IRON TEREPHTHALATE METAL ORGANIC FRAMEWORK DERIVED rGO/Fe₂O₃/TiO₂ THIN FILM FOR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE DYE IN WATER

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITY MALAYSIA SABAH 2017

IRON TEREPHTHALATE METAL ORGANIC FRAMEWORK DERIVED rGO/Fe₂O₃/TiO₂ THIN FILM FOR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE DYE IN WATER

A THESIS SUBMITTED IN FULFILLMENT WITH THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITY MALAYSIA SABAH 2017

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

18th June 2017

Hasmira binti Radde MS1311003T

CERTIFICATION

- NAME : HASMIRA BINTI RADDE
- MATRIC NO. : **MS1311003T**
- TITLE
 : IRON TEREPHTHALATE METAL ORGANIC FRAMEWORK

 DERIVED rGO/Fe2O3/TiO2 THIN FILM FOR

 PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE

 DYE IN WATER
- DEGREE : MASTER OF SCIENCE (INDUSTRIAL CHEMISTRY)
- VIVA DATE : 28TH APRIL 2017

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to Allah for His blessing, Alhamdulillah, I am able to complete this master study.

I would like to acknowledge and thank to my supervisor, Dr Moh Pak Yan, for his continuous support, patience, motivation and dedicated guidance. I really appreciate his leadership in guiding me throughout this study I have grown up as a student with a high degree of competency.

I would like to convey my deepest appreciation and gratitude to University Malaysia Sabah (UMS) and the Faculty Science and Natural Resources (FSSA) for providing me laboratory instruments and apparatus that was needed during my research study. I would like to take this opportunity to thank the industrial chemistry lab assistant, Mr Jerry Alaxender, Mr Racheidy, Mr Taipin, Mr Abdul Rahim and Mr Neldin for their great helps assisting me in handling instruments while doing my lab works.

I would like to thank my green chemistry laboratory colleagues, Nurul Wafa, Sing Yew, Suzanna, Michelle and Veon Fei for their help as well as sharing wonderful ideas and discussions on the projects. My sincere appreciation to my dear family especially my parents, Darwinah and Radde for raising me with love and support me continuously in whatever I do. Special thanks to Herwansyah for his unconditional motivation, constant support and encouragement throughout this master study. Not forgetting my dearest postgraduate mates Nurul Fatihah, Syazreyenna, Noreahan, Nurazilah, Diana, Laurencia and Hanirah, thank you guys for motivating and encouraging me through all the hardness during this study. Last but not least, I also appreciate the financial support from the UMS grant research (ERGS grant: ERGS 0032-STG-01/2-13) and the My Brains Scholarship from the Ministry of Higher Education.

Hasmira Binti Radde 18th June 2017

ABSTRACT

The major limitations of the photocatalytic activity involving TiO₂ photocatalyst are difficulty to isolate its powder from treated water, desorption of organic pollutants, high band gap energy and rapid recombination between the charge carriers (e/\hbar^{4} pairs). This study focuses on the modification of TiO₂ thin film in order to obtain a better degree of degradation by incorporating small amount of iron terephthalate metal organic framework, MIL-53(Fe) and reduced graphene oxide, rGO to the titania thin film (as rGO/Fe₂O₃/TiO₂ thin film). The rGO/ Fe₂O₃/TiO₂ thin films were fabricated via dip coating technique onto a glass substrate. SEM images showed that the coating can be repeated up to 5 cycles and rGO smooth planar sheets were attached to the Fe₂O₃/TiO₂ thin film. EDX analysis showed the presence of small amount of Fe³⁺ ions in TiO₂ thin film. The effect of concentration of MIL-53(Fe), number of dip coating cycle and rGO content were evaluated through the photocatalytic degradation of methylene blue (MB) dye in water under UV-A light for 4 hours. It was found that the highest photocatalytic activity of MB could be obtained using concentration 0.005 wt% of MIL-53(Fe) with 5 dip coating cycles in 0.4 mg/mL of rGO content. This study revealed that the rGO/Fe₂O₃/TiO₂ thin film exhibits a better photocatalytic degradation as it can degrade about 84.0% of 5 ppm MB in water under UV-A irradiation as compared to TiO₂ thin film alone which can only degrade 68.5% MB. The total enhancement of the rGO/Fe₂O₃/TiO₂ thin film was about 16%. The study on photocatalytic degradation of 5 ppm MB under visible light shows that rGO/Fe₂O₃/TiO₂ able to degrade 46.7% of MB whereas TiO₂ thin film alone was only 36.2%. A slight improvement which was about 10% of MB removal was obtained under visible light which means the incorporation of rGO has slightly reduced the band gap of TiO₂ thin film. A better degree of degradation can also attributed to the better adsorption property of rGO/Fe₂O₃/TiO₂ in comparison to that of TiO₂ and Fe₂O₃/TiO₂ thin film. In dark condition, rGO/Fe₂O₃/TiO₂ thin film and TiO₂ thin film alone can degrade 29.5% and 24.5%, respectively. About 5% enhancement was obtained in dark after incorporation of rGO and MIL-53(Fe). The $rGO/Fe_2O_3/TiO_2$ thin film posses a good stability and can be reuse up to 3 cycles without activation. The performance of the rGO/Fe₂O₃/TiO₂ thin film follows the pseudo-first-order reaction kinetic with the rate constant 0.007 min⁻¹ which is almost double as compared to TiO₂ thin film alone. The rGO/Fe₂O₃/TiO₂ thin film has high potential to be applied in wastewater treatment field and also as a tinting material for households and industries to provide self cleaning property.

ABSTRAK

SAPUT TIPIS rGO/Fe2O3/TiO2 YANG DIPEROLEH DARIPADA KERANGKA BESI ORGANIK 'IRON TEREPHTHALATE' UNTUK DEGRADASI FOTOPEMANGKINAN KEATAS PEWARNA METILIN BIRU (MB) DI DALAM AIR

Permasalahan utama didalam aktiviti pemangkinanfoto melibatkan pemangkinfoto TiO₂ adalah kesukaran untuk mengasingkan serbuknya dari air yang telah dirawat, penyahserapan bahan pencemar organik, luang jalur yang tinggi dan pergabungan yang pantas diantara pembawa cas (pasangan e/h⁺). Kajian ini memfokuskan pengubahsuaian keatas saput tipis TiO₂ untuk mendapatkan degradasi yang lebih baik dengan menggabungkan kerangka besi organik 'iron terephthalate', MIL-53(Fe) dan 'reduced graphene oxide', rGO kedalam saput tipis titania (sebagai rGO/Fe₂O_{3/}TiO₂). Saput tipis rGO/Fe₂O_{3/}TiO₂ telah difabrikasikan menggunakan teknik rendam celup keatas penyokong kaca. Imej SEM menunjukkan lapisan saput nipis boleh diulang sehingga 5 kitaran dan ke atas serta kepingan rata satah rGO berhubung dipermukaan saput tipis Fe₂O₃/TiO₂. Analisis EDX menunjukkan kehadiran bilangan yang terlalu sedikit ion Fe^{3+} didalam saput tipis TiO₂. Kesan terhadap kepekatan MIL-53(Fe), bilangan kitaran lapisan dan kandungan rGO ditentukan melalui degradasi pemangkinanfoto keatas pewarna Metilin Biru (MB) didalam air dibawah sinaran cahaya UV-A selama 4 jam. Kajian mendapati nilai tertinggi aktiviti fotopemangkinan ke atas MB boleh diperolehi dengan menggunakan 0.005 wt% MIL-53(Fe) dengan 5 lapisan dan kandungan rGO sebanyak 0.4 mg/mL. Kajian ini membuktikan saput tipis rGO/Fe₂O₃/TiO₂ mempunyai kelebihan yang lebih baik didalam degradasi pemangkinanfoto dimana ianya mampu mendegradasikan sebanyak 84.0% 5 ppm MB didalam air dibawah sinaran UV-A berbanding dengan saput tipis TiO₂ sendiri yang hanya mampu mendegradasi sebanyak 68.5% MB sahaja. Jumlah peningkatan bagi saput tipis rGO/Fe₂O₃/TiO₂ adalah sebanyak 16%. Kajian degradasi pemangkinanfoto ke atas *5ppm MB dibawah sinaran cahaya nampak menunjukkan saput* tipis rGO/Fe₂O₃/TiO₂ berupaya mendegradasikan sebanyak 46.7% pewarna MB manakala saput tipis TiO₂ sendiri hanya 36.2%. Sebanyak 10% peningkatan didalam penyingkiran MB telah diperlolehi dibawah cahaya nampak dimana penggabungan rGO telah mengurangkan luang jalur saput tipis TiO2. Tahap degradasi yang lebih baik juga adalah disebabkan ciri-ciri penjerapan saput tipis rGO/Fe₂O₃/TiO₂ berbanding dengan saput tipis TiO₂ dan Fe₂O₃/TiO₂. Dalam keadaan gelap pula, saput tipis rGO/Fe₂O₃/TiO₂ dan TiO2 masing-masing boleh mendegradasi sebanyak 29.5% dan 24.5%. Sebanyak 5% peningkatan yang telah diperolehi di dalam keadaan gelap selepas penggabungan rGO dan MIL-53(Fe). Saput tipis rGO/Fe₂O₃/TiO₂ mempunyai kestabilan yang baik dan boleh digunapakai sehingga 3 kitaran tanpa perlu diaktifkan. Prestasi saput tipis rGO/Fe₂O₃/TiO₂

mematuhi 'pseudo-first-order reaction kinetic' dengan kadar tetap 0.007min⁻¹ yang mana menghampiri dua kali ganda jika dibandingkan dengan saput tipis TiO₂ sendiri. Saput tipis rGO/Fe₂O₃/TiO₂ mempunyai potensi yang baik untuk digunakan didalam bidang rawatan air sisa dan juga sebagai bahan lapisan untuk peralatan rumah dan industri yang boleh memberikan kesan permbersihan sendiri.

TABLE OF CONTENTS

	Page	
TITLE	i	
DECLARATION	ii	
CERTIFICATION	iii	
ACKNOWLEDGEMENTS	iv	
ABSTRACT	v	
ABSTRAK	vi	
TABLE OF CONTENTS	viii	
LIST OF TABLES	xii	
LIST OF FIGURE	xiii	
LIST OF ABBREVIATIONS AND SYMBOLS	xvii	
CHAPTER 1: INTRODUCTION	1	
1.1 Introduction	1	
1.2 Drawbacks of TiO ₂ Photocatalyst		
1.3 Objectives	4	
1.4 Scopes of Study UNIVERSITI MALAYSIA SABAH	4	
CHAPTER 2: LITERATURE REVIEW	6	
2.1 Dyes and Treatment of Dye Pollutants	6	
2.1.1 Conventional Treatment of Dye	8	
2.1.2 Current Treatment of Dye	10	
2.2 Advanced Oxidation Process (AOP)	11	
2.2.1 Types of AOP	11	
2.2.2 Photodegradation of Organic Pollutant by TiO ₂ /UV	12	
2.3 TiO ₂ Photocatalyst	15	
2.3.1 TiO_2 Powder	19	
2.3.2 TiO ₂ Thin Film	20	
2.3.3 Dopped TiO ₂ Thin Film	21	
2.4 Hybrid Porous Solid	22	

	2.4.1	Metal Organic Frameworks (MOFs)	23
	2.4.2	Synthesis of MOFs	25
	2.4.3	MOFs as Catalyst Support	29
	2.4.4	MIL-53(Fe)	32
2.5	Graphe	ene	35
	2.5.1	Synthesis of Graphene	37
	2.5.2	Chemically Derived Graphene: GO & rGO	43
2.6	Past R	esearch Related To Graphene-Assisted TiO_2 and MOF-Assisted	49
	TiO ₂		
СНАР	TER 3:	METHODOLOGY	55
3.1	Chem	ical	55
3.2	Fabrica	ation of Fe ₂ O ₃ /TiO ₂ Thin Film	55
	3.2.1	Synthesis of Iron Terephthalate Metal Organic Framework,	55
	Æ	MIL-53(Fe)	
	3.2.2	Preparation of TiO ₂ Sol Gel	56
ß	3.2.3	Preparation of MIL-53(Fe)/TiO ₂ Sol Gel	56
E	3.2.4	Preparation of TiO ₂ thin film and Fe ₂ O ₃ /TiO ₂ Thin Film	57
3.3	Fabric	ation of rGO/Fe ₂ O ₃ /TiO ₂ Thin Film	58
	3.3.1	Synthesis of Graphene Oxide (GO)	58
	3.3.2	Preparation of GO Suspension	59
	3.3.3	Fabrication and Reduction of GO/ Fe_2O_3/TiO_2 Thin Film	59
3.4	Charac	terization of MIL-53(Fe) Powder, GO, TiO ₂ Thin Film, Fe ₂ O ₃ /TiO ₂	60
	Thin F	ilm and rGO/Fe ₂ O ₃ /TiO ₂ Thin Film	
	3.4.1	X-Ray Diffraction (XRD)	60
	3.4.2	Thermal Gravimetric Analysis (TGA)	61
	3.4.3	Fourier Transform Infrared (FTIR)	62
	3.4.4	Scanning Electron Microscope – Energy Dispersive X-Ray	62
		Spectroscopy (SEM-EDX)	
	3.4.5	Ultraviolet-Visible Spectroscopy (UV-Vis)	64
3.5	Photoc	catalytic Activity of rGO/Fe ₂ O ₃ /TiO ₂ Thin Film	65

3.5.1Preparation of Methylene Blue (MB) Solution653.5.2Set Up of Batch Photoreactor65

	3.5.3	Photocatalytic Degradation of Methylene Blue Solution	66
	3.5.4 Reusability test of rGO/Fe ₂ O ₃ /TiO ₂ Thin Film		67
	3.5.5	Kinetics of MB Degradation	68
CHA	PTER 4:	SYNTHESIS AND CHARACTERIZATION OF	70
		rGO/Fe2O3/TiO2 THIN FILM	
4.1	MIL-53	(Fe) and Graphene Oxide (GO)	70
	4.1.1	MIL-53(Fe)	70
	4.1.2	Graphene Oxide (GO)	72
4.2	Fabrica	ation of rGO/Fe ₂ O ₃ /TiO ₂ Thin Film	75
	4.2.1	XRD Diffractogram of TiO ₂ and Fe ₂ O ₃ /TiO ₂ Thin Films	76
	4.2.2	Surface Morphology of TiO ₂ , Fe_2O_3/TiO_2 and $rGO/Fe_2O_3/TiO_2$	77
		Thin Films	
	4.2.3	EDX Analysis of TiO ₂ , Fe ₂ O ₃ /TiO ₂ and rGO/Fe ₂ O ₃ /TiO ₂	81
	Æ	Thin Films	
	4.2.4	Optical Band Gap Energy of TiO ₂ and rGO/Fe ₂ O ₃ /TiO ₂ Thin Films	84
ß			
СНА	PTER 5:	PHOTOCATALYTIC ACTIVITY OF rGO/Fe ₂ O ₃ /TiO ₂	86
8		THIN FILM	
5.1	Stabilit	y of MB in Water INIVERSITI MALAYSIA SARAH	86
5.2	Effect	of Amount of MIL-53(Fe)	87
5.3	Effect	of Dip Coating Cycles	89
5.4	Effect	of The Amount of rGO	91
5.5	Effect	of The Source of Irradiation	93
5.6	Reusat	pility Test of rGO/Fe ₂ O ₃ /TiO ₂ Thin Film	96
5.7	Kinetic	s Study of MB Degradation	99
5.8	Mecha	nism of Photocatalytic Degradation of MB by rGO/Fe ₂ O ₃ /TiO ₂	102
	and Ti	O ₂ Thin Films	
CHA	PTER 6:	CONCLUSION & FUTURE RECOMMENDATIONS	105
6.1	Conclu	usion	105
6.2	Future	e Recommendation	107

APPENDICES

121

LIST OF TABLES

		Page
Table 2.1:	Names of chromophores and auxochrome group of	6
	dyes	
Table 2.2:	Wavelength of light absorption versus colour in organic	
	dyes	
Table 2.3:	Possible treatments for cotton textile waste and their	9
	advantages and disadvantages	
Table 2.4:	Comparison of various electrochemical potential	11
Table 2.5:	Basic physical properties of TiO ₂	18
Table 2.6:	Criteria of a good support	20
Table 2.7:	Summary table synthesis of graphene	42
Table 2.8:	Summary of the graphene (its derivatives) assisted	52
155	TiO ₂ composite and its applications	
Table 2.9:	Summary of the MOFs assisted TiO ₂ composite and	54
8	its applications	
Table 3.1:	Concentration of MIL-53(Fe)/TiO ₂ Sol Gel	57
Table 3.2:	Amount of GO used	59
Table 3.3:	Photocatalysis experiment of TiO_2 thin film,	67
	Fe_2O_3/TiO_2 thin film and rGO/Fe ₂ O ₃ /TiO ₂ thin film with	
	different sample	
Table 5.1:	Summary effect of MIL-53(Fe) concentration in TiO_2 thin films	88
Table 5.2:	Summary of effect of number dipping cycle towards TiO_2 thin	90
	film and Fe ₂ O ₃ /TiO ₂	
Table 5.3:	Summary of effect of rGO amount in Fe_2O_3/TiO_2 Thin Film	93
Table 5.4:	Summary effect of source irradiation towards TiO_2 and	96
	rGO/Fe ₂ O ₃ /TiO ₂ thin film	
Table 5.5:	Summary of reusability of TiO ₂ thin film and rGO/Fe ₂ O ₃ /TiO ₂ thin film.	99
Table 5.6:	Correlation coefficient and rate constant values of pseudo- first	101
	and pseudo-second order kinetic models.	

LIST OF FIGURES

		Page
Figure 1.1:	Schematic diagram of semiconductor excitation by band	2
	gap illumination leading to the creation of "electrons" in	
	the conduction band and "holes" in the valence band	
Figure 2.1:	Paper published on dye removal according to the process	10
	employed	
Figure 2.2:	Various technologies for waste water involving AOPs	12
Figure 2.3:	Modified schematic of TiO_2 photocatalytic mechanism	13
Figure 2.4:	Application of Titanium Dioxide (TiO ₂)	15
Figure 2.5:	Schematic unit cell of four TiO_2 polymorphs. (a) Rutile, (b)	17
	Anatase, (c) Brookite, (d) TiO ₂ (B)	
Figure 2.6:	Structure of TiO ₂ (B)	19
Figure 2.7:	A schematic representation of bulk modification by cation-	22
- ASK	doping	
Figure 2.8:	Schematic representation of the construction of metal	23
2	organic framework	
Figure 2.9:	Molecular structures of organic linkers used for the	24
	synthesis of MOF material STIMALAVSIA SARAH	
Figure 2.10:	Different crystal structures of metal organics framework	25
	materials	
Figure 2.11:	Conventional solvothermal synthesis of MOF structure	26
Figure 2.12:	Mechanochemical synthesis of MOF structure	27
Figure 2.13:	Sonochemical synthesis of MOFs structrure	28
Figure 2.14:	Schematic diagram of the synthesis of microporous	30
	brookite from a MOFs template	
Figure 2.15:	Schematic illustration for the synthetic approaches used in	31
	for various TiO2-based hollow shell photocatalyst. TiO ₂	
	shell, Cu/TiO ₂ -AA and Cu/TiO ₂ -500°C	
Figure 2.16:	View of the structure of MIL-53(M)	32
Figure 2.17:	The breathing behavior of MIL-53 using heat as the	33
	external stimulus	

Figure 2.18:	The chemical structure of MIL-53(Fe)	34		
Figure 2.19:	A single graphite sheet consisting of a honeycomb lattice			
	structure of sp ² bonded carbon atoms			
Figure 2.20:	Scheme showing graphene can be wrapped to a 0D	36		
	fullerenes, wrapped to form 1D carbon nanotubes (CNTs),			
	or stacked to form 3D graphite			
Figure 2.21:	The single layer of graphene as first observed by Geim and	38		
	Novoselov at the University of Manchester			
Figure 2.22:	Mechanical exfoliation of graphene using scotch tape from	38		
	HOPG			
Figure 2.23:	Synthesis of graphene based on Hummer's method using	40		
	ultrasonication			
Figure 2.24:	Structure of GO	43		
Figure 2.25:	Preparation of graphene by chemical reduction of	45		
and the	graphene oxide synthesized by Hummers method			
Figure 2.26:	Typical optical images of GO solution and rGO solution	46		
Figure 2.27:	The idealized and simplified pathway for the reduction of	47		
2	GO by hydrazine hydrate			
Figure 2.28:	$GO-TiO_2$ thin film & rGO-TiO_2 thin film on quartz substrate	48		
	after UV irradiation for 25 minute			
Figure 2.29:	Schematic illustration of the charge carrier transfer for	50		
	graphene-semiconductor photocatalyst			
Figure 3.1:	TiO ₂ Sol Gel Precursor	56		
Figure 3.2:	Generalized flowchart of MIL-53(Fe)/TiO ₂ sol gel	57		
	preparation			
Figure 3.3:	Schematic diagram of lab scale dip coating machine	58		
Figure 3.4:	Pictorial steps for fabrication of rGO/Fe ₂ O ₃ /TiO ₂ thin film	60		
Figure 3.5:	X-Ray Diffractometer (Philips X'Pert Pro IMS)	61		
Figure 3.6:	Thermogravimetric analyzer (TGA 6)	61		
Figure 3.7:	Fourier transform infrared spectrum 100 (Perkin Elmer)	62		
Figure 3.8:	Sputter Coater	63		
Figure 3.9:	Scanning electron microscope-energy dispersive X-Ray	63		
	spectroscopy (SEM-EDX)			

Figure 3.10:	UV-Vis Spectroscopy (Cary 60; Agilent Technologies) 64		
Figure 3.11:	Series of dilution MB dye solution 6!		
Figure 3.12:	Experimental set up of for photocatalytic degradation of		
	rGO/Fe ₂ O ₃ /TiO ₂ thin film		
Figure 4.1:	Synthesized MIL-53(Fe) powder and XRD pattern of MIL-53(Fe)	70	
	crystal		
Figure 4.2:	TGA analysis of synthesized MIL-53(Fe)	71	
Figure 4.3:	GO dispersion in water	72	
Figure 4.4:	UV-Vis Spectrum of a 0.01 mg/mL GO aqueous dispersion	73	
Figure 4.5:	GO after freeze-dried	73	
Figure 4.6:	XRD Pattern of synthesized GO	74	
Figure 4.7:	FTIR spectrum of synthesized GO	74	
Figure 4.8:	Pictorial of clean glass slide, TiO ₂ , Fe ₂ O ₃ /TiO ₂ & rGO/Fe ₂ O ₃ /TiO ₂	75	
	thin films		
Figure 4.9:	XRD pattern of TiO_2 and Fe_2O_3/TiO_2 thin films	76	
Figure 4.10:	SEM images of (a) five layers TiO ₂ thin film deposited on glass	78	
BY 🕒	& (b) six layers TiO ₂ thin film deposited on glass		
Figure 4.11:	SEM images of five layer Fe_2O_3/TiO_2 thin film deposited on glass	79	
Figure 4.12:	SEM images of five layer rGO/Fe ₂ O ₃ /TiO ₂ thin film deposited	80	
	on glass UNIVERSITI MALAYSIA SABAH		
Figure 4.13:	Cross-sectional SEM image of TiO_2 thin film, $\text{Fe}_2\text{O}_3/\text{TiO}_2$ thin film	81	
	& rGO/Fe ₂ O ₃ /TiO ₂ thin film		
Figure 4.14:	EDX spectrum of TiO ₂ thin film	82	
Figure 4.15:	EDX spectrum of Fe ₂ O ₃ /TiO ₂ thin film	83	
Figure 4.16:	EDX spectrum of rGO/Fe ₂ O ₃ /TiO ₂ thin film	84	
Figure 4.17:	gure 4.17: Optical band gap energy of TiO ₂ and rGO/Fe ₂ O ₃ /TiO ₂ thin		
	films		
Figure 5.1:	Degradation of MB	86	
Figure 5.2:	Effect of MIL-53(Fe) concentration towards the photocatalytic	87	
	activity of Fe_2O_3/TiO_2 thin film for the degradation of 5 ppm		
	MB in water under UV-A irradiation		
Figure 5.3:	Effect of dip coating cycle of TiO_2 thin film and Fe_2O_3/TiO_2	89	
	thin film towards photocatalytic degradation of 5 ppm		
	MB dye in water under UV-A irradiation		

Figure 5.4:	: Effect of the amount of rGO in Fe_2O_3/TiO_2 thin film towards			
	photocatalytic degradation of 5 ppm MB dye in water			
	under UV-A irradiation			
Figure 5.5:	Effect of the source of irradiation of TiO_2 thin film and			
	rGO/Fe ₂ O ₃ /TiO ₂ thin film towards the photocatalytic			
	of 5 ppm MB dye in water under UV-A irradiation			
Figure 5.6:	Reusability of TiO ₂ Thin film and rGO/Fe ₂ O ₃ /TiO ₂ thin	97		
	film towards photocatalytic degradation of MB dye in water			
Figure 5.7:	TiO ₂ and rGO/Fe ₂ O ₃ /TiO ₂ thin films after 5 cycles of			
	photocatalytic degradation of 3 ppm MB in water			
Figure 5.8:	Pseudo-first-order-kinetics model of photocatalytic	99		
	degradation of MB dye in water			
Figure 5.9:	Pseudo-second-order-kinetics model of photocatalytic	100		
	degradation of MB dye in water			
Figure 5.10:	Schematic of photocatalytic degradation mechanisms of	102		
B	Fe ₂ O ₃ /TiO ₂ thin film			
Figure 5.11:	Proposed mechanism for the photocatalytic activity of	104		
8	$rGO/Fe_2O_3/TiO_2$ thin film			
Va	UNIVERSITI MALAYSIA SABAH			

LIST OF ABBREVIATIONS AND SYMBOLS

Abs	- Absorbance		
AOPs	- Advanced Oxidation Processes		
СВ	- Conduction band		
Cu ₃ (BTC) ₂	- Copper (II) benzene-1,3,5-tricarboxylate		
CVD	- Chemical vapour deposition		
EDX	- Energy Dispersive X-Ray		
E _{bg}	- Band Gap Energy		
Fe ₂ O ₃ /TiO ₂	- Ferric Oxide/Titanium Dioxide		
FTIR	- Fourier Transform Infrared		
GO	- Graphene Oxide		
GO/ Fe ₂ O ₃ /TiO ₂	- Graphene Oxide/Ferric Oxide/Titanium Dioxide		
hv	- UV light		
HKUST-1	- Hong Kong University of Science and Technology 1		
HOPG	- Highly Ordered Pyrolytic Graphite		
IUPAC	- International Union of Pure and Applied Chemistry		
MB C	- Methylene Blue		
MIL Volume	- Material Institute Lavoisier		
MOFs	- Metal organic frameworks		
MOF@TiO ₂	- Metal organic framework derived titanium dioxide		
PAHs	- Polycyclic aromatic hydrocarbons		
РСР	- Porous coordination polymers		
rGO	- Reduced graphene oxide		
rGO/Fe ₂ O ₃ /TiO ₂	- Reduced graphene oxide/Ferric Oxide/Titanium Dioxide		
SEM	- Scanning electron microscope		
ТЕМ	- Transmission Electron Microscope		
TMBDC	- Tetramethylbenzene-1,4-dicarboxylate		
UHV	- Ultrahigh vacuum		
UV-A	- Ultraviolet A		
UV-Vis	- Ultraviolet Visible		
VB	- Valence band		

CHAPTER 1

INTRODUCTION

1.1 Introduction

Over the past few decades, advanced oxidation processes (AOPs) has appear to be an alternative to conventional methods used for decolourization of wastewater effluent containing toxic dyes compound (Sharma et al., 2011). Unlike conventional methods which generates new secondary waste and need a high cost of post treatment, AOPs promises a destructive method which destroy the contaminant directly in water through the chemical transformation (Fernández et al.,2010). The key features of AOPs which constitute the generation of hydroxyl radical (OH•) act as strong oxidant to destroy and mineralized contaminant into water (H₂O), carbon dioxide (CO₂) and mineral salt (Pelaez *et al.*,2012 ; Sharma *et al.*, 2011). Generally, AOPs can be divided into two types: non irradiation processes and irradiation processes (Sharma *et al.*, 2011).

Photocatalytic degradation based on TiO_2 photocatalyst is an example of AOPs which classified into irradiation process AOPs (Sharma *et al.*, 2011). Among other semiconductors, TiO_2 has been the most commonly studied photocatalyst for the purpose of environmental remediation. This is not only due to its ability to degrade organic pollutants and achieve complete mineralization of the organic contaminants under ultraviolet exposure, but also because TiO_2 has high degradation efficiency to decompose almost any organic contaminant which making it an excellent and effective photocatalyst for the photocatalytic degradation of various organic contaminants (Zhang *et al.*, 2011).

 TiO_2 photocatalyst is also largely available, relatively inexpensive and nontoxic. Besides that, it also provides a rapid, environmental friendly, high stability, and an efficient method in the wastewater treatment (Pichat, 2010). Basically, the TiO_2 based photocatalysis is initiated through the photoactivation of TiO_2 . When exposed with UV light (λ <390 nm), electron at valence band (VB) will excite to conduction band (CB), generating a hole at valence band and forming electron-hole pairs (e^{-}/h^{+}) as shown in Figure 1.1 These electron-hole pairs induced a series of reaction which lead to the photocatalytic degradation of organic pollutants.

Source : Ibhadon & Fitzpatrick (2013)

However, there are a few problems that have arisen which inhibit the full potential of the photocatalytic activity of TiO₂ photocatalyst and thus limiting the application of the photocatalysis process. To date, much effort has been devoted to the modification of the TiO₂ materials in order to enhance their photocatalytic degradation activities (Park *et al.*, 2013). One of the important approaches was by doping or combining various metal, non-metal ions and noble metal to the crystalline TiO₂. This method commonly used to increase the electron transfer rate at the interface and shift the light absorption towards the visible light region (Mital & Manoj, 2011). Unfortunately, the photocatalytic activity of the synthesized combined material strongly depends on the dopant ion species, concentration of

the dopant and the preparation technique (Li *et al.*, 2012). Moreover, utilization of noble metal (Pt, Pd and Au) in this modification usually involved an expensive cost and not suitable to be applied in massive scale applications. Thus, it is important to replace the noble metal ions with other inexpensive co-catalyst for the development of highly efficient cost effective photocatalyst (Anandan et al., 2013). Apart from that, another modification of TiO_2 which involving immobilization where TiO_2 powder bounded on solid supports or thin film forms can eliminate the high cost of separation process between the TiO_2 powder and the treated water (Pichat, 2013).

MOFs are a new class of advanced porous materials which are composed of metal ions or metal ions clusters (secondary building units) as nodes and organic ligands as linkers (Zhang & Chen, 2013; MacGillivray, 2010). It is expected that incorporating MIL-53(Fe) (a type of MOFs) in TiO₂ photocatalyt would make the metal clusters that interconnected with the MOFs ligands to act as precursor for Fe doped TiO₂ after the thermal treatment. Another new exciting material, graphene and its derivatives, have also been reported as an excellent support for TiO₂ to enhance the photocatalytic activity by facilitate the charge separation, enhanced the adsorption capacity, as well as reducing the band gap of TiO₂ (Ismail *et al.*, 2013). Graphene with a lower Fermi level usually served as 2D electron conductive platform that can accept and transfer electron generated from the band gap photoexcitation of semiconductors, thereby accelerate the separation and transfer of charge carriers to participate in the photoredox process (Zhang *et al.*, 2015).

This study focuses on modification of immobilized TiO_2 thin film by incorporating small amount of MIL-53(Fe) and rGO as co-catalysts. It was expected that the Fe₂O₃ derived from MIL-53(Fe) could reduce the recombination of electrons-holes pairs and allow the absorption of visible light. To enhance the photocatalytic activity more, outer layer of thin film will be added with two dimensional planar structure rGO layer which served as 2D electron conductive platform. The efficiency of the material was evaluated through the photocatalytic degradation towards methylene blue (MB) under UV-A irradiation.

1.2 Drawbacks of TiO₂ Photocatalyst

The main problems that restrict the photoactivity of TiO₂ materials are the rapid recombination of the photogenerated electron/holes pairs. When recombination occurs, the excited electron will return back to valence band without reacting with the adsorbed species (Mital & Manoj, 2011). Therefore, the efficient consumption of electrons is essential to promote photocatalytic oxidation (Kaneko & Okura, 2002). Another problem encountered by TiO₂ materials are the low mass transport rates between the active centres of TiO₂ photocatalyst and the organic pollutants and also the associated issues of nanoparticle separation (Wang & Curaso, 2011). Besides, narrow light response range also has limits the photoactivity of TiO₂ photocatalyst and hinder its practical applications (Park *et al.*, 2013). High band gap of TiO₂ (3.21 eV for anatase) semiconductor required only high energy of UV light (achievable from only 5% of sunlight) to be photoexcited (Mahmood *et al.*, 2014; Tan *et al.*, 2012; Wang & Curaso, 2011). Thus, bare TiO₂ has limited photocatalytic activity in the visible range of Earth's solar spectrum.

1.3 Objectives

The objectives of this study are as followed:

- i. To fabricate and characterize immobilized TiO_2 , Fe_2O_3/TiO_2 and $rGO/Fe_2O_3/TiO_2$ thin films to overcome the separation process.
- ii. To determine the photocatalytic activity of TiO₂ and Fe₂O₃ /TiO₂ thin films towards the photocatalytic degradation of methylene blue (MB) dye in water.
- iii. To evaluate the effect of rGO in Fe_2O_3/TiO_2 thin film towards its photocatalytic activity in order to reduce the band gap energy.
- iv. To determine the reusability of the $rGO/Fe_2O_3/TiO_2$ thin film.

1.4 Scopes of Study

This study was focused on the fabrication, characterization, evaluation of photocatalytic activity of $rGO/Fe_2O_3/TiO_2$ thin film. Before fabrication of $rGO/Fe_2O_3/TiO_2$ thin film was done, three different materials: MIL-53(Fe), GO, and TiO_2 sol gel need to synthesized and prepared first. MIL-53(Fe) was synthesized using reflux method proposed by Munn and co-workers (2013). GO was

synthesized using the modified Hummers method. The obtained GO suspension was freeze dried for 24 hour to get freeze dried GO powder (Chen et al., 2013; Marcano *et al.*, 2010). Meanwhile, TiO₂ precursor sol gel was prepared from a mixture of diethanolamine (DEA), 1-butanol, titanium (IV) butoxide (TBOT) and few drops of water (Bu *et al.*, 2005). Both TiO₂ sol gel and MIL-53(Fe)/TiO₂ sol gel were used to fabricate TiO₂ thin film and Fe₂O₃/TiO₂ thin film, respectively by using dip coating technique. rGO/Fe₂O₃/TiO₂ thin film was prepared by dipping the annealed Fe₂O₃/TiO₂ thin film in GO suspension followed by reduction using hydrazine vapour. Instrumentation used for characterization of synthesized materials and thin films were XRD, FTIR, UV-Vis, SEM and EDX. XRD was used to identify the crystallinity of synthesized MIL-53(Fe), GO, TiO₂ thin film and Fe₂O₃/TiO₂ thin film. FTIR was used to determine the functional group of synthesized GO. UV-Vis was used to analyze the synthesized GO and photocatalytic activity of thin films. The morphology and topography of TiO₂ thin film, Fe_2O_3/TiO_2 thin film and rGO/Fe₂O₃/TiO₂ thin film was determined using SEM. Meanwhile, EDX analysis was carried out to determine the presence of Fe³⁺ ion and the amount of carbon in rGO/Fe₂O₃/TiO₂ thin film. Photocatalytic activity of thin films was determined using 40 mL of methylene blue (MB) solution as organic compound pollutant with initial concentration 5 ppm under UVA light irradiation for 4 hours. Reusability test was determined by using the same $rGO/Fe_2O_3/TiO_2$ thin film for five consecutive cycles without any activation. The photocatalytic degradation progress was determined using UV-Vis spectrophotometer.

CHAPTER 2

LITERATURE REVIEW

2.1 Dyes and Treatment of Dye Pollutants

Dyes are colorant substance made from plants or chemicals that can be applied into a solution to a substrate and consequently giving it a coloured appearance by altering the crystal structure of the substrate (Fu., 2014). A substrate is the material where colorant is applied by using different type of processes such as dyeing, printing, surface coating and others. Some examples of substrate include of textile fibers, polymers, foodstuffs, leathers and others (Fu., 2014). Complex organic molecules of dyes usually consist of chromophore (colour bearing group) which is responsible for its colour properties. Chromophore (*"chroma"* means color and *"phore"* means bearer) basically consists of extended conjugated system in part of the dye molecules. These molecules impart its colour when it absorb visible light at certain wavelength (380 – 700 nm) and transmit the remaining light. At the same time, the presence of auxochrome (*"auxo"* means augment) in dyes molecules can greatly enhances the colour intensity.

Chromophore group	Name	Auxogroup	Name
-N=N-	Azo	-NH ₂	Amino
-N=N ⁺ -O ⁻	Azoxy	-NHCH₃	Methyl amino
-N=N-NH	Azoamino	-N(CH ₃) ₂	Dimethyl amino
-N=O, N-OH	Nitroso	-SO₃H	Sulphonic Acid
>C=0	Carbonyl	-OH	Hydroxyl
>C=C<	Ethenyl	-COOH	Carboxylic acid
>C=S	Thio	-Cl	Chloro
-NO ₂	Nitro	-CH ₃	Methyl
>C=NH, >C=N-	Azomethine	-OCH ₃	Methoxy
		-CN	Cyano
		-COCH ₃	Acetyl
		-CONH ₂	Amido

Table 2.1 : Names of chromophores and auxochrome group of dyes

Source: Fu et al., (2014)