EXPERIMENTAL STUDIES ON SELF-COMPACTING CONCRETE MIXED WITH PALM OIL FUEL ASH AND FLY ASH

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

EXPERIMENTAL STUDIES ON SELF-COMPACTING CONCRETE MIXED WITH PALM OIL FUEL ASH AND FLY ASH

BRABHA HARI NAGARATNAM

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

22nd June 2016

Brabha Hari Nagaratnam PK20109040

CERTIFICATION

- NAME : BRABHA HARI NAGARATNAM
- MATRIC NO. : **PK20109040**
- TITLE : EXPERIMENTAL STUDIES ON SELF-COMPACTING CONCRETE MIXED WITH PALM OIL FUEL ASH AND FLY ASH
- DEGREE : DOCTOR OF PHILOSOPHY (CIVIL ENGINEERING)
- VIVA DATE : 22nd JUNE 2016

DECLARED BY

1. MAIN SUPERVISOR

 Professor Ir. Dr. Abdul Karim Mirasa

 Signature

 Signature

 2. CO-SUPERVISOR

 Professor Dr. Mohammad Abdul Mannan

3. CO-SUPERVISOR

Associate Professor Dr. Muhammad Ekhlasur Rahman

ACKNOWLEDGEMENTS

It is my pleasure to express my sincere thanks to all who have helped me during my study in Universiti Malaysia Sabah and made this thesis possible.

My deepest gratitude and appreciation goes to my supervisors, Professor Ir. Dr. Abdul Karim Mirasa, Professor Dr. M.A Mannan, and Assoc. Prof. Dr. Muhammad Ekhlasur Rahman, for their valuable guidance and continuous encouragement throughout my study.

Special thanks also go to Seyed Omid Lame, Kon Chee Ling, Alex Chu, Lee Sii Kee, Lau Hui Jin, Chee Thien Fu and Ahmed Faheem in supporting the data collection throughout the duration of this study.

Finally, my thanks should be given to my mum, husband, my sons Teaghn and Tharun and all other family members, who have been encouraging me, loving me and giving the strength to continue. I would like to dedicate this work to my late father, Nagaratnam Paramanathan. Without them my PhD would not have been possible.

ABSTRACT

Self-compacting concrete (SCC) is an innovative construction material that is competent to flow, filling all areas and corners of the formwork even in the presence of congested reinforcement under its own self-weight. Compared to normally vibrated concrete (NVC), SCC enhances productivity, working conditions and reduces the number of labourers due to the elimination of compaction. SCC has high powder content and thus it is necessary to replace some of the cement by pozzolanic admixtures to achieve an economical and durable concrete. This thesis presents a study on the utilization of agricultural and industrial wastes such as palm oil fuel ash (POFA) and fly ash (FA) as pozzolans in SCC with blended aggregates. The control mixture contained Ordinary Portland Cement (OPC) as the binder at 540 kg/m³ while the remaining mixtures incorporated binary and ternary blends of OPC, POFA and FA. The wastes replacement was in the range of 0 to 40% by weight of cement and water to binder (w/b) ratio was at 0.35 to 0.44. Superplasticiser (SP) content was kept at a minimum of around 1%. Workability i.e. passing ability, filling ability and segregation resistance was determined and semiadiabatic temperature rise during the initial stage of hydration was measured. It was observed that FA mixes required the least amount of SP to obtain a workable SCC; however, POFA mixes needed higher w/b ratio and SP content. The ternary use of POFA and FA in equal portions (TNY) had better workability properties than the POFA mixes and performed the best in terms of segregation resistance. The observed workability such as filling ability passing ability and segregation resistance were about 750 mm in slump diameter, less than 10 mm for step height, and less than 2% segregation ratio; indicating a highly workable SCC. The SCC with POFA mixes had the lowest amount of heat dissipation with peak temperatures of 57.9°C. The TNY mixes had lower heat dissipation compared to FA only mixes at 58.4°C. The hardened SCC was tested for the cube and cylinder compressive strength and splitting tensile strength for up to 90 days. The developed 28 days cylinder compressive strength for 40% POFA, FA and TNY mix were 25.3, 37.4 and 35.2 MPa, respectively, and were identified as medium strength concrete and is suitable for conventional concrete structures. The tensile strength at 28 days was around 3 MPa. The durability properties were determined using water absorption, sorptivity, and chloride penetration (RCPT and salt ponding tests) for up to 90 days. The durability properties; water absorption \leq 6%, initial sorptivity of \leq 0.02 mm/s^{1/2}, RCPT \leq 1000 Coulombs and salt concentration of \leq 0.04% of concrete weight in SCM with 40% replacement indicate significant improvement in durability. Furthermore, the cost analysis shows that the material cost for SCC utilising FA can be comparable to the local NVC and cheaper than conventional SCC using European or Japanese mix design. In conclusion, the experimental studies indicate that SCC with binary and ternary blends of POFA and FA has significant potential as medium strength concrete when considering a sustainable construction material, hence also providing a cleaner production solution for the palm oil and coal power industry.

ABSTRAK

PENGGUNAAN SISA PERTANIAN DAN PERINDUSTRIAN DALAM KONKRIT TANPA PEMADATAN

Konkrit tanpa pemadatan (SCC) merupakan bahan pembinaan inovatif yang berupaya untuk mengalir, mengisi seluruh ruangan dan sudut acuan walaupun dengan kehadiran tetulang yang padat di bawah beratnya sendiri. Berbanding dengan konkrit biasa (NVC), SCC meningkatkan produktiviti dan mengurangkan tenaga buruh melalui penghapusan aktiviti pemadatan. SCC mempunyai kandungan simen yang tinggi dan ini menyebabkan keperluan untuk menggantikan bahan ini dengan bahan pozolan lain untuk menjimatkan kos dan meningkatkan sifat-sifat konkrit. Tesis ini membentangkan kajian mengenai penggunaan sisa pertanian dan perindustrian seperti abu bahan api kelapa sawit (POFA) dan abu industri arang batu (FA) sebagai bahan pozolan dalam SCC dengan agregat sebati. Campuran kawalan mengandungi Simen Portland Biasa (OPC) sebagai pengikat sebanyak 540 kg/m³ manakala campuran lain digantikan dengan POFA dan FA dalam lingkungan 0-40% mengikut berat simen dan mengikut nisbah air-simen 0.35 hingga 0.44. Kandungan bahan tambahan kimia (SP) adalah kira-kira 1%. Kebolehkerjaan dan kenaikan suhu separuh adiabatik pada peringkat awal penghidratan diukur. Adalah diperhatikan bahawa sp diperlukan dengan kandungan paling sedikit apabila FA menggantikan simen, manakala, POFA memerlukan kandungan air dan SP yang jauh lebih tinggi. Campuran POFA dengan FA dalam nisbah yang sama menghasilkan ciri-ciri kebolehkerjaan yang lebih baik daripada campuran POFA sahaja. Kebolehkerjaan yang diperhatikan adalah keupayaan mengisi, keupayaan laluan dan rintangan pengasingan menggunakan bahan sisa menghasilkan diameter 750 mm dalam ujian kon, 10 mm dalam untuk ketinggian langkah, dan kurang daripada 2% nisbah rintangan pengasingan; menunjukkan SCC dengan kebolehkerjaan yang unggul. SCC dengan campuran POFA mempunyai pelesapan haba yang paling rendah dengan suhu puncak 57.9 °C. manakala campuran POFA dan FA adalah 58.4 °C. SCC telah diuji dari segi kekuatan mampatan kiub dan silinder dan kekuatan tegangan sehingga 90 hari. Kekuatan mampatan silinder untuk 40% campuran pada hari ke-28 adalah 25.31, 37.41 dan 35.2MPa untuk POFA40, FA40 dan TNY40 dan boleh diklassifikasi sebagai konkrit kekuatan sederhana (kekuatan biasa) sesuai untuk digunakan dalam konkrit struktur konvensional. Kekuatan tegangan pada 28 hari adalah sekitar 3MPa. Sifat-sifat ketahanan telah ditentukan dengan menggunakan penyerapan air (penyerapan keseluruhan dan penyerapan satu hala), dan penembusan klorida (RCPT dan ujian garam) sehingga 90 hari. Sifat-sifat ketahanan pada hari ke-90; penyerapan air keseluruhan \leq 6%, penyerapan air-sehala \leq 0.02mm/sec^{1/2}, RCPT \leq 1000 Coulomb dan penembusan klorida ≤ 0.04% menunjukkan penambahan yang ketara dalam ketahanan. Tambahan pula, analisis kos menunjukkan bahawa kos bahan untuk SCC menggunakan FA boleh setanding dengan NVC tempatan dan lebih murah daripada SCC konvensional menggunakan rekabentuk campuran Eropah atau Jepun, Kesimpulannya, kajian eksperimen menunjukkan bahawa SCC dengan POFA dan FA mempunyai potensi yang besar sebagai konkrit kekuatan sederhana dengan itu juga menyediakan penyelesaian bagi isu alam sekitar dalam industri minyak sawit dan arang batu.

TABLE OF CONTENT

		Page
TITLE		i
DECLA	ARATION	ii
CERTI	FICATION	iii
ACKNO	OWLEDGEMENT	iv
ABSTR	RACT	v
ABSTR	RAK	vi
TABLE	OF CONTENTS	vii
LIST O	OF TABLES	xiv
LIST O	OF FIGURES	xvi
LIST O	OF APPENDIXES	xxii
LIST O	OF ABBREVIATIONS	xxiii
LIST	OF SYMBOLS	xxiv
СНАРТ	TER 1: INTRODUCTION	1
1.1	Background	1
1.2	Current Construction Practices in Malaysia	3
1.3	Advantages of SCC to Local Construction MALAYSIA SABAH	4
1.4	SCC – Medium Strength Studies	5
	1.4.1 SCC Research Trend	5
	1.4.2 Mix Design	6
	1.4.3 Guidelines of SCC	7
1.5	Hybridization of Sand and Quarry Dust in SCC	7
1.6	Palm Oil Fuel Ash – An Agricultural Waste as Renewable Material	8
	1.6.1 Palm Oil Plantations in Malaysia	8
	1.6.2 POFA Characteristics	9
	1.6.3 A Brief on POFA use in Concrete	9

1.7	Class	F Fly Ash – An Industrial Green Waste for SCC	13
	1.7.1	FA in Sarawak	13
	1.7.2	FA Characteristics	13
	1.7.3	A Brief on FA in Concrete	14
1.8	Signif	icance of the Research	15
1.9	Objec	tives of the Research	16
1.10	Scope	e of Work	17
CHAP [.]	TER 2:	LITERATURE REVIEW	19
2.1	Introc	luction	19
2.2	Types	of Self-Compacting Concrete	19
	2.2.1	Powder-type SCC	20
	2.2.2	VMA-type SCC	21
	2.2.3	Combined-type SCC	21
2.3	Fresh	Properties of SCC	23
A	2.3.1	Effect of Aggregates on the Fresh Properties of SCC	23
61	2.3.2	Effect of W/B Ratio on the Fresh Properties of SCC	26
Z	2 <mark>.3.3</mark>	Effect of SP on the Fresh Properties of SCC	26
61	2.3.4	Effect of Binary Blended Supplementary Cementitious	28
	S.	Material (SCM) on the Fresh Properties of SCC	
	2.3.5	Effect of Ternary Blended SCM on the Fresh Properties of	31
		SCC	
	2.3.6	Effect of Ambient Temperature and Relative Humidity on	32
		the Fresh Properties of SCC	
	2.3.7	Effect of Mixing Process on the Fresh Properties of SCC	34
2.4	Streng	gth of Concrete	37
	2.4.1	Effect of Types of Aggregates on the Compressive Strength	37
		of SCC	
	2.4.2	Effect of W/B Ratio on the Compressive Strength of SCC	38
	2.4.3	Effect of Specimen Shape and Size on the Compressive	39
		Strength of SCC	
	2.4.4	Effect of Various SCMs on the Compressive Strength of SCC	40

2.5	Tensile	e Strength of SCC	44
	2.5.1	Effect of Aggregates on the Tensile Strength of SCC	45
	2.5.2	Effect of SCM on the Tensile Strength of SCC	46
2.6	Durabi	ility	46
	2.6.1	Complete Immersion Water Absorption and Sorptivity	47
	2.6.2	Chloride Penetrability	49
2.7	Resea	ch Gaps	52
2.8	Conclu	uding Remarks	53
CHAP	TER 3:	MATERIALS AND TEST METHODS	55
3.1	Introd	uction	55
3.2	Materi	als and Properties	56
	3.2.1	Cement	56
	3.2.2	Palm Oil Fuel Ash (POFA)	58
	3.2.3	Fly Ash (FA)	59
	3.2.4	Course Aggregates	68
Ē	3.2.5	Blended Fine Aggregates	69
Z	3.2.6	Super-plasticiser (SP)	74
3.3	Mixing	Method	74
3.4	Evalua	ation of Relative Humidity and Ambient Temperature	79
3.5	Tests	on Fresh Properties of SCC	80
	3.5.1	Slump flow and T500 Tests	81
	3.5.2	V-Funnel Tests	82
	3.5.3	J-Ring Tests	84
	3.5.4	Segregation Resistance Index	86
	3.5.5	Visual Stability Index Tests	87
3.6	Tests	on Evaluation of Heat of Hydration	88
3.7	Tests	on Strength	92
	3.7.1	Consistency Test	92
3.8	Tests	on Durability	94
	3.8.1	Immersed Water Absorption	94
	3.8.2	Sorptivity	95

	3.8.3	Rapid Chloride Penetration Tests	96
	3.8.4	90-day salt ponding tests	97
СНАР	TER 4:	MIX DESIGN DEVELOPMENT AND FRESH STATE	101
		PROPERTIES OF SCC INCORPORATING POFA AND FA	101
4.1	Introd	luction	101
4.2	Mix D	esign for Control SCC	102
	4.2.1	Composition of Coarse and Blended Fine Aggregate	105
	4.2.2	Filling Ability of Control SCC	107
	4.2.3	Passing Ability of Control SCC	108
	4.2.4	Segregation Resistance of Control SCC	108
4.3	Modifi	ed Mix Design for SCC using POFA	112
	4.3.1	Filling Ability Tests for SCC using POFA	112
	4.3.2	Passing Ability Tests for SCC using POFA	114
	4.3.3	Segregation Resistance Tests for SCC using POFA	114
4.4	Fresh	Properties of Modified SCC using FA	118
- FI	4.4.1	Filling Ability Tests for SCC using FA	118
Z	4 <mark>.4.2</mark>	Passing Ability Tests for SCC using FA	120
61	4.4.3	Segregation Resistance Tests for SCC using FA	121
4.5	Modifi	ed Mix Design for SCC using Ternary (TNY)	128
	4.5.1	Filling Ability Tests for SCC using TNY	128
	4.5.2	Passing Ability for SCC using TNY	129
	4.5.3	Segregation Resistance for SCC using TNY	129
4.6	Comp	arative Analysis of Fresh Properties of SCC incorporating	133
	POFA	and FA	
4.7	Relation	onship between various fresh state properties of SCC using	139
	POFA	and FA	
	4.7.1	Correlation between Slump Flow and J-ring Flow Diameter	139
	4.7.2	Correlation between T_{500} and V-Funnel Flow Times	140
4.8	Conclu	uding Remarks	142

CHAPTER 5: EFFECT OF MIXING METHOD, AMBIENT CONDITION 145 AND HEAT OF HYDRATION OF SCC USING POFA AND FA

5.1	Introd	luction	145
5.2	Effect	of Mixing Method on the Fresh Properties of SCC using POFA	146
	and F	A	
	5.2.1	Effect of Mixing Method 1 (M1) on the Fresh Properties of	146
		SCC	
	5.2.2	Effect of Mixing Method 2 (M2) on the Fresh Properties of SCC	147
	5.2.3	Effect of Mixing Method 3 (M3) on the Fresh Properties of SCC	147
	5.2.4	Effect of Mixing Method 4 (M4) on the Fresh Properties of	148
	5.2.5	Effect of Mixing Method 5 (M5) on the Fresh Properties of	148
A	5.2.6	Effect of Mixing Method 6 (M6) on the Fresh Properties of	149
13	A	SCC E	
5.3	Effect	of Temperature and Relative Humidity on Fresh Properties	157
	of SC 5.3.1	Cusing POFA and FAIL ERSITE MALAYSIA SABAH Effect of Temperature and Relative Humidity on Filling	157
		Ability of SCC	
	5.3.2	Effect of Temperature and Relative Humidity on Passing	159
		Ability of SCC	
	5.3.3	Effect of Temperature and Relative Humidity on	159
		Segregation Resistance of SCC	
5.4	Influe	nce of POFA and FA on the Heat of Hydration of SCC	167
5.5	Conclu	uding Remarks	177

CHAP	TER 6:	SHORT TERM STUDY ON STRENGTH PROPERTIES OF	179
		SCC USING POFA AND FA	
6.1	Introc	luction	179
6.2	Comp	ressive Strength of SCC using POFA	180
6.3	Consi	stency Test of SCC using 40% POFA	188
6.4	Comp	ressive Strength of SCC using FA	190
6.5	Consi	stency test of SCC using 40% FA	197
6.6	Comp	ressive Strength of SCC using TNY	199
6.7	Consi	stency Tests for SCC using TNY	204
6.8	Comp and F	arative Analysis of Compressive Strength of SCC using POFA A	206
6.9	Correl	ation between the Cube and Cylinder Compressive Strength	213
6.10	Tensil	e Strength of SCC using POFA	215
6.11	Tensi	e Strength of SCC using FA	217
6.12	Tensi	e Strength of SCC using TNY	220
6.13	Comp FA	arative Analysis of Tensile Strength of SCC using POFA and	222
6.14	Concl	uding Remarks	225
СНАР	TER 7 :	UNIVERSITI MALAYSIA SABAH DURABILITY PROPERTIES OF SCC INCORPORATING	227
		POFA AND FA AS BINARY AND TERNARY BLEND	
7.1	Introd	luction	227
7.2	Water	Absorption Properties of SCC using POFA, FA and TNY	228
	7.2.1	Water Absorption Properties of SCC using POFA	228
	7.2.2	Water Absorption Properties of SCC using FA	230
	7.2.3	Water Absorption of SCC using TNY	233
	7.2.4	Comparison between Water Absorption of Binary and	235
		Ternary Blend of SCC using POFA and FA	
	7.2.5	Relationship between Water Absorption and Compressive	242
		Strength of SCC	
7.3	Sorpti	vity Properties of SCC using POFA, FA and TNY	245

	7.3.1	Sorptivity Properties of SCC using POFA	245
	7.3.2	Sorptivity Properties of SCC using FA	249
	7.3.3	Sorptivity Properties of SCC using TNY	253
	7.3.4	Comparison of Sorptivity between the Binary and Ternary	256
		Blend of SCC using POFA and FA	
	7.3.5	Relationship between initial sorptivity and secondary	260
		sorptivity	
	7.3.6	Relationship between Water Absorption and Sorptivity of	262
		SCC	
7.4	Rapid	Chloride Penetration Tests on SCC using POFA, FA and TNY	263
	7.4.1	RCPT of SCC using POFA	264
	7.4.2	RCPT of SCC using FA	266
	7.4.3	RCPT of SCC using TNY	268
	7.4.4	Comparison between RCPT of SCC using Binary and	270
	AT	Ternary Blends of POFA and FA	
A	7.4.5	Relationship between RCPT and Water Absorption of SCC	274
E	7.4.6	Relationship between Compressive Strength and RCPT of	275
Z		SCC 5	
7.5	90-day	Salt Ponding Tests on SCC using POFA, FA and TNY	278
	7.5.1	90-day Salt Ponding on SCC using POFA	278
	7.5.2	90-day Salt Ponding of SCC Using FA	281
	7.5.3	90-day Salt Ponding of TNY	283
	7.5.4	Comparative Analysis of the 90-day Salt Ponding Tests	285
		between Binary and Ternary Blends of SCC using POFA	
		and FA	
	7.5.5	Relationship between the 90-day Salt Ponding and the	291
		RCPT tests	
7.6	Conclu	iding Remarks	292

СНАРТ	'ER 8 :	CONCLUSION AND RECOMMENDATIONS FOR	296
		FUTURE RESEARCH	
8.1	Gener	al Remarks	296
8.2	Conclu	usions	298
	8.2.1	Conclusions based on Objective 1	298
	8.2.2	Conclusions based on Objective 2	299
	8.2.3	Conclusions based on Objective 3	299
	8.3.4	Conclusions based on Objective 4	300
8.3	Signifi	cance of Findings	301
8.4	Recom	nmendations for Future Research	302

REFERENCES304APPENDIX337LIST OF PUBLICATIONS347

LIST OF TABLES

		Page
Table 2.1:	Summary of recommended ranges for components used in SCC	22
Table 2.2:	Recommended w/b ratio for various compressive strengths	39
Table 2.3	Summary of previous research on binary and ternary blended	43
	SCC using POFA or FA	
Table 3.1:	Physical properties of OPC, FA and POFA	61
Table 3.2:	Chemical composition of OPC, POFA and FA	61
Table 3.3:	Physical and mechanical properties of aggregates	71
Table 3.4:	Determination of Optimum Aggregate Content	72
Table 3.5:	Physical and chemical properties of SP	74
Table 3.6:	Various mixing method adopted in this investigation	78
Table 3.7:	Various environmental conditions	80
Table 3.8:	Slump flow classification of fresh state SCC	82
Table 3.9:	Viscosity classification of fresh state SCC	83
Table 3.10:	Segregation resistance classification of SCC	87
Table 3.11:	VSI criteria	88
Table 3.12:	Standard deviation for different types of controls A SABAH	93
Table 4.1:	Mix proportions for Control SCC	109
Table 4.2:	Target mix produced	109
Table 4.3:	Fresh state properties and compressive strength for Control	110
	SCC	
Table 4.4:	Modified mix design for SCC using POFA	115
Table 4.5:	Fresh state properties for SCC using POFA	115
Table 4.6:	Modified mix design for SCC using FA	123
Table 4.7:	Fresh state properties for SCC using FA	124
Table 4.8:	Modified mix design for SCC using TNY	130
Table 4.9:	Fresh state properties for SCC using TNY	130
Table 5.1:	Finalized SCC mixes for further investigations	151
Table 5.2:	Summary of mixing method	152

Table 5.3:	Summary of workability properties of SCC with various mixing method	152
Table 5.4	Fresh properties of SCC under various temperature and relative humidity	163
Table 5.5:	Summary of evaluation of heat test results	172
Table 6.1:	Compressive strength of SCC using POFA	185
Table 6.2:	LOI values of POFA in different investigation	185
Table 6.3:	Compressive strength of SCC using FA	194
Table 6.4:	Compressive strength of SCC using TNY	201
Table 6.5:	Recommended 28 day characteristic strength of POFA and FA	210
Table 6.6:	Pricing and mix design comparison for POFA and FA SCC	210
Table 6.7:	Comparison of costing for SCC	211
Table 6.8	Tensile strength of SCC using POFA	216
Table 6.9	Tensile strength of SCC using FA	218
Table 6.10:	Tensile strength of SCC using TNY	221
Table 7.1:	Water absorption values of SCC using POFA	230
Table 7.2:	Water absorption values for SCC using for FA	233
Table 7.3:	Water absorption of SCC using TNY	235
Table 7.4:	Sorptivity properties of SCC using POFA	247
Table 7.5:	Sorptivity properties of SCC using FA	251
Table 7.6:	Sorptivity properties of SCC using TNY	254
Table 7.7:	ASTM recommendations for chloride ion penetrability	264
Table 7.8:	RCPT results of SCC using POFA	265
Table 7.9:	RCPT results for SCC using FA	267
Table 7.10:	RCPT results of SCC using TNY	269
Table 7.11:	Chloride concentration of Control SCC	279
Table 7.12:	Chloride concentration of SCC using 30% POFA	279
Table 7.13:	Chloride concentration of SCC using 40% POFA	280
Table 7.14:	Chloride concentration of SCC using 30% FA	282
Table 7.15:	Chloride concentration of SCC using 40% FA	282
Table 7.16:	Chloride concentration of SCC using 30% TNY	284
Table 7.17:	Chloride concentration of SCC using 40% TNY	284

LIST OF FIGURES

		Page
Figure 1.1:	Schematic composition of Self Compacting Concrete	6
Figure 1.2:	Current palm oil plantations in Malaysia	10
Figure 1.3:	The schematic diagram for palm oil processing and POFA	11
	production	
Figure 1.4:	POFA dumping site at mill area (b) POFA collected from	12
	chimney (c) POFA at the bottom of the furnace	
Figure 3.1:	Particle size distribution of OPC, POFA, FA and blended	62
	POFA and FA	
Figure 3.2:	XRD of OPC particles	63
Figure 3.3:	XRD of POFA particles	64
Figure 3.4:	XRD of FA particles	65
Figure 3.5:	SEM imaging for; (a) OPC (b) POFA and (c) FA at (i) at	66
	100x μm and (ii) 20x μm	
Figure 3.6:	(a) Ground POFA (b) FA	67
Figure 3.7:	Particle size distribution of aggregates	73
Figure 3.8:	Slump flow and T ₅₀₀ apparatus	82
Figure 3.9: B	V-funnel apparatus.ERSITI MALAYSIA SABAH	84
Figure 3.10:	The J-ring apparatus	86
Figure 3.11:	Heat of hydration tests set-up	90
Figure 3.12:	Heat of hydration test	91
Figure 3.13:	Full immersion water absorption test set-up	95
Figure 3.14:	Sorptivity test set-up	96
Figure 3.15:	Concrete specimen salt ponding set-up	99
Figure 3.16:	Salt ponding tests (a) Sliced concrete samples (b) Ponding	100
	salt solution (c) Impact drill to obtain powdered samples	
	(d) Powdered and sieved samples (e) Argentometric	
	titration test (f) First appearance of reddish-brown spot	
Figure 4.1:	Research Methodology	104
Figure 4.2:	Un-compacted bulk density of aggregates	106

Figure 4.3:	Compacted bulk density of aggregates	106
Figure 4.4:	Slump flow for selected Control SCC	111
Figure 4.5:	Cylinder compressive strength vs. w/b ratio for Control	111
	SCC	
Figure 4.6:	Slump flow of SCC using POFA	116
Figure 4.7:	T ₅₀₀ flow time for SCC using POFA	116
Figure 4.8:	V-funnel flow time for SCC using POFA	117
Figure 4.9:	J-ring step height for SCC using POFA	117
Figure 4.10:	Sieve Segregation Index for SCC using POFA	118
Figure 4.11:	Slump flow for SCC using FA	125
Figure 4.12:	Relationship of FA content vs. SP dosage	125
Figure 4.13:	T ₅₀₀ flow time for SCC using FA	126
Figure 4.14:	V-funnel flow time for SCC using FA	126
Figure 4.15:	J-ring step height for SCC using FA	127
Figure 4.16:	Sieve Segregation Index for SCC using FA	127
Figure 4.17:	Slump flow for SCC using TNY	130
Figure 4.18:	T ₅₀₀ flow time for SCC using TNY	131
Figure 4.19:	V-funnel flow time for SCC using TNY	131
Figure <mark>4.20:</mark>	J-ring step height for SCC using TNY	132
Figure 4.21:	Sieve Segregation Index for SCC using TNY	132
Figure 4.22:	Slump flow for SCC using binary and ternary blend of	137
	POFA and FA	
Figure 4.23:	T ₅₀₀ flow time for SCC using binary and ternary blend of	137
	POFA and FA	
Figure 4.24:	V-funnel flow time for SCC using binary and ternary blend	138
	of POFA and FA	
Figure 4.25:	J-ring step height for SCC using binary and ternary blend	138
	of POFA and FA	
Figure 4.26:	Sieve Segregation Index for SCC using binary and ternary	139
	blend of POFA and FA	
Figure 4.27:	Slump flow vs. J-ring flow diameter	140

Figure 4.28:	Relationship between T_{500} and V-funnel flow time for SCC using FA	142
Figure 5.1:	Mixing Procedure (a) Blending aggregates (b) Addition of	153
5	powders (c) SCC using M5 (d) Slump flow of obtain used	
Figure 5.2:	(a) Flow diameter (b) Flow time for various mixing method	154
Figure 5.3:	Slump flow retention of SCC mixes	155
Figure 5.4:	Influence of mixing method (a) Highly segregated SCC mix	156
	from M3 (b) Balling effect from M6	
Figure 5.5:	Slump Flow for various relative humidity conditions	164
Figure 5.6:	Slump retention under H3 and H2 condition compared to	164
	H1	
Figure 5.7:	Slump flow vs. relative humidity	165
Figure 5.8:	Temperature vs. slump flow	165
Figure 5.9:	T_{500} and V-funnel flow time for various relative humidity	166
A	conditions.	
Figure 5.10:	J-ring flow diameter for various relative humidity	166
2	conditions	
Figure 5.11:	Segregation resistance for various relative humidity	167
A BA	conditions LINIVERSITI MALAYSIA SABAH	
Figure 5.12:	Peak Temperatures and Time at Peak	172
Figure 5.13:	Heat of hydration for SCC using POFA	173
Figure 5.14:	Heat of hydration for SCC using FA	174
Figure 5.15:	Heat of hydration for SCC using TNY	175
Figure 5.16:	Summary of heat of hydration for all SCC mixes	176
Figure 6.1:	Cylinder compressive strength of SCC using POFA	186
Figure 6.2:	Cube compressive strength of SCC using POFA	186
Figure 6.3:	Compressive strength of SCC using POFA at 7 days	187
Figure 6.4:	Compressive strength of SCC using POFA at 28 days	187
Figure 6.5:	Compressive strength of SCC using POFA at 90 days	188
Figure 6.6:	Normal distribution function for SCC using 40% POFA	190
Figure 6.7:	Cylinder compressive strength of SCC using FA	194

Figure 6.8:	Cube compressive strength of SCC using FA	195
Figure 6.9:	Compressive strength of SCC using FA at 7 days	195
Figure 6.10:	Compressive strength of SCC using FA at 28 days	196
Figure 6.11:	Compressive strength of SCC using FA at 90 days	196
Figure 6.12:	Normal distribution function for SCC using 40% FA	198
Figure 6.13:	Cylinder compressive strength of SCC using TNY	202
Figure 6.14:	Cube compressive strength of SCC using TNY	202
Figure 6.15:	Compressive strength of SCC using TNY at 7 days	203
Figure 6.16:	Compressive strength of SCC using TNY at 28 days	203
Figure 6.17:	Compressive Strength of SCC using TNY at 90-days	204
Figure 6.18:	Normal distribution function for SCC using 40% TNY	205
Figure 6.19:	Cylinder Compressive Strength of SCC incorporating binary	211
	and ternary blended POFA and FA	
Figure 6.20:	Cube compressive strength of SCC incorporating binary	212
11 T	and ternary blended POFA and FA	
Figure 6.21:	Relationship between Compressive Strength and Water to	212
RI LE	Cement Ratio of SCC using POFA, FA and TNY	
Figure 6.22:	Cube compressive strength vs. cylinder compressive	214
No.	strength of SCC using binary and ternary blend of POFA	
ABA	and FA UNIVERSITI MALAYSIA SABAH	
Figure 6.23:	Cube compressive strength vs. cylinder/cube compressive	215
	strength ratio	
Figure 6.24:	Splitting tensile strength of SCC using POFA	217
Figure 6.25:	Splitting tensile Strength of SCC using POFA at 28 days	217
Figure 6.26:	Splitting tensile strength of SCC using FA	219
Figure 6.27:	Splitting tensile strength for SCC using FA at 28 day	219
Figure 6.28:	Splitting tensile strength for SCC using FA at 90 day	220
Figure 6.29:	Splitting Tensile Strength of SCC using TNY	221
Figure 6.30:	Splitting tensile strength for SCC incorporating binary and	224
	ternary blend of POFA and FA	
Figure 6.31:	Relationship between splitting tensile strength and	224
	compressive strength.	

Figure 7.1:	Water absorption of SCC using POFA	230
Figure 7.2:	Water absorption of SCC using FA	233
Figure 7.3:	Water absorption of SCC using TNY	235
Figure 7.4:	Water absorption of SCC using binary and ternary blend of	240
	POFA and FA	
Figure 7.5:	Normalised water absorption of SCC as compared to	240
	Control SCC	
Figure 7.6:	Water absorption for SCC mixes at 28 days as compared	241
	to other research	
Figure 7.7:	Correlation between compressive strength and water	244
	absorption of SCC with binary and ternary blend of POFA	
	and FA	
Figure 7.8:	Sorptivity properties of SCC using POFA	248
Figure 7.9:	Sorptivity properties of SCC using FA	252
Figure 7.10:	Sorptivity Properties of SCC Using TNY	255
Figure 7.11:	Initial sorptivity coefficient for all mixes	259
Figure 7.12:	Secondary sorptivity for all mixes	259
Figure 7.13:	Normalised initial sorptivity coefficients as compared to	260
- FLO	Control SCC	
Figure 7.14:	Normalised secondary sorptivity coefficients as compared	260
	to Control SCC	
Figure 7.15:	Initial sorptivity vs. secondary sorptivity for SCC	262
Figure 7.16:	Sorptivity vs. water absorption	263
Figure 7.17:	RCPT properties of SCC using POFA	266
Figure 7.18:	RCPT properties of SCC using FA	268
Figure 7.19:	RCPT properties of SCC using TNY	269
Figure 7.20:	RCPT for all SCC	273
Figure 7.21:	Normalised RCPT for SCC mixes as compared to Control	273
	SCC	
Figure 7.22:	Variation of charge with alumina and iron content for all	274
	mixes	
Figure 7.23:	RCPT vs. water absorption for SCC mixes	275

Figure 7.24:	RCPT vs. compressive strength for SCC mixes at 28 days	277
Figure 7.25:	RCPT vs. compressive strength for SCC mixes at 90 days	277
Figure 7.26:	Chloride concentration for SCC using POFA	280
Figure 7.27:	Chloride concentration of SCC using FA and other similar	283
	research	
Figure 7.28:	Chloride concentration of SCC using TNY	285
Figure 7.29:	Chloride concentration at different depths for SCC mixes	289
Figure 7.30:	Variation of diffusion coefficient (Da) with alumina and	289
	iron content	
Figure 7.31:	Chloride diffusion coefficient for different SCC mixes	290
Figure 7.32:	Relationship between RCPT and Da	292

