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ABSTRACT 
 

 

The major limitations of the photocatalytic activity involving TiO2 photocatalyst are 

difficulty to isolate its powder from treated water, desorption of organic pollutants, 

high band gap energy and rapid recombination between the charge carriers (e-/h+ 

pairs). This study focuses on the modification of TiO2 thin film in order to obtain a 

better degree of degradation by incorporating small amount of iron terephthalate 

metal organic framework, MIL-53(Fe) and reduced graphene oxide, rGO to the 

titania thin film (as rGO/Fe2O3/TiO2 thin film). The rGO/ Fe2O3/TiO2 thin films were 

fabricated via dip coating technique onto a glass substrate. SEM images showed 

that the coating can be repeated up to 5 cycles and rGO smooth planar sheets 

were attached to the Fe2O3/TiO2 thin film. EDX analysis showed the presence of 

small amount of Fe3+ ions in TiO2 thin film. The effect of concentration of MIL-

53(Fe), number of dip coating cycle and rGO content were evaluated through the 

photocatalytic degradation of methylene blue (MB) dye in water under UV-A light 

for 4 hours. It was found that the highest photocatalytic activity of MB could be 

obtained using concentration 0.005 wt% of MIL-53(Fe) with 5 dip coating cycles in 

0.4 mg/mL of rGO content. This study revealed that the rGO/Fe2O3/TiO2 thin film 

exhibits a better photocatalytic degradation as it can degrade about 84.0% of 5 

ppm MB in water under UV-A irradiation as compared to TiO2 thin film alone which 

can only degrade 68.5% MB. The total enhancement of the rGO/Fe2O3/TiO2 thin 

film was about 16%. The study on photocatalytic degradation of 5 ppm MB under 

visible light shows that rGO/Fe2O3/TiO2 able to degrade 46.7% of MB whereas TiO2 

thin film alone was only 36.2%. A slight improvement which was about 10% of MB 

removal was obtained under visible light which means the incorporation of rGO has 

slightly reduced the band gap of TiO2 thin film. A better degree of degradation can 

also attributed to the better adsorption property of rGO/Fe2O3/TiO2 in comparison to 

that of TiO2 and Fe2O3/TiO2 thin film. In dark condition, rGO/Fe2O3/TiO2 thin film 

and TiO2 thin film alone can degrade 29.5% and 24.5%, respectively. About 5% 

enhancement was obtained in dark after incorporation of rGO and MIL-53(Fe). The 

rGO/Fe2O3/TiO2 thin film posses a good stability and can be reuse up to 3 cycles 

without activation. The performance of the rGO/Fe2O3/TiO2 thin film follows the 

pseudo-first-order reaction kinetic with the rate constant 0.007 min-1 which is 

almost double as compared to TiO2 thin film alone. The rGO/Fe2O3/TiO2 thin film 

has high potential to be applied in wastewater treatment field and also as a tinting 

material for households and industries to provide self cleaning property. 
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ABSTRAK 

 
SAPUT TIPIS rGO/Fe2O3/TiO2 YANG DIPEROLEH DARIPADA KERANGKA 

BESI ORGANIK ‘IRON TEREPHTHALATE’ UNTUK DEGRADASI 

FOTOPEMANGKINAN KEATAS PEWARNA METILIN  

BIRU (MB) DI DALAM AIR 

 

Permasalahan utama didalam aktiviti pemangkinanfoto melibatkan pemangkinfoto 

TiO2 adalah kesukaran untuk mengasingkan serbuknya dari air yang telah dirawat, 

penyahserapan bahan pencemar organik, luang jalur yang tinggi dan pergabungan 

yang pantas diantara pembawa cas (pasangan e-/h+). Kajian ini memfokuskan 

pengubahsuaian keatas saput tipis TiO2 untuk mendapatkan degradasi yang lebih 

baik dengan menggabungkan kerangka besi organik ‘iron terephthalate’, MIL-

53(Fe) dan ‘reduced graphene oxide’, rGO kedalam saput tipis titania (sebagai 

rGO/Fe2O3/TiO2). Saput tipis rGO/Fe2O3/TiO2 telah difabrikasikan menggunakan 

teknik rendam celup keatas penyokong kaca. Imej SEM menunjukkan lapisan saput 

nipis boleh diulang sehingga 5 kitaran dan ke atas serta kepingan rata satah rGO 

berhubung dipermukaan saput tipis Fe2O3/TiO2. Analisis EDX menunjukkan 

kehadiran bilangan yang terlalu sedikit ion Fe3+didalam saput tipis TiO2. Kesan 

terhadap kepekatan MIL-53(Fe), bilangan kitaran lapisan dan kandungan rGO 

ditentukan melalui degradasi pemangkinanfoto keatas pewarna Metilin Biru (MB) 

didalam air dibawah sinaran cahaya UV-A selama 4 jam.  Kajian mendapati nilai 

tertinggi aktiviti fotopemangkinan ke atas MB boleh diperolehi dengan 

menggunakan 0.005 wt% MIL-53(Fe) dengan 5 lapisan dan kandungan rGO 

sebanyak 0.4 mg/mL. Kajian ini membuktikan saput tipis rGO/Fe2O3/TiO2 

mempunyai kelebihan yang lebih baik didalam degradasi pemangkinanfoto dimana 

ianya mampu mendegradasikan sebanyak 84.0% 5 ppm MB didalam air dibawah 

sinaran UV-A berbanding dengan saput tipis TiO2 sendiri yang hanya mampu 

mendegradasi sebanyak 68.5% MB sahaja. Jumlah peningkatan bagi saput tipis 

rGO/Fe2O3/TiO2 adalah sebanyak 16%. Kajian degradasi pemangkinanfoto ke atas 

5ppm MB dibawah sinaran cahaya nampak menunjukkan saput tipis 

rGO/Fe2O3/TiO2 berupaya mendegradasikan sebanyak 46.7% pewarna MB 

manakala saput tipis TiO2 sendiri hanya 36.2%. Sebanyak 10% peningkatan 

didalam penyingkiran MB telah diperlolehi dibawah cahaya nampak dimana 

penggabungan rGO telah mengurangkan luang jalur saput tipis TiO2. Tahap 

degradasi yang lebih baik juga adalah disebabkan ciri-ciri penjerapan saput tipis 

rGO/Fe2O3/TiO2 berbanding dengan saput tipis TiO2 dan Fe2O3/TiO2. Dalam keadaan 

gelap pula, saput tipis rGO/Fe2O3/TiO2 dan TiO2 masing-masing boleh 

mendegradasi sebanyak 29.5% dan 24.5%. Sebanyak 5% peningkatan yang telah 

diperolehi di dalam keadaan gelap selepas penggabungan rGO dan MIL-53(Fe). 

Saput tipis rGO/Fe2O3/TiO2 mempunyai kestabilan yang baik dan boleh digunapakai 

sehingga 3 kitaran tanpa perlu diaktifkan. Prestasi saput tipis rGO/Fe2O3/TiO2  
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mematuhi ‘pseudo-first-order reaction kinetic’ dengan kadar tetap 0.007min-1 yang 

mana menghampiri dua kali ganda jika dibandingkan dengan saput tipis TiO2 

sendiri. Saput tipis rGO/Fe2O3/TiO2 mempunyai potensi yang baik untuk digunakan 

didalam bidang rawatan air sisa dan juga sebagai bahan lapisan untuk peralatan 

rumah dan industri yang boleh memberikan kesan permbersihan sendiri. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

Over the past few decades, advanced oxidation processes (AOPs) has appear to be 

an alternative to conventional methods used for decolourization of wastewater 

effluent containing toxic dyes compound (Sharma et al., 2011). Unlike conventional 

methods which generates new secondary waste and need a high cost of post 

treatment, AOPs promises a destructive method which destroy the contaminant 

directly in water through the chemical transformation (Fernández et al.,2010). The 

key features of AOPs which constitute the generation of hydroxyl radical (OH•) act 

as strong oxidant to destroy and mineralized contaminant into water (H2O), carbon 

dioxide (CO2) and mineral salt (Pelaez et al.,2012 ; Sharma et al., 2011). Generally, 

AOPs can be divided into two types: non irradiation processes and irradiation 

processes (Sharma et al., 2011). 

 

 Photocatalytic degradation based on TiO2 photocatalyst is an example of 

AOPs which classified into irradiation process AOPs (Sharma et al., 2011). Among 

other semiconductors, TiO2 has been the most commonly studied photocatalyst for 

the purpose of environmental remediation. This is not only due to its ability to 

degrade organic pollutants and achieve complete mineralization of the organic 

contaminants under ultraviolet exposure, but also because TiO2 has high 

degradation efficiency to decompose almost any organic contaminant which making 

it an excellent and effective photocatalyst for the photocatalytic degradation of 

various organic contaminants (Zhang et al., 2011).  

 

 TiO2 photocatalyst is also largely available, relatively inexpensive and non-

toxic. Besides that, it also provides a rapid, environmental friendly, high stability, 

and an efficient method in the wastewater treatment (Pichat, 2010). Basically, the 

TiO2 based photocatalysis is initiated through the photoactivation of TiO2. When 



2 

exposed with UV light (<390 nm), electron at valence band (VB) will excite to 

conduction band (CB), generating a hole at valence band and forming electron-hole 

pairs (e-/h+) as shown in Figure 1.1 These electron-hole pairs induced a series of 

reaction which lead to the photocatalytic degradation of organic pollutants.  

 

 

Figure 1.1  : Schematic diagram of semiconductor excitation by band  

    gap illumination leading to the creation of “electrons” in  

    the conduction band and “holes” in the valence band. 

Source  : Ibhadon & Fitzpatrick (2013)  

 

 However, there are a few problems that have arisen which inhibit the full 

potential of the photocatalytic activity of TiO2 photocatalyst and thus limiting the 

application of the photocatalysis process. To date, much effort has been devoted to 

the modification of the TiO2 materials in order to enhance their photocatalytic 

degradation activities (Park et al., 2013). One of the important approaches was by 

doping or combining various metal, non-metal ions and noble metal to the 

crystalline TiO2. This method commonly used to increase the electron transfer rate 

at the interface and shift the light absorption towards the visible light region (Mital 

& Manoj, 2011). Unfortunately, the photocatalytic activity of the synthesized 

combined material strongly depends on the dopant ion species, concentration of 
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the dopant and the preparation technique (Li et al., 2012). Moreover, utilization of 

noble metal (Pt, Pd and Au) in this modification usually involved an expensive cost 

and not suitable to be applied in massive scale applications. Thus, it is important to 

replace the noble metal ions with other inexpensive co-catalyst for the development 

of highly efficient cost effective photocatalyst (Anandan et al., 2013). Apart from 

that, another modification of TiO2 which involving immobilization where TiO2 

powder bounded on solid supports or thin film forms can eliminate the high cost of 

separation process between the TiO2 powder and the treated water (Pichat, 2013). 

 

 MOFs are a new class of advanced porous materials which are composed of 

metal ions or metal ions clusters (secondary building units) as nodes and organic 

ligands as linkers (Zhang & Chen, 2013; MacGillivray, 2010). It is expected that 

incorporating MIL-53(Fe) (a type of MOFs) in TiO2 photocatalyt would make the 

metal clusters that interconnected with the MOFs ligands to act as precursor for Fe 

doped TiO2 after the thermal treatment. Another new exciting material, graphene 

and its derivatives, have also been reported as an excellent support  for TiO2 to 

enhance the photocatalytic activity by facilitate the charge separation, enhanced 

the adsorption capacity, as well as reducing the band gap of TiO2 (Ismail et al., 

2013). Graphene with a lower Fermi level usually served as 2D electron conductive 

platform that can accept and transfer electron generated from the band gap 

photoexcitation of semiconductors, thereby accelerate the separation and transfer 

of charge carriers to participate in the photoredox process (Zhang et al., 2015).  

 

 This study focuses on modification of immobilized TiO2 thin film by 

incorporating small amount of MIL-53(Fe) and rGO as co-catalysts. It was expected 

that the Fe2O3 derived from MIL-53(Fe) could reduce the recombination of 

electrons-holes pairs and allow the absorption of visible light. To enhance the 

photocatalytic activity more, outer layer of thin film will be added with two 

dimensional planar structure rGO layer which served as 2D electron conductive 

platform. The efficiency of the material was evaluated through the photocatalytic 

degradation towards methylene blue (MB) under UV-A irradiation. 
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1.2  Drawbacks of TiO2 Photocatalyst 

The main problems that restrict the photoactivity of TiO2 materials are the rapid 

recombination of the photogenerated electron/holes pairs. When recombination 

occurs, the excited electron will return back to valence band without reacting with 

the adsorbed species (Mital & Manoj, 2011). Therefore, the efficient consumption of 

electrons is essential to promote photocatalytic oxidation (Kaneko & Okura, 2002). 

Another problem encountered by TiO2 materials are the low mass transport rates 

between the active centres of TiO2 photocatalyst and the organic pollutants and 

also the associated issues of nanoparticle separation (Wang & Curaso, 2011). 

Besides, narrow light response range also has limits the photoactivity of TiO2 

photocatalyst and hinder its practical applications (Park et al., 2013). High band 

gap of TiO2 (3.21 eV for anatase) semiconductor required only high energy of UV 

light (achievable from only 5% of sunlight) to be photoexcited (Mahmood et al.,  

2014; Tan et al., 2012; Wang & Curaso, 2011). Thus, bare TiO2 has limited 

photocatalytic activity in the visible range of Earth’s solar spectrum.  

 

1.3 Objectives 

The objectives of this study are as followed: 

i. To fabricate and characterize immobilized TiO2, Fe2O3/TiO2 and 

rGO/Fe2O3/TiO2 thin films to overcome the separation process. 

ii. To determine the photocatalytic activity of TiO2 and Fe2O3 /TiO2 thin films 

towards the photocatalytic degradation of methylene blue (MB) dye in 

water. 

iii. To evaluate the effect of rGO in Fe2O3/TiO2 thin film towards its 

photocatalytic activity in order to reduce the band gap energy. 

iv. To determine the reusability of the rGO/Fe2O3/TiO2 thin film. 

 

1.4 Scopes of Study 

This study was focused on the fabrication, characterization, evaluation of 

photocatalytic activity of rGO/Fe2O3/TiO2 thin film. Before fabrication of 

rGO/Fe2O3/TiO2 thin film was done, three different materials: MIL-53(Fe), GO, and 

TiO2 sol gel need to synthesized and prepared first. MIL-53(Fe) was synthesized 

using reflux method proposed by Munn and co-workers (2013). GO was 
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synthesized using the modified Hummers method. The obtained GO suspension 

was freeze dried for 24 hour to get freeze dried GO powder (Chen et al., 2013; 

Marcano et al., 2010). Meanwhile, TiO2 precursor sol gel was prepared from a 

mixture of diethanolamine (DEA), 1-butanol, titanium (IV) butoxide (TBOT) and few 

drops of water (Bu et al., 2005). Both TiO2 sol gel and MIL-53(Fe)/TiO2 sol gel were 

used to fabricate TiO2 thin film and Fe2O3/TiO2 thin film, respectively by using dip 

coating technique. rGO/Fe2O3/TiO2 thin film was prepared by dipping the annealed 

Fe2O3/TiO2 thin film in GO suspension followed by reduction using hydrazine 

vapour. Instrumentation used for characterization of synthesized materials and thin 

films were XRD, FTIR, UV-Vis, SEM and EDX. XRD was used to identify the 

crystallinity of synthesized MIL-53(Fe), GO, TiO2 thin film and Fe2O3/TiO2 thin film. 

FTIR was used to determine the functional group of synthesized GO. UV-Vis was 

used to analyze the synthesized GO and photocatalytic activity of thin films. The 

morphology and topography of TiO2 thin film, Fe2O3/TiO2 thin film and 

rGO/Fe2O3/TiO2 thin film was determined using SEM. Meanwhile, EDX analysis was 

carried out to determine the presence of Fe3+ ion and the amount of carbon in 

rGO/Fe2O3/TiO2 thin film. Photocatalytic activity of thin films was determined using 

40 mL of methylene blue (MB) solution as organic compound pollutant with initial 

concentration 5 ppm under UVA light irradiation for 4 hours. Reusability test was 

determined by using the same rGO/Fe2O3/TiO2 thin film for five consecutive cycles 

without any activation. The photocatalytic degradation progress was determined 

using UV-Vis spectrophotometer.  

 

 

 

 

 

  



 

CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1  Dyes and Treatment of Dye Pollutants 

Dyes are colorant substance made from plants or chemicals that can be applied 

into a solution to a substrate and consequently giving it a coloured appearance by 

altering the crystal structure of the substrate (Fu., 2014). A substrate is the 

material where colorant is applied by using different type of processes such as 

dyeing, printing, surface coating and others. Some examples of substrate include of 

textile fibers, polymers, foodstuffs, leathers and others (Fu., 2014). Complex 

organic molecules of dyes usually consist of chromophore (colour bearing group) 

which is responsible for its colour properties. Chromophore (“chroma” means color 

and “phore” means bearer) basically consists of extended conjugated system in 

part of the dye molecules. These molecules impart its colour when it absorb visible 

light at certain wavelength (380 – 700 nm) and transmit the remaining light. At the 

same time, the presence of auxochrome (“auxo” means augment) in dyes 

molecules can greatly enhances the colour intensity.  

 

Table 2.1 : Names of chromophores and auxochrome group of dyes 

Chromophore group Name Auxogroup Name 

-N=N- Azo -NH2 Amino 

-N=N+-O- Azoxy -NHCH3 Methyl amino 

-N=N-NH Azoamino -N(CH3)2 Dimethyl amino 

-N=O, N-OH Nitroso -SO3H Sulphonic Acid 

>C=O Carbonyl -OH Hydroxyl 

>C=C< Ethenyl -COOH Carboxylic acid 

>C=S Thio -Cl Chloro 

-NO2 Nitro -CH3 Methyl 

>C=NH, >C=N- Azomethine -OCH3 Methoxy 

  -CN Cyano 

  -COCH3 Acetyl 

  -CONH2 Amido 

Source: Fu et al., (2014)


