ASSESSMENT OF ULTRABASIC ROCK AND VOLCANIC TUFF FOR THE TREATMENT OF ACID MINE DRAINAGE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

ASSESSMENT OF ULTRABASIC ROCK AND VOLCANIC TUFF FOR THE TREATMENT OF ACID MINE DRAINAGE

JOYCE KRISTY PRIMUS

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

DECLARATION

The materials in this thesis are original except quotations, excerpts, summaries and references, which have been duly acknowledge.

21 May 2015

Joyce Kristy Primus PS2009-5532

CERTIFICATION

NAME:JOYCE KRISTY PRIMUSMATRIC NO:PS2009-5532TITLE:ASSESSMENT OF ULTRABASIC ROCK AND VOLCANIC
TUFF FOR THE TREATMENT OF ACID MINE
DRAINAGEDEGREE:MASTER OF SCIENCE (INVIROMENTAL CHEMISTRY)VIVA VOCE DATE:27 OCTOBER 2015

ACKNOWLEDGEMENTS

First and foremost I would like to thank God Almighty for making this thesis possible. I would like to express my gratitude to my supervisor Prof. Dr Marcus Jopony for his guidance throughout the course. Assc. Prof. Dr Naomi Surugau for her continuous encouragement. To all the kind and helpful lab assistants; En. Jerry and En Rashidi, your assistance throughout my laboratory works are very much appreciated. To all the great and supportive friends and course mates, especially Annie, Ali, Poya, Tinie, Morius, and Ijang; thank you for making this journey beautiful and memorable. The journey in completing this thesis would definitely be dull without your presence.

Last but not least, I would like to thank my family and my fiancé Lionel Joslin, for their continuous support and encouragements.

ABSTRACT

Metal-rich acid mine drainages (AMD) need to be treated appropriately prior to final discharge into the surrounding environment. In this study, the feasibility of using ultrabasic rock (UBR) and volcanic tuff (VT) as treatment materials to remove heavy metals from AMD was investigated. Initially, the efficacy of the materials were tested using acidic aqueous metal solutions (pH=2.5; metal concentration; 10 mg/L) at different contact time, particle size and solid-solution ratio. Subsequently the materials were tested using AMD samples collected from Mamut Copper Mine pit. The initial and final metal concentrations (Cu, Fe, Mn and Zn) and final pH were the main parameters analysed. The results shows that the metal removal from aqueous solutions by both materials s dependant on contact time, particle size and solid solution ratio. The highest efficiency was achieved at 12 hours and 16 hours contact time (for UBR and VT respectively), particle size <0.5 mm and solidsolution ratio 0.06 g/MI. Under this condition, the removal of Cu, Fe, Mn and Zn by UBR is 100, 100, 71 and 96%, respectively, while by VT is less efficient at 74, 91, 36 and 52%, respectively. The efficiency of UBR is closely associated with the ability of the material to increase the pH of solution (and the final pH attained) and subsequent precipitation of the metals. By contract, metal removal by VT is more likely associate with adsorption. When tested on AMD samples (at optimum condition), UBR resulted in 100, 100, 67 and 99% removal of Cu, Fe, Mn and Zn, respectively from mine pit sample and 90, 97,6 and 69%, respectively, from Nasapang drain sample. Comparatively, VT resulted in 96, 100, 67 and 92% respectively; from mine pit sample and 60, 98, 12 and 11%, respectively, from Nasapang drain sample. While the efficiency of either material is dependent on the AMD sample, the efficiency of VT is lower than UBR and has relatively greater potential compared to VT as treatment material for removal of heavy metals from AMD.

ABSTRAK

PENILAIAN KEUPAYAAN BATUAN ULTRABES DAN TUF VOLKANIK UNTUK MERAWAT SALIRAN ASID LOMBONG

Saliran asid lombong (AMD) yang mengadugi logam yang tinggi perlu dirawat dengan sewajarnya sebelum dilepaskan ke alam sekitar. Dalam kajian ini, keupyaan menggunakan batuan ultrabes (UBR) dan tuff gunung berapi (VT) sebagai bahan rawatan untuk membuang logam berat dari AMD telah dikaji. Pada mulanya, keberkesanan bahan-bahan vang telah diuji menggunakan larutan asidik logam (pH = 2.5; kepekatan logam; 10 mg / L) pada masa sentuhan, saiz zarah dan nisbah pepejal- larutan yang berbeza. Selepas itu, bahan-bahan yang telah diuji menggunakan sampel AMD dari lombong timah Mamut. Kepekatan awal dan akhir logam (Cu, Fe, Mn dan Zn) serta pH adalah parameter utama yang dikaji. Keputusan menunjukkan bahawa penyingkiran logam daripada larutan akueus oleh kedua-dua bahan bergantung kepada masa sentuhan, saiz zarah dan larutan nisbah larutan-pepejal. Kecekapan tertinggi dicapai pada 12 jam dan 16 jam masa sentuhan (untuk UBR dan VT masing-masing), saiz zarah < 0.5 mm dan nisbah pepejal--larutan 0.06 g/mL. Dalam keadaan ini, penyingkiran Cu, Fe, Mn dan Zn oleh UBR adalah 100, 100, 71 dan 96% masing-masing manakala penyingkiran logam menggunakan VT adalah kurang berkesan pada 74, 91, 36 dan 52% masing-masing. manakala oleh VT adalah kurang berkesan iaitu pada 74, 91, 36 dan 52% masing-masing. Kecekapan UBR berkait rapat dengan kebolehan bahan untuk meningkatkan pH larutan (dan pH akhir dicapai) dan seterusnya logam. Oleh conrast, penyingkiran logam dengan VT adalah sekutu lebih cenderung dengan penjerapan. Apabila diuji ke atas sampel AMD (pada keadaan optimum), UBR menghasilkan 100, 100, 67 dan 99% daripada penyingkiran Cu, Fe, Mn dan Zn, masing-masing, manakala sampel lombong Mamut pada 90, 97,6 dan 69% masingmasing daripada sampel aliran Nasapang. Secara perbandingan, VT menghasilkan 96, 100, 67 dan 92% masing-masing, dari sampel sampel lombong Mamut; 60, 98, 12 dan 11% masing-masing daripada sampel aliran Nasapang. Walaupun kecekapan UBR dan VT bergantung kepada sampel saliran acid lombong. Kecekapan VT adalah lebih rendah daripada UBR dan mempunyai potensi yang lebih besar berbanding dengan VT sebagai bahan rawatan untuk penyingkiran logam berat daripada saliran acid lombong.

TABLE OF CONTENT

			Page
TITLE			i
DECLA	RATIO	N	ii
CERTI	FICATI	ON	iii
ACKNO	WLED	GEMENT	iv
ABSTR	ACT		v
ABSTR	AK		vi
TABLE	OF CO	NTENT	vii
LIST O	F TABL	ES	xi
LIST O	F FIGU	RE	xiii
ABBRE	VIATIO	ONS AND SYMBOLS	xv
LIST O	F EQUA	ATION	xvii
LIST O	F APPE	NDICES	xix
CHAPT 1.1 1.2 1.3 1.4 1.5	Backgr Ultabas Rationa Objecti	INTRODUCTION ound of Mamut Copper Mine sic rock and volcanic deposits distribution in Sabah ale of Study ves of Study of Study	2 3 5 6 6
СНАРТ	ER 2: I	LITERATURE REVIEW	
2.1	Acid Mi	ine Drainage	7
	2.1.1	Formation of AMD	7
	2.1.2	Characteristics of AMD	8
	2.1.3	Environment Impacts of AMD	8
2.2	Contro	l of AMD Pollution	10
	2.2.1	Active Treatment	12
	2.2.2	Passive Treatment	13
2.3	Remov	al of Metals through Neutralization	16

	2.3.1	Materials for Neutralization of AMD	17
		a. Carbonate Minerals	17
		b. Silicate Minerals	18
		c. Oxide and hydroxide chemicals/minerals	18
	2.3.2	Mechanism of metal removal through precipitation	18
	2.3.3	Factors Affecting the efficiency of metal removal by	22
		neutralization	
		a. Particle size of treatment material	22
		b. Contact time/retention time	23
		c. Dosage of treatment material	23
		d. Type of treatment material	23
2.4	Remova	al of metals through Adsorption	24
	2.4.1	Adsorption Process	24
	2.4.2	Adsorbents used in metal adsorption	25
	2.4.3	Factors affecting Efficiency of Metal Removal by Adsorption	25
k	8	a. Particle size of treatment material	25
E		b. Dosage of treatment material	26
Z		c. Initial Metals' Concentrations	27
21		d. Initial pH	27
	A B	e. Type of MetalERSITI MALAYSIA SABAH	27
2.5	Challen	nges in AMD treatment	28
2.6	Ultraba	asic Rock	31
2.7	Volcani	ic Tuff	31

CHAPTER 3: METHODOLOGY

3.1	Ultraba	sic Rock and Volcanic Tuff Samples	
	3.1.1	Sample preparation	32
	3.1.2	Preparation of Acidic Aqueous Solution	34
	3.1.3	Sampling of real AMD	34
3.2	Charac	teristic of Ultrabasic Rock and Volcanic tuff samples	34
	3.2.1	Determination of mineralogy of Ultrabasic Rock and Volcanic	34
		Tuff	

	3.2.2	Determination of Acid Neutralization Potential	34
	3.2.3	Paste pH of UBR and VT	36
	3.2.4	Leaching of metals from the ultrabasic rock and volcanic	36
		tuff at acidic environment	
3.3	Determi	ination of Total Acidity	36
3.4	Calculat	ion for metal removal	37
3.5	Interact	tion of UBR and VT in aqueous metal solution	37
	3.5.1	Effect of Contact Time	37
	3.5.2	Effect of Particle Size	38
	3.5.3	Effect of Solid Solution Ratio	39
3.6	Selectiv	ity of metals removal through adsorption	39
	3.6.1	Treatment of AMD sample	40
3.7	Analytic	al Method	41
	3.7.1	рН	41
	3.7.2	Conductivity	41
Æ	3.7.3	Dissolved Oxygen	41
F	3.7.4	Turbidity	42
Z	3.7.5	Concentration of Dissolved Metals	42
17			
СНАРТ	ER 4: F	RESULT AND DISCUSSION TI MALAYSIA SABAH	
4.1	Charact	eristics of Ultrabasic rock and Volcanic Tuff	43
	4.1.1	Mineralogy of Ultrabasic Rock and Volcanic Tuff	43
	4.1.2	Neutralizing capacity of ultrabasic rock and volcanic Tuff	44
		a. Paste pH of UBR and VT	44
		b. Neutralizing potential of ultrabasic rock and volcanic	45
		tuff	
	4.1.3	Leaching of metals from UBR and VT	46
4.2	Interact	tion of UBR and VT with metals in solution	48
	4.2.1	Effect of Contact time	48
	4.2.2	Effect of particle size of treatment material to the removal	53
		of metals	
	4.2.3	Effect of solid solution ratio	57

4.3	Effect of competing cation for metal removal using VT	61				
4.4	Treatment of Acid Mine Drainage					
СНАР	TER 5: CONCLUSIONS	72				
REFFE	REFFERENCES					
APPE	NDICES	83				

LIST OF TABLES

		Page
Table 2.1:	Water Quality of AMD from various mine	9
Table 2.2:	Effect of Acid Mine Drainage	9
Table 2.3:	Effect of pH to Aquatic Life	10
Table 2.4:	Types of AMD based on pH	14
Table 2.5:	Type of Treatment Method	16
Table 2.6:	Chemicals used for AMD Treatment	18
Table 2.7:	Neutralization process for certain minerals	19
Table 2.8:	Solubility of Carbonate Minerals (25°C)	19
Table 2.9:	Grouping of mineral according to their neutralizing potential	21
	and reactivity	
Table 2.10:	Effect of dosage (solid/solution ratio) to the removal of	26
10	metals	
Table 2.11:	Selectivity of metal adsorption by Different Type of Zeolite	28
Table 2.12:	Failure of AMD Treatment in various sites	30
Table 3.1:	Fizz rating to determine the volume and Normality of HCI	35
	for Digestion	
Table 3.3:	Particle sizes of UBR and VT TIMALAYSIA SABAH	33
Table 3.4:	Standard Condition and Characteristic concentration checks	42
	for atomic absorption (Perkin-Elmer 4100)	
Table 4.1:	Principal minerals present in ultrabasic rock and volcanic	43
	tuff	
Table 4.3:	Paste pH of UBR and VT	44
Table 4.4:	Indication of paste pH result	44
Table 4.5:	Leaching of metals from Ultrabasic Rock and Volcanic Tuff	47
Table 4.6:	Metals Precipitation as Hydroxide at certain pH	52
Table 4.7:	Hydration Radii and Hydration Enthalpy of Metal Cations	63
Table 4.8:	Comparison of Metal Removal between Single Cation and	64
	Multi Cation Solution	
Table 4.9:	Water Quality for AMD sample	65

LIST OF FIGURE

		Page
Figure 1.1:	An Overview of Mamut Copper Mine (MCM) and the surrouding rivers	3
Figure 1.2:	Distribution of Ultrabasic rock in the vicinity of MCM	4
Figure 1.3:	Geological map of Sabah showing the Volcanic Deposits in West Coast of Sabah.	5
Figure 2.1:	Various approaches that have been evaluated to prevent or minimise the generation of AMD (source control)	11
Figure 2.2:	AMD Treatment Options	12
Figure 2.3:	Efficiency of Metals Precipitation vs pH	20
Figure 2.4:	Effect of particle size to the pH	22
Figure 2.5:	Effect of contact time to increse of pH	23
Figure 2.6:	Stages of adsorption process	24
Figure 2.7:	Adsorption steps	25
Figure 2.8:	Structures of several zeolite as well as their pores shapes and dimension	28
Figure 3.1:	Ultrabasic Rock (a), Volcanic Tuff (b)	32
Figure 3.2:	Mamut Mine Pit INIVERSITI MALAYSIA SABAH	40
Figure 4.1:	X- Ray Diffraction Pattern for Ultra basic Rock	43
Figure 4.2:	X-Ray Diffraction Pattern for Volcanic Tuff	44
Figure 4.3:	Acid Neutralizing Potential for ultrabasic rock and volcanic tuff	46
Figure 4.4:	Effect of contact time to removal of metals by UB	48
Figure 4.5:	Effect of contact time to removal of metals by VT	49
Figure 4.6:	Effect of contact time using UBR on pH	51
Figure 4.7:	Effect of contact time using VT on pH	51
Figure 4.8:	Effect of particle size to Removal of Metal using UBR	54
Figure 4.9:	Effect of particle size to Removal of Metal using VT	54
Figure 4.10:	Final pH for Solution Treated with UBR	56
Figure 4.11:	Final pH for Solution Treated with VT	56

Figure 4.12:	Effect of solid/solution ratio metals' removal and pH for	58
	UB	
Figure 4.13:	Effect of solid-solution ratio metals' removal and pH for VT	59
Figure 4.14:	Effect of solid-solution ratio to final pH using UBR	60
Figure 4.15:	Effect of solid-solution ratio to final pH using UBR	60
Figure 4.16:	Effect of competing cation to the removal of metals	62
Figure 4.17:	Removal of metals from Mamut Mine Pit sample using	66
	UBR	
Figure 4.18:	Removal of metals from Mamut Mine Pit sample using VT	66
Figure 4.19:	pH changes before and after treatment using UBR for	67
	Mamut mine pit sample	
Figure 4.20:	pH changes before and after treatment using VT for	67
	Mamut mine pit sample	
Figure 4.21:	Removal of metals from Nasapang Drain using UBR	68
Figure 4.22:	Removal of metals from Nasapang Drain using VT	68
Figure 4.23:	pH changes before and after treatment using UBR for	69
AY 📑	Nasapang Stream sample	
Figure 4.24:	pH changes before and after treatment using VT for	69
117	Nasapang Stream sample	
N State		

UNIVERSITI MALAYSIA SABAH

ABBREVIATIONS AND SYMBOLS

AMD	-	Acid mine drainage
МСМ	-	Mamut Copper Mine
ANP	-	Acid Neurtalizing Potential
NP	-	Neutraling Potential
Fe	-	Iron
Mn	-	Manganese
AI	-	Aluminium
Cu	-	Copper
Zn	-	Zinc
Pb	-	Lead
Cd	-	Cadmium
Ms	-	milliSiemen
- <i>1</i> 32	- 4	Liter
mL	22	milliliter
MZ	-	Molarity
N K	Ŀ,	Normality
rpm	-3	Rotation per minute SITI MALAYSIA SABAH
+	-	positive
-	-	negative
=	-	equal toa
\triangleright	-	greater than
<	-	less than
≥	-	Same or greater than
≤	-	Same or lesser than
~	-	Approximate
±	-	plus minus
°C	-	degree celcius
0	-	degree
λ	-	lambda
θ	-	theta

TDS	-	total disslove solids
SO4 ⁻	-	Sulphate ion
-	_	
CO ₃ ²⁻		Carboante ion
OH-	-	hydroxide ion
CaCO ₃	-	Calcium carbonate
H_2SO_4	-	Sulphuric acid
HCI	-	Hydrochloric acid
NaOH	-	Sodium carbonate
H2O2	-	Hydrogen peroxide
XRD	-	X-RAY diffraction
F-AAS	-	Flame atomic absorption spectrophotometer
kg	-	kilogram
g	-	gram
mg	-	milligram
nm		NAME OF THE OWNERSITI MALAYSIA SABAH

LIST OF EQUATION

		Page
Equation 2.1:	$FeS_2 + 7/2 O_2 + H_2O \longrightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$	7
Equation 2.2:	$Fe^{2+} + 1/4O_2 + H^+ \longrightarrow 4Fe^{3+} + 1/2H_2O$	7
Equation 2.3:	$4Fe^{3+}+ 3H_2O \longrightarrow Fe(OH)_3 (s) + 3H^+$	7
Equation 2.4:	$FeS_2 + 15/O_2 + 7/2H_2O \longrightarrow 2H_2SO_4 + Fe(OH)_3$	7
Equation 2.5:	$Ca(OH)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2H_2O$	12
Equation 2.6:	$Ca(OH)_2 + FeSO_4 \longrightarrow Fe(OH)_2 + CaSO_4$	12
Equation 2.7:	$Ca(OH)_2 + Fe_2(SO_4)_3 \longrightarrow 2Fe(OH)_3 + CaSO_4$	12
Equation 2.8:	$CaCO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2CO_3$	17
Equation 2.9:	$3CaCO_3 + Fe_2(SO4)_3 + 6H_2O \longrightarrow 2CaSO_4 + 2Fe(OH)_3$	17
	+ 3H ₂ CO ₃	
Equation 2.10:	$3CaCO_3 + Al_2(SO_4)_3 + 6H_2O \longrightarrow 3CaSO_4 + 2Al(OH)_3$	17
	+ 3H ₂ CO ₃	
Equation 2.11:	$CaCO_3 + H^+ \longrightarrow Ca^{2+} + HCO_3^-$	17
Equation 2.12:	$CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2CO_3$	17
Equation 2.13:	$Mg_{5}Al_{2}Si_{3}O_{10}(OH)_{8} + 16H^{+} \longrightarrow 5Mg^{2+} + 2Al^{3+} +$	18
AB	UNIVERSITI M/3H4SiO4 + 6H2O BAH	
Equation 2.14:	$Fe^{2+} + 2OH \longrightarrow Fe(OH)_2$	20
Equation 2.15:	$Fe^{3+} + 3OH^{-} \longrightarrow Fe(OH)_{3}$	20
Equation 2.16:	$Cu^{2+} + 2OH \longrightarrow Cu(OH)_2$	21
Equation 2.17:	$Zn^{2+} + 2OH \longrightarrow Zn(OH)_2$	21
Equation 2.18:	$Al^{3+} + 3OH^{-} \longrightarrow Al(OH)_{3}$	21
Equation 2.19:	$Co^{2+} + 2OH \longrightarrow Co(OH)_2$	21
Equation 2.20:	$Ni^{2+} + 2OH \longrightarrow Ni(OH)_2$	21
Equation 2.21:	$Pb^{2+} + 2OH \rightarrow Pb(OH)_2$	21
Equation 3.1:	$M_1V_1 = M_2V_2$	34

Equation 3.2:	Total Acidity as $CaCO_3/L =$	АХВ	X 50 000	37
		V		

- Equation 3.3: % Metal Removal = $(C_i C_f) / C_i X 100$ 37
- Equation 4.1: $Mg_3SiO_5(OH)_4 + 6H + \longrightarrow 3Mg^{2+} + 2H_4SiO_4(aq) + 45$ H_2O

LIST OF APPENDICES

APPENDIX A	Standard Solution Preparation	83
APPENDIX B	Result of Effect of Solid Solution Ratio using Ultrabasic rock in single metal acidic aqueous solution	84
APPENDIX C	Result of Effect of Solid Solution Ratio using Volcanic Tuff in single metal acidic aqueous solution	85
APPENDIX D	Result of Effect of contact time using UBR in single metal acidic aqueous solution	86
APPENDIX E	Result of Effect of contact time using VT in single metal acidic aqueous solution	87
APPENDIX F	Treatment of sample from Mamut Copper Mine pit using UBR	88
APPENDIX G	Treatment of sample from Mamut Copper Mine pit using VT UNIVERSITI MALAYSIA SABAH	89
SA B De	CINIVERSITI WALATSIA SADAN	

CHAPTER 1

INTRODUCTION

Mining is an act of tunneling and digging out of the ground to extract mineral resources such as gold, copper, and coal (Warhurst and Noronha, 1999). It is one of man's earlier activities that can be traced back into Paleolithic times, and it played an important role in the civilization.

Nowadays, the need of mined minerals has increased in both volume and variety, and thus mining has increased to meet the demands of the society (Bell and Donally, 2006). Mining of minerals contributes in terms of economic, but unfortunately it also effects the environment by forming acid mine drainage (AMD).

AMD is caused by series of chemical and biological reactions involving oxidation-reduction, hydrolysis, precipitation, dissolution reaction and microbial catalysis of iron sulphide, FeS₂ or pyrite (Bernier, 2004; Lal, 2006).

The major characteristics of AMD are high acidity, high metal concentrations, elevated sulphate level, excessive suspended solids, and/or siltation (Gaikward and Gupta, 2008). Typically, the pH of AMD ranges from 2 to 4, but some extreme sites such as Iron Mountain, California produced extremely acidic effluent with pH between 0.5 and 0.9 (Druschel *et al.*, 2004).

The low pH in AMD causes the metals from the ore to leach out, consequently polluting the receiving stream with heavy metals. The effect of AMD has taken its toll in many mining sites such as Iron Mountain California (Motsi *et al.*, 2009), Wheal Jane Mine in Cornwell, England (Johnson and Hallberg, 2005), Monday Creek Ohio and Ducktown Mining District, Tennessee (Lee *at al.*, 2002). Unfortunately, the problem with AMD also occurred in ex Copper Mine in Mamut, Ranau Sabah (Jopony and Murtedza, 1994).

The impact of AMD are evident from these mining sites, where the accumulation of metals found in the receiving river's sediments, and some bioaccumulation in plants and insects (Ali *et al.*, 2004; David, 2003; Nieto *et al.*, 2007; Balintova *et al.*, 2012; Svitok *et al.*, 2014).

There were various AMD'S treatment methods. Precipitation of metal via neutralization (Carvotta *et al.*, 2008; Bernier, 2005; Doye and Duchesne, 2003; Lee *et al.*, 2002; Lovett, 1997; Maree, 1994) and adsorption of metals (Hala, 2013; Karatas, 2012; Can *et al.*, 2009; Gaikward, 2008; Johnson and Jain, 2008; Jiang *et al.*, 2006; Eglert and Rubio, 2005; Erdem, 2004) are the most common methods used in AMD treatment.

Most of the treatment sites suffer from some drawbacks such as high cost of treatment and high formation of sludge (Kalin *et al.*, 2005; Hammarstrom *et al.*, 2003).

1.1 Background of Mamut Copper Mine

Mamut ex-copper mine located in Ranau, Sabah. The pit lake has a circle shape, with diameter approximately 1.0 km and 100 m depth. The mine started operation in 1975 and ceased operation in October 1999 due to low metals' prices and major landslide (Mine Reclaimation Corporation, 2010).

Currently, the problems emerging from Mamut ex-copper mine are: the discharge of AMD from the pit lake to the receiving stream, collapsing of unstable pit walls, and the impact on water and ecological system in the surrounding area of the mine (Mine Reclaimation Corporation, 2010).

MCM is drained by several rivers namely Mamut River Bambagan-Liwagu River, and Lohan River as shown in Figure 1.1. Study conducted by Ho, 2006 found out that among these rivers, Mamut River is most adversely affected by the AMD discharge from MCM.

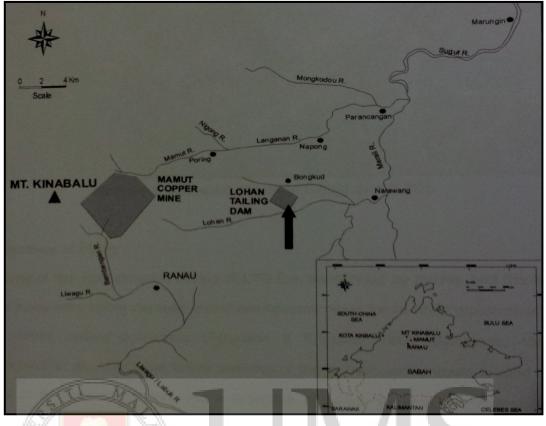


Figure 1.1: An Overview of Mamut Copper Mine (MCM) and the surrouding rivers. Source : Jopony (1997)

UNIVERSITI MALAYSIA SABAH

There are several studies on treatment of AMD produced by MCM such as treatment using calcareous material i.e. calcareous sandstone and calcareous mudstone (Jopony and Tongkul, 2009), and plant i.e. *Typha angustifolia* (Lo and Saibeh, 2013).

Report by Mine Reclamation Corporation, 2010 on rehabilitation of ex-Mamut copper mine also suggested that neutralization capacity of serpentinite rock and other rocks should be evaluated.

1.2 Ultabasic rock and volcanic deposits distribution in Sabah

Serpentinized-peridotite is an ultrabasic rock that can be found abundantly in the MCM vicinity as shown in the Figure 1.2.

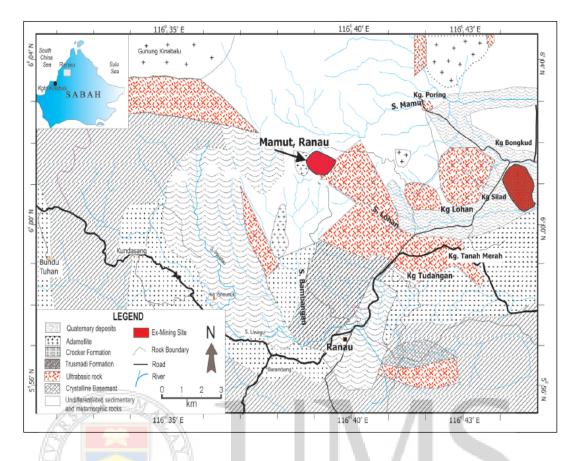


Figure 1.2: Distribution of Ultrabasic rock in the vicinity of MCM.Source: Musta et al. (2013)

UNIVERSITI MALAYSIA SABAH

Volcanic minerals in Sabah can be found abundantly in the west cost of Sabah i.e. Tawau, Semporna, and Lahad Datu. The volcanic minerals distributions in Sabah are shown in Figure 1.3.