
STUDY OF HAND GESTURE RECOGNITION USING IMPULSE RADIO ULTRA WIDEBAND (IR-UWB) RADAR SENSOR

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2023

STUDY OF HAND GESTURE RECOGNITION USING IMPULSE RADIO ULTRA WIDEBAND (IR-UWB) RADAR SENSOR

TERENCE JEROME DAIM

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2023

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : STUDY OF HAND GESTURE RECOGNITION USING IMPULSE RADIO ULTRA WIDEBAND (IR-UWB) RADAR SENSOR

IJAZAH : DOKTOR FALSAFAH KEJURUTERAAN

BIDANG : KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

Saya **<u>TERENCE JEROME DAIM</u>**, Sesi <u>**2017-2023**</u>, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

UNIVERSITI MALAYSIA SABAH

TERENCE JEROME DAIM DK1711004T Disahkan Oleh, ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

Tarikh : 23 November 2023

(Dr. Razak Mohd Ali Lee) Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries, and references, which have been duly acknowledged.

29 August 2023

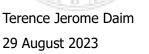
Terence Jerome Daim DK1711004T

CERTIFICATION

- NAME : TERENCE JEROME DAIM
- MATRIC NO. : **DK1711004T**
- TITLE : STUDY OF HAND GESTURE RECOGNITION USING IMPULSE RADIO ULTRA WIDEBAND (IR-UWB) RADAR SENSOR
- DEGREE : DOCTOR OF PHILOSOPHY IN ENGINEERING
- FIELD : ELECTRICAL AND ELECTRONIC ENGINEERING
- VIVA DATE : 29th AUGUST 2023

ACKNOWLEDGEMENT

I am grateful to God for His abundant blessings.


I extend my heartfelt gratitude to my family: my father, Jerome; my mother, Irene; my sisters, Sylvia and Eliza, for their unwavering prayers, love, and support.

I want to express my appreciation to my wife, Sen Fong, as well as my son, Gabriel, and my daughter, Pauline, for their sacrifices and boundless love.

A special note of thanks goes to my supervisor, Dr. Razak Mohd Ali Lee, who has been both a mentor and a dear friend, providing invaluable guidance and advice throughout this remarkable and meaningful journey.

I would also like to dedicate this work to the memory of my late brother-in-law, Thien Tet Soon (Ah Soon), and my late aunt, Elisabeth Ting Geok Sun (Fuan Ah Yee), both of whom have departed from this world. I regret not being present during their final moments. May their souls find eternal peace. Amen.

UNIVERSITI MALAYSIA SABAH

ABSTRACT

Hand gesture recognition technology has gained significant attention in recent years due to its potential to revolutionize human-computer interaction by offering a natural and intuitive means of communication. This work addresses the limitations of existing systems and focuses on developing a novel hand gesture recognition system that leverages Impulse Radio Ultra-Wide Band (IR-UWB) radar sensors. The primary objective of this work is to create a comprehensive hand gesture recognition system capable of accurately recognizing a wide range of hand gestures while distinguishing between them based on gesture speed. To achieve this, this work defines three key objectives. First objective is to determine the optimal setup for IR-UWB radar sensor data acquisition, considering factors such as sensor placement and configuration. Second objective is to develop and assess hand gesture recognition models using seven different classifiers to achieve accurate and reliable recognition of hand gestures. Third objective is to analyse the performance of the developed classifiers in comparison to existing research in the field, with a focus on recognizing both hand gestures and their associated speeds. The work begins by providing insights into the state of the art in hand gesture recognition and IR-UWB radar sensor technology. Data collection experiments yield a diverse dataset of hand gestures, including variations in speed, essential for algorithm development. The developed algorithms interpret raw IR-UWB radar sensor data and associate it with specific hand gestures, addressing the core objective of gesture recognition. Speed recognition integration further enhances the system's ability to distinguish between gestures performed at different speeds. The resulting hand gesture recognition system is rigorously evaluated and compared to existing methods, demonstrating its effectiveness. Documentation of the development process ensures the methodology and findings are well-documented for reference and replication. While this research makes significant contributions to the field of hand gesture recognition, it also identifies several areas for future work. These include exploring recognition of gestures performed by two hands simultaneously, scalability to different environments, optimal sensor placement, and addressing user variability. Seven classification algorithms (K-Nearest Neighbour, Logistic Regression, Naive Bayes, Gradient Boosting, AdaBoost, Bagging, and Linear Discriminant Analysis) were meticulously explored for hand gesture recognition. The evaluation, based on macro F1 scores to balance precision and recall, aimed to assess their effectiveness. Linear Discriminant Analysis proved most accurate, especially in fast hand gestures, emphasizing its significance in real-time applications. In contrast, AdaBoost exhibited weaker performance, indicating areas for improvement. A slight accuracy decrease for "Up-Down" and "Down-Up" gestures compared to existing literature. However, it significantly outperforms certain literature by 16.28% for "Left-Right" gestures at slow speeds, showcasing improved recognition and robustness. Additionally, the research enhances system functionality, enabling intricate interactions. A developed application allows users to visualize executed hand gestures, paving the way for future integration of complex interaction sub-systems in various gesture recognition applications. In summary, this work advances the field of hand gesture recognition by introducing a novel IR-UWB radar-based system that accurately recognizes hand gestures and distinguishes their speeds, offering improved performance and usability for a wide range of applications.

ABSTRAK

KAJIAN PENGESANAN ISYARAT TANGAN MENGGUNAKAN SENSOR RADAR ULTRA WIDEBAND IMPULSE RADIO (IR-UWB)

Teknologi pengesanan isyarat tangan telah menarik perhatian sejak kebelakangan ini disebabkan potensinya untuk mengubah interaksi manusia-komputer dengan menawarkan cara komunikasi yang semulajadi dan intuitif. Kajian ini bertujuan untuk mengatasi batasan sistem-sistem sedia ada dan memberi tumpuan kepada pembangunan sistem pengesanan isyarat tangan yang baharu dengan menggunakan sensor radar Ultra-Wide Band Impulse Radio (IR-UWB). Objektif utama kajian ini adalah untuk menghasilkan sistem pengesanan isyarat tangan yang komprehensif yang mampu mengesan pelbagai isyarat tangan dengan tepat di samping mampu membezakan kelajuan isyarat tangan. Untuk mencapai tujuan ini, kajian ini menetapkan tiga objektif utama. Objektif pertama adalah untuk menentukan susunan optimal bagi pengumpulan data sensor radar IR-UWB, dengan mempertimbangkan faktor-faktor seperti penempatan dan konfigurasi sensor. Objektif kedua adalah untuk membangun dan menilai model-model pengiktirafan isyarat tangan menggunakan tujuh pengelas yang berbeza untuk mencapai pengiktirafan isyarat tangan yang tepat dan boleh dipercayai. Objektif ketiga adalah untuk menganalisis prestasi pengelas yang telah dibangunkan berbanding dengan penyelidikan sedia ada dalam bidang ini, dengan tumpuan kepada pengiktirafan isyarat tangan dan kelajuan yang berkaitan dengannya. Kajian ini bermula dengan penyelidikan ke atas kemajuan dalam pengesanan isyarat tangan dan teknologi sensor radar IR-UWB. Kemudian, eksperimen pengumpulan data menghasilkan dataset isyarat tangan, termasuk variasi dalam kelajuan, penting untuk pembangunan algoritma dijalankan. Sistem pengesanan isyarat tangan yang dihasilkan dinilai secara teliti dan dibandingkan dengan kaedah-kaedah sedia ada. Dokumentasi proses pembangunan memastikan metodologi dan penemuan disimpan dengan baik untuk rujukan dan replikasi. Walaupun kajian ini memberikan sumbangan yang signifikan kepada bidang pengesanan isyarat tangan, ia juga mengenal pasti beberapa bidang untuk kajian masa depan. Ini termasuk meneroka pengesanan isyarat yang dilakukan oleh dua tangan secara serentak, skalabiliti ke persekitaran yang berbeza, penempatan sensor yang optimum, dan mengatasi variasi pengguna. Tujuh algoritma klasifikasi (K-Nearest Neighbour, Regresi Logistik, Naive Bayes, Gradient Boosting, AdaBoost, Bagging, dan Analisis Diskriminan Linear) telah disiasat dengan teliti untuk pengenalan isyarat tangan. Penilaian berdasarkan skor F1 makro untuk seimbangkan ketepatan dan ingatan bertujuan untuk menilai keberkesanan mereka. Analisis Diskriminan Linear terbukti paling tepat, terutamanya dalam isyarat pantas. Sebaliknya, AdaBoost menunjukkan prestasi yang lemah, menunjukkan bidang yang perlu diperbaiki. Terdapat penurunan sedikit ketepatan untuk isyarat "Atas-Bawah" dan "Bawah-Atas" berbanding dengan literatur sedia ada. Walau bagaimanapun, ia mengatasi beberapa literatur dengan ketara sebanyak 16. 28% untuk isyarat "Kiri-Kanan" pada kelajuan perlahan, menunjukkan peningkatan pengenalan dan ketangguhan. Secara ringkasnya, kajian ini menyumbang kepada pembangunan bidang pengesanan isyarat tangan dengan memperkenalkan sistem berdasarkan radar IR-UWB yang baharu yang mampu mengesan isyarat tangan dengan tepat disamping menawarkan prestasi yang lebih baik untuk kegunaan pelbagai aplikasi.

LIST OF CONTENTS

			Page
TIT	LE		i
DEC	LARATION		ii
CER	TIFICATIO	N	iii
ACK		EMENT	iv
ABS	TRACT		v
ABS	STRAK		vi
LIS	T OF CONTE	NTS	vii
LIS	T OF TABLES	5	х
LIS	T OF FIGUR	ES	xi
LIS	T OF SYMBC	DLS	XV
LIS	T OF ABBRE	VIATIONS	xvii
A	T OF APPEN	DICES	xix
1.1	Background		1
1.2	Problem Sta	atement UNIVERSITI MALAYSIA SABAH	4
1.3	Research O		8
1.4	-	ne Research Work	8
1.5	Structure of	f the Thesis	9
СНА	PTER 2: L	ITERATURE REVIEW	
2.1	Introduction	n	11
2.2	The Humar	Gesture	12
2.3	The Hand C	Gesture	16
2.4	Application	of Hand Gesture Recognition	21
	2.4.1	Sign Language	21
	2.4.2	Robotics	22
	2.4.3	Traditional Control Method Replacement	23

	2.4.4	Virtual and Augmented Reality	25
	2.4.5	Medical Applications	26
	2.4.6	Digital Painting	27
	2.4.7	Interactive Advertising	29
	2.4.8	Crisis Management and Disaster Relief	30
	2.4.9	Hand Gesture Pattern Preservation For Education	32
	2.4.10	Gaming	33
2.5	Vision, Wear Gesture Reco	ables and IR-UWB Radar Sensor Technology for Hand	34
	2.5.1	The Hand Gesture Recognition Process	35
2.6	Hand Gestur	e Recognition Sensor Technology	38
	2.6.1	Vision Sensor	38
	2.6.2	Wearables Sensor	47
ß	2.6.3	IR-UWB Radar Sensor	59
T	2.7	Related Work on IR-UWB Radar Sensor Hand Gesture Recognition	68
3	2.8	Summary	95
CHA	PTER 3: HA	ND GESTURE CLASSIFICATION MODELLING	
3.1	Introduction	UNIVERSITI MALAYSIA SABAH	100
3.2	Singular valu	e	102
	3.2.1	The Fundamental Characteristics of a Radar Frame	102
	3.2.2	Transformation of Radar Frames Into Singular Values	103
	3.2.3	Singular value-threshold difference, ΔS	107
3.3	Hand Gesture	e Feature Extractions	111
	3.3.1	Acquisition of Singular Value-Threshold Difference, ΔS	111
3.4	Classification	of Hand Gestures	116
	3.4.1	KNN	118
	3.4.2	Logistic Regression	120
	3.4.3	Naive Bayes	121
	3.4.4	Gradient Boosting	122
	3.4.5	AdaBoost	123

	3.4.6	Bagging	125
	3.4.7	LDA	126
3.5	Classificati	on Model Training Process	127
3.6	Performan	ce Evaluation	133
3.7	Classificati	on Model Training Result and Discussion	140
3.8	Summary		148
СНА	PTER 4:	SYSTEM DEVELOPMENT AND PERFORMANCE TEST	151
4.1	Introductio	n	151
4.2	System Ap	plication Software	152
4.3	IR-UWB Ra	adar Sensor Hand Gesture Recognition System Test Setup	155
4.4	Classificati	on Model Testing Performance Result and Discussion	157
4.5		ce Comparison Between Classification Model Training and sed on Macro F1 Score	166
4.6	Performan	ce Comparison with Related Literature	167
4.7	Summary		172
СНА	PTER 5:	CONCLUSION AND FUTURE WORK	173
5.1	Contribut	UNIVERSITI MALAYSIA SABAI	173
5.2	Limitatio	n and Future Work	176
BIB	LIOGRAPH	Y	178
APP	ENDICES		205

LIST OF TABLES

			Page
Table 2.1	:	Selection of hand gestures by Park and Cho (2016)	69
Table 2.2	:	Selection of hand gestures by Ren et al. (2016)	73
Table 2.3	:	Selection of hand gestures by Kim et al. (2017)	77
Table 2.4	:	Selection of hand gestures by Khan et al. (2017)	80
Table 2.5	:	Selection of hand gestures by Ahmed et al. (2019)	83
Table 2.6	:	Selection of hand gestures by Ghaffar et al. (2019)	87
Table 2.7	:	Selection of hand gestures by Ahmed and Cho (2020)	92
Table 2.8	:	IR-UWB Radar Sensor Hand Gesture Recognition Related Works	94
Table 2.9	:	Comparison of Vision, Wearable, and IR-UWB Radar Sensors Characteristics	96
Table 3.1	:	Singular Value Decomposition Algorithm Description	105
Table 3.2	3	Acquisition of Threshold Value	110
Table 3.3	÷	IR-UWB Radar Sensor Specification	112
Table 3.4		Hand Gestures Training Data Acquisition Configuration	114
Table 3.5	1	Confusion Matrix for Binary Classification Task (Ting, 2010)	133
Table 3.6	K.	Confusion Matrix for Multiclass Classification Task SA (Ting, 2010)	134
Table 4.1	:	System Application Software Operation Steps	154
Table 4.2	:	Hand Gestures Testing Data Acquisition Configuration	157

LIST OF FIGURES

		Page
Figure 1.1 :	Example Application That Can Leverage Hand Gesture Speed	7
Figure 2.1 :	Sign Language Hand Gesture Movement	17
Figure 2.2 :	Hand Gesture Taxonomies	19
Figure 2.3 :	Example of Data Gloves Controlling A Robotic Machinery	22
Figure 2.4 :	The Stages of Hand Gesture Recognition Development	36
Figure 2.5 :	Hand Gesture Recognition Using Vision Sensor	38
Figure 2.6 :	Microsoft Kinect (a) XBox One Variant (b) Xbox 360 Variant	45
Figure 2.7 :	Leap Motion Controller	47
Figure 2.8 :	Example Data Gloves For Hand Gesture Recognition	48
Figure 2.9 :	Types of Surface Electromyography Electrodes (a) Wet Type (b) Dry Type	51
Figure 2.10 :	Ultrasound-Based Hand Gesture Recognition Equipment (a) A-Mode and (b) B-Mode	56
Figure 2.11 :	Fundamental Radar Operation For Hand Gesture Signal Acquisition Block Diagram	59 BAH
Figure 2.12 :	SFCW Radar Block Diagram For Hand Gesture Signal Acquisition	61
Figure 2.13 :	FMCW Radar Block Diagram For Hand Gesture Signal Acquisition (a) block diagram of FMCW radar hardware, (b) Frequency response of transmitted and received waveform	62
Figure 2.14 :	IR-UWB Radar Sensor Hand Gesture Recognition System Operation	64
Figure 2.15 :	Experimental Setup, Park and Cho (2016)	69
Figure 2.16 :	Experimental Setup, Ren <i>et al.</i> (2016)	72
Figure 2.17 :	Experimental Setup, Kim <i>et al.</i> (2017)	76
Figure 2.18 :	Experimental Setup, Khan <i>et al.</i> (2017)	80
Figure 2.19 :	Experimental Setup, Ahmed et al. (2019)	83

Figure 2.20	:	Experimental Setup, Ghaffar et al. (2019)	86
Figure 2.21	:	Experimental Setup, Leem et al. (2019)	89
Figure 2.22	:	Experimental Setup, Leem et al. (2020)	90
Figure 2.23	:	Experimental Setup, Khan <i>et al.</i> (2020)	90
Figure 2.24	:	Experimental Setup, Ahmed and Cho (2020)	91
Figure 2.25	:	Common Selection of Hand Gestures For IR-UWB Radar Sensor Hand Gesture Recognition	98
Figure 3.1	:	Hand Gesture Classification Modelling Work Process	101
Figure 3.2	:	A Sample Radar Frame	102
Figure 3.3	:	Recorded Radar Frames During Operation of An IR- UWB Radar Sensor	103
Figure 3.4	:	The Proposed Transformation of Received Radar Frames: (a) Radar Frame #1, (b) Radar Frame #2, (c) Radar Frame #3	104
Figure 3.5	-	Singular Value Decomposition Algorithm	105
Figure 3.6	:	Ideal Base Reference for Ambient Condition	108
Figure 3.7		Example Series of "Start" and "Stop" Operation Cycles During Ambient Condition (a) Run 1 (b) Run 2 and (c) Run 3	109
Figure 3.8		Singular Value-Threshold Difference, ΔS Acquisition Setup	3.41 1
Figure 3.9	:	NOVELDA Xethru-X4 IR-UWB Radar Sensor	112
Figure 3.10	:	Hand Movement Zones	115
Figure 3.11	:	KNN Classifier Algorithm	119
Figure 3.12	:	Logistic Regression Classifier Algorithm	120
Figure 3.13	:	Naïve Bayes Classifier Algorithm	121
Figure 3.14	:	Gradient Boosting Classifier Algorithm	122
Figure 3.15	:	AdaBoost Classifier Algorithm	124
Figure 3.16	:	Bagging Classifier Algorithm	125
Figure 3.17	:	LDA Classifier Algorithm	126
Figure 3.18	:	Classification Model Training Process	128
Figure 3.19	:	Classification Model Training Performance Result of	141

		The 12 Hand Gestures Using The Seven Classifiers	
Figure 3.20	:	KNN Classification Model Training Confusion Matrix for the 12 hand gestures	142
Figure 3.21	:	Logistic Regression Classification Model Training Confusion Matrix for the 12 hand gestures	143
Figure 3.22	:	Naïve Bayes Classification Model Training Confusion Matrix for the 12 hand gestures	144
Figure 3.23	:	Gradient Boosting Classification Model Training Confusion Matrix for the 12 hand gestures	145
Figure 3.24	:	AdaBoost Classification Model Training Confusion Matrix for the 12 hand gestures	146
Figure 3.25	:	Bagging Classification Model Training Confusion Matrix for the 12 hand gestures	147
Figure 3.26	:	LDA Classification Model Training Confusion Matrix for the 12 hand gestures	148
Figure 3.27	4	Classification Model Training Performance Ranking Based on Macro F1 Score	150
Figure 4.1	÷	IR-UWB Radar Sensor Hand Gesture Recognition System Application Software	152
Figure 4.2		IR-UWB Radar Sensor Hand Gesture Recognition System Application Software Operation Steps	153
Figure 4.3	-	Configuration of the IR-UWB Radar Sensor Hand Gesture Recognition System Test Setup	156
Figure 4.4	:	Classification Model Testing Performance Result for the 12 hand gestures	158
Figure 4.5	:	KNN Classification Model Testing Confusion Matrix for the 12 hand gestures	159
Figure 4.6	:	Logistic Regression Classification Model Testing Confusion Matrix for the 12 hand gestures	160
Figure 4.7	:	Naive Bayes Classification Model Testing Confusion Matrix for the 12 hand gestures	161
Figure 4.8	:	Gradient Boosting Classification Model Testing Confusion Matrix for the 12 hand gestures	162
Figure 4.9	:	AdaBoost Classification Model Testing Confusion Matrix for the 12 hand gestures	163
Figure 4.10	:	Bagging Classification Model Testing Confusion Matrix	164

for the 12 hand gestures

Figure 4.11	:	LDA Classification Model Testing Confusion Matrix for the 12 hand gestures	165
Figure 4.12	:	Classification Model Testing Performance Ranking based on Macro F1 Score	166
Figure 4.13	:	Performance Comparison Between Classification Model Training and Testing Based on Macro F1 Score	167
Figure 4.14	:	Performance Comparison Between The Proposed Method In This Work and Related Literature for The "Up-Down" Hand Gesture	168
Figure 4.15	:	Performance Comparison Between The Proposed Method In This Work and Related Literature for The "Down-Up" Hand Gesture	169
Figure 4.16	:	Performance Comparison Between The Proposed Method In This Work and Related Literature for The "Left-Right" Hand Gesture	170
Figure 4.17		Performance Comparison Between The Proposed Method In This Work and Related Literature for The "Right-Left" Hand Gesture	171
AB	K.	UNIVERSITI MALAYSIA SAB	AH

LIST OF SYMBOLS

Z_s	-	Complex ratio of sound pressure
p	-	Sound Pressure
ν	-	Particle velocity
С	-	Speed of sound
T(t)	-	Transmitted radar signals
ω ₀	-	Fundamental angular frequency
t	-	Time
R(t)	-	Received radar signals
<i>d</i> ₀	32	Range between a target and the transmitter
d (t)		Shift due to hand gesture movement
A	-	Amplitude of the received signal
x 🔨	4)	Signal's wavelength
I(t)	S	I phaseUNIVERSITI MALAYSIA SABAH
Q(t)	-	Q phase
DC	-	DC offset
A _i	-	in-phase amplitude
A_q	-	quadrature-phase amplitude
ϕ_0	-	Phase noise
$\boldsymbol{\theta}_{0}$	-	Phase delay
f _{min}	-	Minimum frequency
f _{max}	-	Maximum frequency
f _c	-	Carrier frequency
В	-	Chirp bandwidth

- π Pi constant
- j Eigenvalues
- Δ*f* Frequency difference between higher frequency and lower frequency
- η_0 Fractional bandwidth
- f_H Higher frequency
- f_L Lower frequency

LIST OF ABBREVIATIONS

2D	-	2-Dimensional
3D	-	3 Dimensional
ACMA	-	Australian Communications and Media Authority
AdaBoost	-	Adaptive Boosting
AR	-	Augmented Reality
ASL	-	American Sign Language
СЕРТ	-	European Conference of Postal and Telecommunications Administrations
CMOS	-	Monochrome Complementary Metal-Oxide Semiconductor
CMSWVHG	20	Control MS Windows through Hand Gesture
CRTC	-	Canadian Radio-Television and Telecommunications Commission
CSL	1	Chinese Sign Language
cw	Ľ	Continuous Wave
DARPA	-	Defense Advanced Research Projects Agency
EC	-	European Commision
ETSI	-	European Telecommunications Standards Institute
FCC	-	Federal Communications Commission
FMCW	-	Frequency Modulated Continuous Wave
ICNIRP	-	International Commission for Non-Ionizing Radiation Protection
IDA	-	Info-Communications Development Authority
IEC	-	International Electrotechnical Organization
IEEE	-	Institute of Electrical and Electronics Engineers
IP	-	Internet Protocol

IR	-	Infra-Red
IR-UWB	-	Impulse Radio Ultra Wide Band
ISL	-	Indian Sign Language
ISO	-	International Standard Organization
ITU	-	International Telecommunication Union
KNN	-	K-Nearest Neighbors
LCD	-	Liquid Crystal Display
LDA	-	Linear Discriminant Analysis
LED	-	Light Emitting Diode
мсмс	-	Malaysian Communication Multimedia Commission
OpenCV	3	Open Source Computer Vision Library
OSD	- 1	Office of Special Development
PSD	-	Power Spectral Density
PSL	A)	Peruvian Sign Language
RGB	S	Red, Green and BlueSITI MALAYSIA SABAH
SFCW	-	Single-Frequency Continuous Wave
SIBI	-	Indonesian Sign Language
SRSP	-	Standard Radio System Plan
UAV	-	Unmanned Aerial Vehicles
USB	-	Universal Serial Bus
UWB	-	Ultra-wideband
VHF	-	Very High Frequency
VR	-	Virtual Reality
WiFi	_	Wireless Fidelity

WiFi - Wireless Fidelity

LIST OF APPENDICES

		Page
Appendix A	: Singular Value-Threshold Difference Acquisition Application Software	205
Appendix B	: System Application Software	214

CHAPTER 1

INTRODUCTION

1.1 Background

Hand gesture recognition technology has emerged as a significant area of research due to its potential to enhance human-computer interaction and user experience. It involves using various sensors technology, such as vision, wearables, and other sensors, to detect and interpret the gestures and movement of the human hand and fingers (Kumar *et al.*, 2017). Human-computer interaction refers to a combination of methods and instruments that allows people to connect with machines and computers (Laurel & Mountford, 1990; Yeo *et al.*, 2015). It is also occasionally referred to as human-machine interaction (Ahmed *et al.*, 2020) or man-machine interaction (Garg *et al.*, 2009; Fakhreddine *et al.*, 2008). Conventional human-computer interaction technologies include the use of a keyboard, mouse, and touch-screen sensors. These technologies, however, are becoming a constraint in the development of user-friendly interfaces (Yeo *et al.*, 2015).

The field of human-computer interaction is currently experiencing a shift towards more natural and intuitive interfaces, as noted by scholars Kim *et al.* (2019) and Yasen *et al.* (2019). Consequently, there has been a growing interest in incorporating alternative forms of human-to-human communication in human-computer interaction. This has resulted in a range of novel approaches that utilize human arm and hand movements, or hand gestures, as means of interaction, as discussed by Dix (2016) and Nandakumar *et al.* (2015). Hand gestures are a nonverbal form of communication that humans use in their daily interactions, ranging from basic pointing gestures to more complex movements that convey emotions. Given their ubiquity, it is natural to explore the potential of utilizing hand gestures as

an intuitive and natural interface for human-computer interaction.

Human-computer interaction based on hand gesture recognition delivers an inherent contactless interface, bringing people nearer to a natural manner of engagement (Kiliboz *et al.*, 2015; Rempel *et al.*, 2014; Haria *et al.*, 2017; Cremer *et al.*, 2016). The application of hand gesture recognition technology in human-computer interaction has attracted significant interest owing to its multiple benefits, which include usability, non-intrusiveness, and accessibility. This technology has become integral to several fields, including sign language, gaming, augmented and virtual reality, robotics, medical, and many more.

Hand gesture recognition in sign language applications has the potential to dramatically help the deaf and hard-of-hearing population by enhancing sign language communication. Sign language is a visual language that conveys meaning via hand gestures, facial expressions, and body language, and it is the main language used by many deaf and hard-of-hearing people. Hand gesture recognition technology may be used to interpret sign language gestures into text or voice, enabling sign language users and non-signers to communicate in real time. This technology may be used in a range of situations, including healthcare, education, and public transportation, to facilitate communication between sign language users and the broader public.

Hand gesture recognition technology may also be utilized for interactive sign language learning systems. The users of such systems may get feedback and advice while they practice various signs, which assists them in learning how to sign and helps them improve their abilities to perform sign language. Hand gesture recognition may also be used to operate virtual avatars that sign in real-time, which can be utilized for online communication between people who use sign language and others who do not sign. This may give a communication experience that is more immersive and engaging, enabling users of sign language to express themselves more completely and allowing non-signers to learn sign language in a manner that is more participatory and intuitive. In gaming, one of the major benefits of hand gesture recognition technology is that it improves the game experience for the user. The evolution of video games from basic, two-dimensional interfaces to highly interactive, immersive experiences that demand natural user participation. Using hand gesture recognition technology, game designers are able to include movements that gamers are already used to. In addition, hand gesture recognition technology improves the accessibility of video games for those with physical limitations who are unable to use traditional input devices such as keyboards and controllers. Augmented and virtual reality are the other applications where hand gesture recognition technology has gained interest. Augmented and virtual reality technologies are used to improve the user experience by delivering an immersive and interactive environment. Hand gesture recognition technology is essential in these environments as it enables natural interactions with virtual objects. For instance, in augmented and virtual reality settings, users may handle virtual objects using hand movements, boosting their sense of presence and immersion.

In robotics applications, hand gesture recognition technology plays a vital role in the control and operation of robotic systems. By adopting hand gestures, operators may interact more naturally and intuitively with robots. This permits more accurate control of robotic systems and decreases the needed learning curve for operating these systems. Hand gesture recognition technology also has the potential to enhance the quality of patient care in the medical field. During rehabilitation, for instance, hand gesture recognition technology may be used to monitor and evaluate a patient's hand movements. This may give significant insights into the progression of the rehabilitation process and assist healthcare providers in tailoring treatment programs to the specific needs of individual patients.

Impulse Radio Ultra-Wide Band (IR-UWB) radar sensors provide various benefits over standard hand gesture recognition sensors such as camera and depth sensors, which are both vision-based. Lighting conditions that are both bright and dark have a negative impact on the overall accuracy of such sensors, besides having the potential disadvantage of privacy invasion concern (Schi *et al.*, 2009). To