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ABSTRACT 

PRE-PROCESSING STRATEGIES FOR SKIN DETECTION USING MLP 

 

Skin detection is an important preliminary step in a wide range of image processing 
applications such as face detection, person identification, gesture analysis and 
access control. Several techniques have been used for skin detection. In this thesis, 
the multilayer perceptron (MLP) neural network and histogram thresholding 
techniques were used. Recent studies have shown that combining skin features 
and/or skin classifiers can further improve the performance of the skin detection 
system. Thus, the main objective of this research is to evaluate the effect of several 
combination strategies on the performance of a skin detection system based on the 
MLP. To achieve this goal, first the histogram thresholding technique was used to 
select skin features (chrominance component in a given colour space) that give the 
highest correct skin detection. These features will be used as inputs to the MLP 
classifiers. A modified Growing algorithm for finding the number of neurons in the 
hidden layer of a neural network was also developed it was able to reduce the 
computational time compared to the conventional Growing algorithm. The 
combination strategies were done by combining the skin features as well as the 
skin classifiers. Three skin features (chrominance component from the selected 
colour space) that gave the highest correct skin detection on a single input MLP 
classifier were used for these strategies. The strategy of combining skin features or 
inputs was done using two and three skin features. For combining skin classifiers 
strategy, several combining rules such as binary operators AND and OR were used 
to combine two and three classifiers, while combining rules namely Voting, Sum of 
Weights and New Neural Network were used to combine three classifiers. The Sum 
of Weights and New Neural Network were the proposed combining rules in this 
thesis. In order to evaluate the performances of the skin detection systems, the 
images from Compaq database were used. The strategy of combining two skin 
features Cb/Cr gave the best performance for combining skin feature strategy with 
3.01% more correct detection compared with the best performance given by a 
single input MLP classifier given by Cb-Cr. The strategy of combining three 
classifiers using the Sum of Weights gave the best performance for its combining 
strategy with an improvement of 4.38% more correct detection compared to the 
best single input MLP classifier given by Cb-Cr. The Sum of Weights strategy also 
gave 1.37% more correct detection than the best combining skin feature strategy. 
The other proposed combining strategy called New Neural Network has managed to 
achieve 82.21% of correct detection. The best performance results obtained in this 
thesis were considerably good considering the unconstrained nature of the images 
from the Compaq database. 
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ABSTRAK 

Sistem pengesanan kulit merupakan satu proses utama yang penting dalam aplikasi 
pemprosesan imej seperti sistem pengesanan wajah, pengenalan diri, penganalisis 
isyarat dan kawalan akses. Beberapa teknik pengesanan kulit telah digunakan, 
namun demikian rangkaian neural jenis “multilayer perceptron” (MLP) dan kaedah 
histogram dengan teknik “threshold” telah digunakan dalam tesis ini. Sejak 
kebelakangan ini, kajian melaporkan bahawa strategi penggabungan seperti 
menggabungkan sifat kulit atau sistem pengesanan kulit yang berbeza berupaya 
meningkatkan keberkesanan sesuatu sistem pengesanan kulit. Oleh yang demikian, 
objektif utama kajian ini adalah untuk mengkaji keberkesanan beberapa strategi 
penggabungan berasaskan rangkaian neural jenis MLP. Kaedah histogram dengan 
teknik “threshold” telah digunakan untuk menentukan sifat kulit (komponen 
“chrominance” dalam sistem warna yang diberikan) yang memberikan peratusan 
tertinggi untuk pengesanan kulit yang tepat. Sifat kulit tersebut akan digunakan 
sebagai input kepada sistem pengesanan kulit berasaskan MLP. Satu modifikasi 
algoritma yang berasaskan algoritma “Growing” untuk menentukan bilangan 
neuron dalam lapisan tersembunyi “hidden layer” rangkaian neural turut 
diperkenalkan dan ianya berkesan terutamanya dalam konteks penjimatan masa 
berbanding algoritma yang lazim digunakan iaitu algoritma “Growing”. Dalam kajian 
ini, strategi penggabungan merangkumi strategi menggabungkan sifat kulit dan 
sistem pengesanan kulit yang berbeza. Tiga sifat kulit (komponen “chrominance” 
daripada sistem warna yang dipilih) yang memberikan keputusan terbaik dalam 
sistem pengesan kulitnya dipilih untuk strategi penggabungan yang dicadangkan. 
Strategi menggabungkan sifat kulit dilakukan dengan menggabungkan dua dan tiga 
sifat kulit. Manakala untuk strategi menggabungkan sistem pengesanan kulit, 
operator AND dan OR digunakan untuk menggabungkan dua dan tiga sistem 
pengesan kulit, sementara penggabung “Voting”, “Sum of Weights” dan “New 
Neural Network” digunakan untuk menggabungkan tiga sistem pengesan kulit. 
Strategi “Sum of Weights” dan “New Neural Network” adalah dua strategi 
penggabungan yang baru dicadangkan dalam tesis ini. Pangkalan data imej yang 
dikenali sebagai “Compaq database” telah digunakan untuk menilai kecekapan 
sistem pengesan kulit yang dicadangkan. Untuk strategi menggabungkan sifat kulit, 
penggabungan dua sifat kulit (Cb/Cr & Cr) memberikan peratusan pengesanan kulit 
tepat yang tertinggi iaitu 82.61% dengan peningkatan sebanyak 3.01% lebih 
pengesanan kulit berbanding sistem pengesanan kulit terbaik yang diberikan oleh 
Cb-Cr untuk sistem pengesan kulit yang hanya menggunakan satu sifat kulit. 
Manakala, strategi menggabungkan sistem pengesan kulit menggunakan 
penggabung “Sum of Weights” memberikan prestasi terbaik, iaitu 83.98% dengan 
peningkatan sebanyak 4.38% lebih pengesanan kulit berbanding sistem pengesan 
kulit Cb-Cr. Strategi tersebut juga memberikan 1.37% lebih pengesanan kulit 
berbanding strategi menggabungkan dua sifat kulit. Strategi baru “New Neural 
Network” berupaya mengesan 82.21% kulit dengan tepat. Hasil yang diperolehi 
dalam tesis ini boleh dikatakan amat memberangsangkan memandangkan sifat-
sifat gambar yang sukar diklasifikasikan daripada “Compaq database”. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Skin Detection 

Skin detection can be defined as the decision whether a pixel belongs to a skin 

region or a non-skin region based on that pixel colour value. Albiol et al. (2001) 

defined skin detection as the process of selecting which pixels of a given colour 

image corresponds to human skin. Skin detection is often used as the first step for 

subsequent feature extraction in a wide range of image processing applications 

such as face detection and recognition, face tracking, content-based image filtering, 

gesture analysis and person identification. Skin detection techniques can be 

classified into two categories namely pixel-based methods and region-based 

methods. Pixel-based methods classify each pixel as skin or non-skin individually 

based on human skin colour. Most researchers have used pixel-based methods 

compared to the region-based methods because skin colour information can be 

used for detecting human skin in various computer vision applications since skin 

colour allows high processing speed due to its low-level processing and is highly 

robust against rotations, scaling and partial occlusions. 

 

1.2 Challenges of Skin Detection 

Skin detection using the skin colour is considered a challenging task due to the 

sensitivity of skin appearance in images to various factors. Kakumanu et al. (2007) 

have identified several factors, which are: 

Illumination: A change in the lighting condition produces a change in the 

apparent colour of the skin in the image. 

Camera characteristics: Even under the same lighting conditions, the skin colour 

distribution for the same person differs from one camera to another depending on 

the camera sensor characteristics. 
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Ethnicity: Skin colour varies from person to another person belonging to different 

ethnic group and from persons across different regions. 

Individual characteristics: An individual characteristic such as age, sex and 

body parts also affect the skin colour appearance. 

Other factors: Different factors such as subject appearance (make-up, hairstyle 

and glasses), background colours, shadows and motion also influence the 

appearance of the skin colour. 

 

1.3 State of the Art in Skin Detection 

Phung et al. (2001) categorized the techniques used for skin detection according to 

the way the skin colour distribution is modelled into parametric, non-parametric 

and semi-parametric. The example of a parametric model is Gaussian classifier. 

Gaussian classifier is a classifier based on normal distribution. In probability theory, 

the normal (or Gaussian) distribution is a continuous probability distribution that is 

often used as a first approximation to describe real-valued random variables that 

tend to cluster around a single mean value. It has the ability to generalize data well 

even with a small size of training data and it requires small storage space. 

However, parametric modelling techniques are affected by the colour space 

representation and by the amount and the quality of the training data available. 

The non-parametric methods such as histogram-based methods are not affected by 

the choice of colour space and it is also fast in training and is independent of the 

shape of the skin distributions (Kakumanu et al., 2007). Nevertheless, due to its 

incapability to interpolate data, this method requires a very large training dataset in 

order to obtain a good classification rate. An example of semi-parametric model is 

the Multilayer Perceptron (MLP) neural network. Multilayer Perceptron is an 

example of an artificial neural network that is used extensively for the solution of a 

number of different problems, including pattern recognition and interpolation. The 

Multilayer Perceptron is able to learn complex non-linear input-output relationships 

as well as to generalize to any given data. However, the performance of the 

network is dependent on the network properties such as the number of hidden 

layers, the number of neurons in the hidden layer and the learning rates. Despite 


