(Ti) dan juga NH2-MIL-125(Ti) telah disediakan melalui 
kaedah reflux dan diaktifkan dengan kaedah pertukaran pelarut konvensional. 
Kedua-dua sample tersebut telah pencirian melalui XRD dan FTIR. SEM imej telah 
menunjukkan bahawa NH2-MIL-125(Ti) mempunyai morfologi sfera dengan saiz di 
antara 250 nm ke 500 nm, di mana ia adalah lebih kurang separuh dari saiz MIL-
125(Ti). NH2-MIL-125(Ti) juga menunjukkan kestabilan yang tinggi di dalam air 
sehingga 24 jam. Apabila cahaya visible dan UV-A digunakan, aktiviti penjerapan 
dan fotoaktif yang tinggi telah diperhatikan. Di samping itu, NH2-MIL-125(Ti) telah 
dibuktikan sebagai suatu pemangkin “Fenton-like” yang bukan-ferum yang cekap. 
Kesan sinergi telah diperhatikan di antara NH2-MIL-125(Ti) dan H2O2, dengan 
penyingkiran dan penguraian 40 ppm metilena biru sehingga 84 %. Keputusan 
telah menunjukkan bahawa , dalam sistem pemangkin NH2-MIL-125(Ti)/ H2O2, •OH 
dan h+ merupakan  spesies yang dominan dalam oksidasi “Fenton-like”. 
Peningkatan-foto telah dibuktikan berkesan di mana 92 % penyingkiran telah 
dicapai apabila cahaya UV-A telah digunakan. NH2-MIL-125(Ti) telah mempunyai 
pergantungan kepada pH yang rendah di mana penguraian yang stabil boleh 
dicapai di antara pH 3 hingga 9. Larut lesap titanium yang amat rendah telah 
dikesan menunjukkan NH2-MIL-125(Ti) mempunyai stabiliti yang tinggi serta 
penggunaan semula sehingga tiga kali. Oleh itu pemangkin sebatian logam-organik 
heterogen boleh mengatasi kelemahan-kelemahan pemangkin homogen “Fenton” 
yang tradisional. Keputusan yang didapati telah menunjukkan bahawa NH2-MIL-
125(Ti) merupakan satu bahan yang baru didalam proses oksidasi “Fenton-like”. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Fenton-catalyzed Processes 

Over the past few decades, advanced oxidation processes (AOPs) have gained in 

popularity as one of the clean approaches in pollution control (Wang, 2008). AOPs 

often recognized as superior to other treatment methods because of its destructive 

nature that can lead to almost complete mineralization in wide range of pollutants 

(Ai et al., 2014; Dutta et al., 2001; Stasinakis, 2008). AOPs mechanism involves in-

situ generation of highly reactive radicals which attack pollutants rapidly and non-

selectively into less harmful substances that can be further biodegraded or, in some 

instance, decomposed into water and carbon dioxide (Contreras et al., 2002).  

 

Generally, AOPs utilizes a combination of powerful oxidants with catalysts 

and/or irradiation (Stasinakis, 2008). H2O2 is one of the common oxidants which 

frequently used in AOPs (Ai et al., 2014). Hydrogen peroxide (H2O2) is highly active 

oxidant with only water as a sole by-product (Lei et al., 2005). As an 

environmentally benign oxidant, it is also inexpensive and safer to use than organic 

peroxides or peracids (Saedi et al., 2012). H2O2 by itself however, is insufficient. 

Activation of H2O2 by transition metals, semiconductor, UV light or ultra-sonication 

is required to promote H2O2 decomposition into hydroxyl radicals (•OH) (Ai et al., 

2014; Dionysiou et al., 2000; Lei et al., 2005). 

 

Fenton’s reagent has attracted increasing attention in the activation of H2O2 

since its discovery a century ago (Neyens and Baeyens, 2003). It is refers to the 

redox reaction between ferrous [Fe(II)] ion and H2O2 which lead to the formation of 

powerful oxidants which includes •OH (Pignatello, Oliveros, and MacKay, 2006; 

Stasinakis, 2008). With in-situ generation of highly reactive radicals, Fenton-

catalyzed reaction has been proven to be an effective treatment in many organic 



2 

pollutants including aromatic compounds, phenols, chlorine-containing compounds, 

formaldehyde and synthetic dyes (Dutta et al., 2001).  

 

 

1.2 Limitations of Fenton-catalyzed Processes 

Fenton-catalyzed treatment is an established practice with high effectiveness and 

low energy consumption (Bauer and Fallmann, 1997; Contreras et al., 2002; Wang, 

2008). Also, Fenton’s reagent is more economic when compared to other AOPs 

which required O3 or UV (Wang, 2008). Nonetheless, this approach is not without 

its drawbacks. Some of the drawbacks encountered include iron oxide sludge 

formation, pH limitations, large amount of reagents needed, sophisticated system 

required for catalyst-product separation process, poor catalyst reusability and 

recoverability (Dutta et al., 2001; Munter, 2001; Ramirez et al., 2007; Saedi et al., 

2012; Strlič et al., 2003). As a result, many researchers are looking for new catalyst 

able to activate H2O2 while overcoming the critical drawbacks such as modification 

of current Fenton processes or utilization of other non-iron based materials with 

Fenton properties. 

 

 

1.3 Modified Fenton Processes 

Throughout the years, different approaches have been made to develop a more 

efficient Fenton catalyst. Some approaches have proven to be effective in 

expanding the effective pH range of Fenton reactions and prevent the sludge 

formation. These modifications including immobilizes of iron on materials, forms 

iron complexes with chelating agents and utilizes heterogeneous Fenton catalyst 

such as solid iron compounds and inorganic iron minerals (Babuponnusami and 

Muthukumar, 2014; Pignatello, Oliveros, and MacKay, 2006). However, the 

modified Fenton catalyst largely reduced its accessible surface active sites hence 

causing a decline in its catalytic activity (Pignatello, Oliveros, and MacKay, 2006). 

Also, instability of heterogeneous Fenton catalyst can cause iron leaching during 

the process which makes the reaction mainly homogeneous and leads to poor 

catalyst reusability (Babuponnusami and Muthukumar, 2014; Hartmann, Kullmann, 

and Keller, 2010). 
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Irradiation is another common method to improve the effectiveness of 

Fenton reactions. By utilizing light irradiation and sonication, enhancement can be 

observed in most cases in Fenton reactions. Photo-Fenton process and sono-Fenton 

process both can increase the rates of regeneration of Fe(II) ions (Equation 2.2 and 

2.3) and reactions between Fe(II) ions and H2O2 (Equation 2.1). To reduce the 

amount of reagent required for the reactions, Fenton process can also combine 

with electrochemical reactions to in-situ generate Fe ions or/and H2O2 oxidants 

which is commonly known as electro-Fenton process (Pignatello, Oliveros, and 

MacKay, 2006). 

 

According the Department of Environment (DOE) Malaysia directive, the 

discharge limit of iron content in industrial effluent is only range from 1 to 5 ppm. 

Therefore, in homogeneous Fenton reactions where 50 to 80 ppm of ferrous ions is 

normally required, sophisticated system for catalyst-product separation process is 

needed (Department of Environment, 2010; Hartmann, Kullmann, and Keller, 2010). 

To overcome the problems, researchers have expanded their studies to non-ferrous 

Fenton catalysts. Many metal ions and its complex forms have been identified as 

potential candidates such as aluminum (Al), chromium (Cr), copper (Cu), 

manganese (Mn), ruthenium (Ru) and cerium (Ce). The mixtures of these metal 

compounds with H2O2 were named “Fenton-like” reagents (Bokare and Choi, 2014; 

Goldstein, Meyerstein, and Czapski, 1993). 

 

 

1.4 MOF-based Fenton Catalysts 

Many researchers have been studying the effects of metal–organic frameworks 

(MOFs) and H2O2 as a co-dependent system aiming to increase catalytic 

performance. MOFs are hybrid materials which connect metal–ion clusters with 

multitopic ligands forming a three-dimensional network with a molecular-defined 

porosity (Wang et al., 2015). Many researchers consider MOFs to be superior to 

other porous coordination polymers (PCPs) in terms of internal surface area, 

micropore volume, tunable properties and functionalities (Ai et al., 2014; Jeremias 

et al., 2013; Li et al., 2017). Previous studies have shown that Fenton-like behavior 

is found in a number of iron‒based MOFs like Fe-bpydc, MIL-100(Fe), NH2-MIL-

88B(Fe), MIL-53(Fe) and MIL-101(Fe) (Ai et al., 2014; Li et al., 2017; Li et al., 2016; 


