PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2011

PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP

CHELSIA AMY DOUKIM

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2011

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been dully acknowledged.

CERTIFICATION

NAME	: CHELSIA AMY DOUKIM
MATRIC NO.	: PK20068608
TITLE	: PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP
DEGREE	: MASTER OF ENGINEERING (ARTIFICIAL INTELLIGENCE)
VIVA DATE	: 29 NOVEMBER 2010

DECLARED BY

1. SUPERVISOR

ACKNOWLEDGEMENT

First and foremost, thanks to God for giving me the strength to complete this thesis.

I would like to acknowledge and extend my heartfelt gratitude to my supervisor, Dr. Jamal Dargham of the School of Engineering and Information Technology, Universiti Malaysia Sabah for his vital advice and encouragement throughout the past few years. I would also like to thank him for providing the necessary thrust upon completion of this research and publish this thesis.

I wish to express my special sense of gratitude to my co-supervisor Associate Professor Dr. Ali Chekima of the School of Engineering and Information Technology, Universiti Malaysia Sabah for his constant advices and motivation.

A trillion thanks to my family especially my parents, for their unconditional love, patience, encouragement and understanding, and of course for being the greatest financial sponsorship. Thanks to my siblings and cousins for their supports and constant amusement.

Thanks to Pn. Victoria Asoi of PGA-SKTM for her continuous assistance. Thanks to my fellow scholars and undergraduates in the Computer Engineering Program.

Finally, thanks to my dear friends for their encouragement and words of wisdom.

UNIVERSITI MALAYSIA SABAH

Chelsia Amy Doukim 29 NOVEMBER 2010

ABSTRACT

PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP

Skin detection is an important preliminary step in a wide range of image processing applications such as face detection, person identification, gesture analysis and access control. Several techniques have been used for skin detection. In this thesis, the multilayer perceptron (MLP) neural network and histogram thresholding techniques were used. Recent studies have shown that combining skin features and/or skin classifiers can further improve the performance of the skin detection system. Thus, the main objective of this research is to evaluate the effect of several combination strategies on the performance of a skin detection system based on the MLP. To achieve this goal, first the histogram thresholding technique was used to select skin features (chrominance component in a given colour space) that give the highest correct skin detection. These features will be used as inputs to the MLP classifiers. A modified Growing algorithm for finding the number of neurons in the hidden layer of a neural network was also developed it was able to reduce the computational time compared to the conventional Growing algorithm. The combination strategies were done by combining the skin features as well as the skin classifiers. Three skin features (chrominance component from the selected colour space) that gave the highest correct skin detection on a single input MLP classifier were used for these strategies. The strategy of combining skin features or inputs was done using two and three skin features. For combining skin classifiers strategy, several combining rules such as binary operators AND and OR were used to combine two and three classifiers, while combining rules namely Voting, Sum of Weights and New Neural Network were used to combine three classifiers. The Sum of Weights and New Neural Network were the proposed combining rules in this thesis. In order to evaluate the performances of the skin detection systems, the images from Compag database were used. The strategy of combining two skin features $C_{\rm b}/C_{\rm r}$ gave the best performance for combining skin feature strategy with 3.01% more correct detection compared with the best performance given by a single input MLP classifier given by $C_{\rm p}$ - $C_{\rm r}$. The strategy of combining three classifiers using the Sum of Weights gave the best performance for its combining strategy with an improvement of 4.38% more correct detection compared to the best single input MLP classifier given by $C_{\rm b}$ - $C_{\rm r}$. The Sum of Weights strategy also gave 1.37% more correct detection than the best combining skin feature strategy. The other proposed combining strategy called New Neural Network has managed to achieve 82.21% of correct detection. The best performance results obtained in this thesis were considerably good considering the unconstrained nature of the images from the Compag database.

ABSTRAK

Sistem pengesanan kulit merupakan satu proses utama yang penting dalam aplikasi pemprosesan imej seperti sistem pengesanan wajah, pengenalan diri, penganalisis isyarat dan kawalan akses. Beberapa teknik pengesanan kulit telah digunakan, namun demikian rangkaian neural jenis "multilayer perceptron" (MLP) dan kaedah histogram dengan teknik "threshold" telah digunakan dalam tesis ini. Sejak kebelakangan ini, kajian melaporkan bahawa strategi penggabungan seperti menggabungkan sifat kulit atau sistem pengesanan kulit yang berbeza berupaya meningkatkan keberkesanan sesuatu sistem pengesanan kulit. Oleh yang demikian, obiektif utama kajian ini adalah untuk mengkaji keberkesanan beberapa strategi penggabungan berasaskan rangkaian neural jenis MLP. Kaedah histogram dengan teknik "threshold" telah digunakan untuk menentukan sifat kulit (komponen "chrominance" dalam sistem warna yang diberikan) yang memberikan peratusan tertinggi untuk pengesanan kulit yang tepat. Sifat kulit tersebut akan digunakan sebagai input kepada sistem pengesanan kulit berasaskan MLP. Satu modifikasi algoritma yang berasaskan algoritma "Growing" untuk menentukan bilangan neuron dalam lapisan tersembunyi "hidden layer" rangkaian neural turut diperkenalkan dan ianya berkesan terutamanya dalam konteks penjimatan masa berbanding algoritma yang lazim digunakan iaitu algoritma "Growing". Dalam kajian ini, strategi penggabungan merangkumi strategi menggabungkan sifat kulit dan sistem pengesanan kulit yang berbeza. Tiga sifat kulit (komponen "chrominance" daripada sistem warna yang dipilih) yang memberikan keputusan terbaik dalam sistem pengesan kulitnya dipilih untuk strategi penggabungan yang dicadangkan. Strategi menggabungkan sifat kulit dilakukan dengan menggabungkan dua dan tiga sifat kulit. Manakala untuk strategi menggabungkan sistem pengesanan kulit, operator AND dan OR digunakan untuk menggabungkan dua dan tiga sistem pengesan kulit, sementara penggabung "Voting", "Sum of Weights" dan "New Neural Network" digunakan untuk menggabungkan tiga sistem pengesan kulit. Strategi "Sum of Weights" dan "New Neural Network" adalah dua strategi penggabungan yang baru dicadangkan dalam tesis ini. Pangkalan data imej yang dikenali sebagai "Compaq database" telah digunakan untuk menilai kecekapan sistem pengesan kulit yang dicadangkan. Untuk strategi menggabungkan sifat kulit, penggabungan dua sifat kulit ($C_b/C_r \& C_r$) memberikan peratusan pengesanan kulit tepat yang tertinggi iaitu 82.61% dengan peningkatan sebanyak 3.01% lebih pengesanan kulit berbanding sistem pengesanan kulit terbaik yang diberikan oleh C_{h} - C_{r} untuk sistem pengesan kulit yang hanya menggunakan satu sifat kulit. Manakala, strategi menggabungkan sistem pengesan kulit menggunakan penggabung "Sum of Weights" memberikan prestasi terbaik, iaitu 83.98% dengan peningkatan sebanyak 4.38% lebih pengesanan kulit berbanding sistem pengesan kulit C_b-C_r. Strategi tersebut juga memberikan 1.37% lebih pengesanan kulit berbanding strategi menggabungkan dua sifat kulit. Strategi baru "New Neural Network" berupaya mengesan 82.21% kulit dengan tepat. Hasil yang diperolehi dalam tesis ini boleh dikatakan amat memberangsangkan memandangkan sifatsifat gambar yang sukar diklasifikasikan daripada "Compag database".

TABLE OF CONTENTS

DEC	LARATION	i
CER	TIFICATION	ii
АСК	NOWLEDGEMENT	iii
ABS	TRACT	iv
ABS	TRAK	v
ТАВ	LE OF CONTENTS	vi
LIST	OF FIGURES	ix
LIST	OF TABLES	xiii
LIST	OF ABBREVIATIONS	xv
LIST	OF SYMBOLS	xvii
KEY	WORDS	xx
СНА	PTER 1 : INTRODUCTION	1
1.1	Introduction to Skin Detection	1
1.2	Challenges of Skin Detection	1
1.3	State of the Art in Skin Detection	2
1.4	Problem Statement	3
1.5	Objectives of the Thesis	4
1.6	Main Contributions of the Thesis	5
1.7	Organisation of the Thesis	6
СНА	PTER 2 : LITERATURE REVIEW	8
2.1	Review of Skin Detection Techniques	8
	2.1.1 Parametric Models	9
	2.1.2 Non-Parametric Models	10
	2.1.3 Semi-Parametric Models	13
2.2	Review of Combination Strategies for Skin Detection	15
2.3	The Proposed Skin Detection System	19
2.4	Summary	20

CHA	CHAPTER 3 : ANALYSIS OF SKIN COLOUR DISTRIBUTIONS 23	
3.1	Introduction to Colour Space	23
3.2	Colour Spaces	23
	3.2.1 Basic Colour Spaces (RGB, Normalised RGB, CIEXYZ)	24
	3.2.2 Perceptual Colour Spaces (HSI, HSV, HSL)	26
	3.2.3 Orthogonal Colour Spaces (YC _b C _r , YIQ, YUV)	26
	3.2.4 Perceptually Uniform Colour Spaces (CIE-LAB AND CIE-LUV)	27
	3.2.5 Modified Normalised RGB	29
3.3	Review of Colour Spaces for Skin Detection	30
3.4	The Selected Image Database	31
3.5	Skin Detection Using Histogram Thresholding Technique	33
	3.5.1 Data Preparation	33
	3.5.2 Analysis of Skin and Non-Skin Distributions	37
	3.5.3 The Threshold Selection	42
	3.5.4 Skin Detection	48
3.6	Summary	51
1		
СНА	PTER 4 : SKIN DETECTION USING NEURAL NETWORKS	53
4.1	Introduction to Neural Networks	53
4.2	Neural Network Types	54
	4.2.1 Feedforward Neural Network SITIMALAYSIA SABAH	54
	4.2.2 Radial Basis Functions Network	55
	4.2.3 Recurrent Network	56
	4.2.4 Self-Organizing Map	57
	4.2.5 Committee Machines	58
4.3	Determining the Neural Network Properties	59
4.4	Finding the Number of Neurons in the Hidden Layer of a MLP Neural Network	62
	4.4.1 Training the Neural Networks	66
	4.4.2 The Fixed MLP Neural Networks Structures	67
4.5	Skin Detection Results and Analysis	70
4.6	Summary	77

CHAPTER 5 : COMBINING NEURAL NETWORKS FOR SKIN DETECT	TION 79
5.1 Introduction	79
5.2 Combination Strategies for Skin Detection	79
5.3 Combining Skin Feature Strategy	81
5.4 Combining Skin Classifier Strategy	83
5.4.1 Combination of Two Skin Classifiers Using the AND Operator	83
5.4.2 Combination of Two Skin Classifiers Using the OR Operator	84
5.4.3 Combination of Three Skin Classifiers Using the AND Operato	r 86
5.4.4 Combination of Three Skin Classifiers Using the OR Operator	87
5.4.5 Combination of Three Skin Classifiers Using the Voting Strate	gy 89
5.4.6 Combination of Three Skin Classifiers Using the Sum of Weigl Strategy	hts 90
5.4.7 Combination of Three Skin Classifiers Using a New 3-HN-1 New Network	eural 92
5.5 Skin Detection Results and Analysis	95
5.6 Summary	106
CHAPTER 6 : CONCLUSIONS	108
6.1 Skin Detection Using Histogram Thresholding Technique	108
6.2 MLP Neural Networks Based Skin Detection System	108
6.3 Combining MLP Neural Networks for Skin Detection	109
6.4 Future Works UNIVERSITI MALAYSIA SABA	111
REFERENCES	112
GLOSSARY	117
LIST OF PUBLICATIONS 11	
APPENDICES	119

LIST OF FIGURES

		PAGE
Figure 2.1:	Example of Original Still Test Image and Its Segmented Image	15
Figure 3.1:	Sample of Original Images and Their Corresponding Masked Images from the Compaq Database	34
Figure 3.2:	Skin and Non-Skin Pixels Extraction Process	35
Figure 3.3:	Skin and Non-Skin Pixels Extraction Flowchart	36
Figure 3.4:	Example of Histograms for C_b and r-g Chrominance Components	38
Figure 3.5:	An Example of Histograms with Low Overlap and High Overlap for Chrominance Components in the YC_bC_r Colour Space	40
Figure 3.6:	An Example of Histograms with Low Overlap and High Overlap for Chrominance Components in the Modified Normalised RGB Colour Space	41
Figure 3.7:	An Example of Histograms with One Threshold Value and Two Threshold Values	43
Figure 3.8:	Flowchart of the Procedure for Finding the Threshold Value	46
Figure 3.9:	Relationship between the Threshold Value and the Error Index	47
Figure 3.10:	The Process of Skin Detection Using Histogram Thresholding Technique	50
Figure 3.11:	The Best and Worst Images Segmented Using C _r and r-g Chrominance Components	52
Figure 4.1:	Single Layer Feedforward Neural Network	55
Figure 4.2:	Multilayer Feedforward Neural Network	55
Figure 4.3:	Radial Basis Functions Network	56
Figure 4.4:	Recurrent Network	57
Figure 4.5:	Kohonen Self-Organizing Network	58
Figure 4.6:	A Committee Machine Based on Ensemble Averaging	58

Figure 4.7:	Structure of the MLP Neural Network Topologies for Skin Detection	61
Figure 4.8:	Flowchart for Finding the Number of Neurons in the Hidden Layer Using Binary Search Approach	64
Figure 4.9:	Flowchart for Finding the Number of Neurons in the Hidden Layer Using Sequential Search Approach	65
Figure 4.10:	Coarse Binary Search for C _b Chrominance Component	68
Figure 4.11:	Sequential Search for $C_{\mathfrak{b}}$ Chrominance Component	69
Figure 4.12:	A Comparison of Training Time for Training C _r Neural Network Using the Proposed Modified Growing and the Conventional Growing Algorithms for Finding the Number of Hidden Neurons for C _r Neural Network	69
Figure 4.13:	Determining the Optimal Threshold Value for Thresholding the Output of the Neural Networks	71
Figure 4.14:	Skin Detection Performance Using Run 15 and Run 25	73
Figure 4.15:	Skin and Non-Skin Segmentation Process Using Cb Neural Network	73
Figure 4.16:	The Best and Worst Images Segmented Using C _b	75
Figure 4.17:	The Best and Worst Images Segmented Using Cr	75
Figure 4.18:	The Best and Worst Images Segmented Using C_b/C_r	76
Figure 4.19:	The Best and Worst Images Segmented Using $C_b.C_r$	76
Figure 4.20:	The Best and Worst Images Segmented Using C_b - C_r	77
Figure 5.1:	Neural Network Structure for Combining Skin Feature Strategy	82
Figure 5.2:	Procedure for Combining Two Skin Classifiers Using the AND Operator	84
Figure 5.3:	Procedure for Combining Two Skin Classifiers Using the OR Operator	85
Figure 5.4:	Procedure for Combining Three Skin Classifiers Using the AND Operator	87
Figure 5.5:	Procedure for Combining the Three Skin Classifiers Using the OR Operator	88

Figure 5.6:	Procedure for Combining Three Skin Classifiers Using the Voting Strategy	90
Figure 5.7:	Procedure of Combining Three Skin Classifiers Using the Sum of Weights Strategy	91
Figure 5.8:	Procedure for Creating the Training Data and Validation Data for the New 3-HN-1 MLP Neural Network	93
Figure 5.9:	Procedure for Combining Three Skin Classifiers Using a New Neural Network	94
Figure 5.10:	The Best and Worst Images Segmented Using a Combination of Two Skin Features $C_{\rm b}\text{-}C_{\rm r}$ and $C_{\rm b}/C_{\rm r}$ Classifier	99
Figure 5.11:	The Best and Worst Images Segmented Using a Combination of Two Skin Features $C_{\rm b}\mathchar`-C_{\rm r}$ and $C_{\rm r}$ Classifier	99
Figure 5.12:	The Best and Worst Images Segmented Using a Combination of Two Skin Features C_b/C_r and C_r Classifier	100
Figure 5.13:	The Best and Worst Images Segmented Using a Combination of Three Skin Features C_b - C_r , C_b/C_r and C_r Classifier	100
Figure 5.14:	The Best and Worst Images Segmented Using a Combination of Two Skin Classifiers C_b - C_r and C_b/C_r BA – Using the AND Operator	101
Figure 5.15:	The Best and Worst Images Segmented Using a Combination of Two Skin Classifiers C_b - C_r and C_r Using the AND Operator	101
Figure 5.16:	The Best and Worst Images Segmented Using a Combination of Two Skin Classifiers C_b/C_r and C_r Using the AND Operator	102
Figure 5.17:	The Best and Worst Images Segmented Using a Combination of Two Skin Classifiers C_b - C_r and C_b/C_r Using the OR Operator	102
Figure 5.18:	The Best and Worst Images Segmented Using a Combination of Two Skin Classifiers C_b - C_r and C_r Using the OR Operator	103

Figure 5.19:	The Best and Worst Images Segmented Using a Combination of Two Skin Classifiers C_b/C_r and C_r Using the OR Operator	103
Figure 5.20:	The Best and Worst Images Segmented Using a Combination of Three Skin Classifiers Using the AND Operator	104
Figure 5.21:	The Best and Worst Images Segmented Using a Combination of Three Skin Classifiers Using the OR Operator	104
Figure 5.22:	The Best and Worst Images Segmented Using a Combination of Three Skin Classifiers Using the Voting Strategy	105
Figure 5.23:	The Best and Worst Images Segmented Using a Combination of Three Skin Classifiers Using the Sum of Weights Strategy	105
Figure 5.24:	The Best and Worst Images Segmented Using a Combination of Three Skin Classifiers Using a New 3- 126-1 Neural Network	106
SA B	UNIVERSITI MALAYSIA SABAH	

LIST OF TABLES

		PAGE
Table 2.1:	The Classification of Reviewed Skin Detection Techniques	21
Table 2.2:	The Classification of Reviewed Combination Strategies for Skin Detection	22
Table 3.1:	The Available Skin Image Database	32
Table 3.2:	The Training and Test Datasets	37
Table 3.3:	Classification of the Skin and Non-Skin Histogram Distributions According to the Degree of Overlap between Skin and Non-Skin Classes	39
Table 3.4:	The Low and High Threshold Values for Chrominance Component in Both YC _b C _r and Modified Normalised RGB Colour Spaces	48
Table 3.5:	A Comprehensive Skin Detection Performance Results for Every Chrominance Component in Both Colour Spaces	49
Table 4.1:	Determining the Number of Hidden Layers	60
Table 4.2:	Number of Training and Validation Samples for Training the MLP Neural Network to Find the Number of Neurons in the Hidden Layer for Every MLP Neural Network Structure	67
Table 4.3:	Parameters Used for Finding the Number of Neurons in the Hidden Layer	67
Table 4.4:	The Fixed Network Structure for Every Chrominance Component	70
Table 4.5:	MSE Values of the 30 Runs Trained for 1-91-1 $C_{\mbox{\scriptsize b}}$ MLP Neural Network	72
Table 4.6:	Skin Detection Performance for Every MLP Neural Network Structure	74
Table 5.1:	Combining Skin Feature Strategy	80
Table 5.2:	Combining Skin Classifier Strategy	81
Table 5.3:	The Fixed Neural Network Structure for Every Combining Skin Feature Strategy	82

Table 5.4:	Skin Detection Performance for Every Combining Skin Feature Strategy	82
Table 5.5:	Truth Table for Combining Two Skin Classifiers Using the AND Operator	83
Table 5.6:	Skin Detection Performance for Combining Two Skin Classifiers Using the AND Operator	84
Table 5.7:	Truth Table for Combining Two Skin Classifiers Using the OR Operator	85
Table 5.8:	Skin Detection Performance for Combining Two Skin Classifiers Using the OR Operator	85
Table 5.9:	Truth Table for Combining Three Skin Classifiers Using the AND Operator	86
Table 5.10:	Skin Detection Performance for Combining Three Skin Classifiers Using the AND Operator	87
Table 5.11:	Truth Table for Combining Three Skin Classifiers Using the OR Operator	88
Table 5.12:	Skin Detection Performance for Combining Three Skin Classifiers Using the OR Operator	88
Table 5.13:	Truth Table for Combining Three Skin Classifiers Using the Voting Strategy	89
Table 5.14:	Skin Detection Performance for Combining Three Skin Classifiers Using the Voting Strategy	90
Table 5.15:	Skin Detection Performance for Combining Three Skin Classifiers Using the Sum of Weights Strategy	91
Table 5.16:	Training and Validation Samples for Finding the Number of Neurons in the Hidden Layer of 3-HN-1 MLP Neural Network	93
Table 5.17:	Skin Detection Performances for Combining Three Skin Classifiers C_b - C_r , C_b/C_r and C_r Using a New Neural Network	94
Table 5.18:	Skin Detection Performance for the Different Combination Strategies	98

LIST OF ABBREVIATIONS

- CCD Charge Coupled Device
- CDR Correct Detection Rate
- CIE Commission Internationale de l'Eclairage
- CIF Common Intermediate Format
- EM Expectation-Maximization
- FAR False Acceptance Rate
- FRR False Rejection Rate
- GMM Gaussian Mixture Model
- GW Gray World
- LUT Lookup Table Method
- MAP Maximum a Posteriori
- ML Maximum Likelihood
- MLP Multilayer Perceptron
- MSE Mean Squared Error
 - NTSC National Television System Committee SIA SABAH
 - PAL Phase Alternating Line
 - PDF Probability Distribution Function
 - RBF Radial Basis Functions
 - SCNS Skin Corrected by a Non-Skin
 - SGM Single Gaussian Model
 - SOM Self-Organizing Map
 - SPM Skin Probability Map
 - STCB Selftunable Colour Balancing
 - SVM Support Vector Machine
 - TAR True Acceptance Rate
- TDSD Test Database for Skin Detection

WP	White Patch
WPt	White Point
WWW	World Wide Web

LIST OF SYMBOLS

- Σ Diagonal covariance matrix
- $b_{x,y}$ Backprojected image at (x,y) coordinates
- B The blue chrominance component of the RGB colour space
- *c* Colour vector
- C A given chrominance component
- c_j Colour sample
- $C_{x,y}$ Colour value at (x,y) coordinates
- C1 Class 1
- C2 Class 2
- C_b The blue chrominance of the YC_bC_r colour space
 - The blue chrominance multiplied with the red chrominance of YC_bC_r colour space

The ratio of the blue and red chrominance components of $YC_{\rm b}C_{\rm r}$ colour space

The blue chrominance added to the red chrominance of YC_bC_r colour space

C_b-C_r

C_b.C_r

 C_b/C_r

 $C_{b}+C_{r}$

The blue chrominance minus the red chrominance of YC_bC_r colour space

- CDR Correct detection rate
- C_r The red chrominance of the YC_bC_r colour space
- EI Error index
- G The green chrominance component of the RGB colour space
- G/B The ratio of green and blue chrominance components of the RGB colour space
- H Hue
- $h(C_{x,y})$ Histogram bin corresponding to $C_{x,y}$
 - HN Number of neurons in the hidden layer of a neural network

ΗN _B	The number of hidden neurons obtained from binary search method
HN _{BH}	The nearest higher value HN_B
HN _{BL}	The nearest lower value HN _B
Ι	Intensity
i	Index bin
М	Model histogram
M(x,y)	Pixel at the (x,y) Coordinates in the masked image
$M_{h(C_{x,y})}$	Model histogram with bin corresponding to $C_{x,y}$
Ν	Number of Gaussians
NC1	Number of pixels in class 1
NC2	Number of pixels in class 2
NCC1	Number of pixels in class 1 correctly classified as class 1
NCC2	Number of pixels in class 1 correctly classified as class 2
NEC1	Number of class 1 misclassified as class 2
NEC2	Number of class 2 pixels misclassified as class 1
N _M (x,y)	Pixel at the (x,y) Coordinates in the modified normalised RGB Image
N _Y (x,y)	Pixel at the (x,y) Coordinates in the YC_bC_r image
O(x,y)	The output pixel at (x,y) coordinates
P(x,y)	The input pixel at (x,y) coordinates
PEC1	Percentage of class 1 error
PEC2	Percentage of class 2 error
PSE	Percentage of segmentation error
R	Ratio histogram
R	The red chrominance component of the RGB colour space
R_i	Ratio histogram with <i>i</i> index of bin
r.b	The red chrominance multiplied with the blue chrominance of the rgb colour space

- r.g The red chrominance multiplied with the green chrominance of the rgb colour space
- R/B The ratio of red and blue chrominance components of the RGB colour space
- r/b The ratio of the red and blue chrominance components of the rgb colour space
- R/G The ratio of red and green chrominance components of the RGB colour space
- r/g The ratio of the red and green chrominance components of the rgb colour space
- R/G+R/B The ratio of red and green chrominance components added to the ratio of red and blue chrominance components of the RGB colour space
 - r-b The red chrominance minus the blue chrominance of the rgb colour space
 - The red chrominance minus the green chrominance of the rgb colour space
 - The saturation component of the TSL colour space
 - The tint component of the TSL colour space
 - The tint component added to the saturation component of the TSL colour space
 - *T^c* Threshold for Chrominance Component C

r-g

S

Т

T+S

- T_{H}^{C} Higher Threshold for Chrominance Component C
- T_L^C Lower Threshold for Chrominance Component C

KEYWORDS

Skin Detection, Combining Neural Networks, Multilayer Perceptron, Histogram Thresholding Technique, Feature Extraction.

CHAPTER 1

INTRODUCTION

1.1 Introduction to Skin Detection

Skin detection can be defined as the decision whether a pixel belongs to a skin region or a non-skin region based on that pixel colour value. Albiol et al. (2001) defined skin detection as the process of selecting which pixels of a given colour image corresponds to human skin. Skin detection is often used as the first step for subsequent feature extraction in a wide range of image processing applications such as face detection and recognition, face tracking, content-based image filtering, gesture analysis and person identification. Skin detection techniques can be classified into two categories namely pixel-based methods and region-based methods. Pixel-based methods classify each pixel as skin or non-skin individually based on human skin colour. Most researchers have used pixel-based methods compared to the region-based methods because skin colour information can be used for detecting human skin in various computer vision applications since skin colour allows high processing speed due to its low-level processing and is highly robust against rotations, scaling and partial occlusions.

1.2 Challenges of Skin Detection

Skin detection using the skin colour is considered a challenging task due to the sensitivity of skin appearance in images to various factors. Kakumanu et al. (2007) have identified several factors, which are:

Illumination: A change in the lighting condition produces a change in the apparent colour of the skin in the image.

Camera characteristics: Even under the same lighting conditions, the skin colour distribution for the same person differs from one camera to another depending on the camera sensor characteristics.

Ethnicity: Skin colour varies from person to another person belonging to different ethnic group and from persons across different regions.

Individual characteristics: An individual characteristic such as age, sex and body parts also affect the skin colour appearance.

Other factors: Different factors such as subject appearance (make-up, hairstyle and glasses), background colours, shadows and motion also influence the appearance of the skin colour.

1.3 State of the Art in Skin Detection

Phung et al. (2001) categorized the techniques used for skin detection according to the way the skin colour distribution is modelled into parametric, non-parametric and semi-parametric. The example of a parametric model is Gaussian classifier. Gaussian classifier is a classifier based on normal distribution. In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that is often used as a first approximation to describe real-valued random variables that tend to cluster around a single mean value. It has the ability to generalize data well even with a small size of training data and it requires small storage space. However, parametric modelling techniques are affected by the colour space representation and by the amount and the quality of the training data available. The non-parametric methods such as histogram-based methods are not affected by the choice of colour space and it is also fast in training and is independent of the shape of the skin distributions (Kakumanu et al., 2007). Nevertheless, due to its incapability to interpolate data, this method requires a very large training dataset in order to obtain a good classification rate. An example of semi-parametric model is the Multilayer Perceptron (MLP) neural network. Multilayer Perceptron is an example of an artificial neural network that is used extensively for the solution of a number of different problems, including pattern recognition and interpolation. The Multilayer Perceptron is able to learn complex non-linear input-output relationships as well as to generalize to any given data. However, the performance of the network is dependent on the network properties such as the number of hidden layers, the number of neurons in the hidden layer and the learning rates. Despite