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ABSTRACT 
 
 

Electro-carburisation process based on liquid carburisation process had been carried 
out to investigate the effect of the carburization process on the resulting hardness, 
microstructure change, and the sliding wear resistance of mild steel under dry and 
lubrication conditions.  The carburisation process was conducted in carbonate salts 
mixtures of  Na2CO3-NaCl. The electro-carburisation process was first performed 
and followed by post-carburisation cleaning where subsequent analysis such as 
hardness test, metallographic observation, EDX/SEM and XRD were then carried 
out in order to investigate the effect of the carburisation process on the mild steel. 
Carburisation process resulted in a remarkedable increase in the hardness leading 
to an enhancement of adhesive and abrasive wear resistance, as well as load 
carrying capacity. Increasing the duration of the carburisation process from 1 hour 
to 3 hours resulted in higher peak hardness (727 HV/795 HV), greater case depth 
(50-100µm/660µm), higher amount of carbide in the grain boundaries and larger 
retained austenite grains. The surface of the carburised steel was dominated by 
retained austenite. Towards the core, the amount of retained austenite reduced 
while the amount of martensite increased. The austenite microstructure in the steel 
carburised for 1 hour exhibited higher cracking and fracture resistance as compared 
to the steel carburised for 3 hours.The low cracking and fracture resistance of the 
steel carburised for 3 hours could be due to its large grain size and high amount of 
cementite in the grain boundaries as the fatigue strength reduced with an increase 
in the grain size and  the presence cementite could act as fatigue crack initiators. 
The superior wear resistance of the martensite, as compared to the austenite, 
could be attributed to its  high cracking and adhesive wear resistance owing to its 
high hardness and  tendency to form oxide. The friction was governed by the wear 
mechanism and the type of microstructure at the worn scar sliding on the carbide 
ball. It was found that surface fracture and sliding on martensite resulted in higher 
friction coefficient. The superior wear resistance and load carrying capacity of the 
carburised steelwasalso evident under oil lubrication condition.  Compared to the 
austenite, the martensite showed higher tendency to react with the carbon in the 
oil under extreme boundary lubrication which in turn resulted in a significant drop 
in the friction coefficient after the running in process.  
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ABSTRAK 
 

EFFECT OF CARBURISATION PROCESS ON THE WEAR OF STEEL 
( KESAN PROSES PENGKARBONAN KE ATAS KEHAUSAN KELULI ) 

 
Proses ‘electro-carburisation’ berdasarkan proses pengkarbonan cecair telah 
dijalankan untuk mengkaji kesan daripada proses pengkarbonan pada kekerasan 
yang terhasil, perubahan mikrostruktur, dan rintangan haus gelongsor keluli lembut 
di bawah keadaan kering dan pelinciran. Proses pengkarbonan telah dijalankan 
dengan menggunakan campuran garam karbonat Na2CO3-NaCl. Proses ‘elektro-
carburisation’ dilakukan terlebih dahulu diikuti dengan pembersihan ke atas 
spesimen yang telah menjalani proses pengkarbonan. Analisis berikutnya seperti 
ujian kekerasan, pemerhatian ‘metallographic’, EDX / SEM dan XRD kemudiannya 
dijalankan untuk menyiasat kesan proses pengkarbonan pada keluli karbon rendah. 
Proses pengkarbonan menyebabkan peningkatan kekerasan yang ketara yang 
membawa kepada peningkatan rintangan kehausan lelas dan perekat serta beban 
bawaan yang lebih tinggi.Meningkatkan masa proses pengkarbonan dari 1 jam 
hingga 3 jam menghasilkan kekerasan puncak yang lebih tinggi(727 HV / 795 HV), 
salutan yang lebih mendalam(50-100μm / 660μm), jumlah karbida yang lebih tinggi 
di sempadan bijian dan bijirin austenit yang lebih besar. Permukaan keluli yang 
menjalani proses pengkarbonan dikuasai oleh austenit tersimpan. Ke arah teras, 
jumlah austenit tersimpan semakin berkurangan manakala jumlah martensit 
meningkat. Mikrostruktur austenit dalam keluli yang telah dikarbonkan selama 1 
jam mempamerkan rintangan keretakan dan patah yang lebih tinggi berbanding 
dengan keluli yang telah dikarbonkan selama 3 jam.Rintangan keretakan dan patah 
yang rendah oleh keluli yang dikarbonkan untuk 3 jam berkemungkinan disebabkan 
oleh saiz butiran yang besar dan jumlah simentit yang tinggi di sempadan bijian 
menyebabkan kekuatan lesu berkurangan yang mana peningkatan dalam saiz 
butiran dan kehadiran simentit boleh bertindak sebagai pemula retak-lesu. 
Rintangan haus martensit yang lebih tinggi berbanding austenit boleh dikaitkan 
dengan rintangan keretakan dan perekat yang lebih tinggi disebabkan oleh 
kekerasan yang tinggi dan kecenderungan untuk membentuk oksida. Geseran telah 
dikawal oleh mekanisme kehausan dan jenis mikrostruktur yang terdapat di parut 
kehausan di mana bola karbida menggelongsor di atasnya. Didapati bahawa 
keretakan permukaan dan menggelongsor di atas martensit menyebabkan pekali 
geseran yang lebih tinggi. Kapasiti rintangan haus yang lebih tinggi dan beban 
bawaan keluli yang dikarbonkan juga dapat dilihat di bawah kehadiran minyak 
pelincir. Berbanding dengan austenit, martensit menunjukkan kecenderungan lebih 
tinggi untuk bertindak balas dengan karbon dalam minyak di bawah pelinciran 
sempadan melampau yang seterusnya mengakibatkan penurunan ketara dalam 
pekali geseran selepas berjalan dalam proses. 
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formed on the M1 specimen  after sliding at 600 N under 
oil lubrication. 
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Figure 4.29: Effect of load on the volume loss under lubricated sliding 
for (a) NC, C1, C3, M1 and M3 specimens at 10-400N and 
(b) C1, C3, M1 and M3 specimens at 600-1000N. 600N(i) 
and 1000N(i) indicate that no fracture took place on the 
worn surface while 600N(ii) and 1000N(ii) indicated  that 
fracture took place during sliding. 
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Figure 4.30: The wear area of C1 material tested under lubrication 
condition of 10N20hz.  
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Figure 4.31: The worn scar and the respective COF graph for M1 
specimen subjected to lubrication test at (a) 400N 20Hz,  
(b) 600N 20Hz (fractured) and (c) 600N 20Hz (non 
fractured) (d) 1000N 20Hz (fractured) and (e) 1000N 
20Hz (non fractured). 
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Figure 4.32: The worn scar and the respective COF graph for M3 
specimens   subjected to lubrication test at (a) 400N 
20Hz, (b) 600N 20Hz (fractured) and (c) 600N 20Hz (non 
fractured) (d) 1000N 20Hz  (fractured) and (e) 1000N 
20Hz (non fractured). 
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Figure 4.33: The worn scar and the respective COF graph for C3 
specimens   subjected to lubrication test at (a) 400N 20Hz, 
(b) 600N 20Hz and (c) 1000N 20Hz. 
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Figure 4.34: The worn scar and the respective COF graph for C1 
specimens  subjected to lubrication test at (a) 400N 20Hz, 
(b) 600N 20Hz and (c) 1000N 20Hz. 
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Figure 4.35: The weight percentage of carbon and iron at the centre of  
the worn scar of the C1 specimens produced at different 
loads. 
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Figure 4.36: The weight percentage of carbon and iron at the side of 
the worn scar of the C1 specimens produced at different 
loads. 
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Figure 4.37: The weight percentage of  oxygen, sulfur, zinc and 
phosphorus at the center  of the worn scar of the  C1  
specimens produced at different loads. 
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Figure 4.38: The weight percentage of  oxygen, sulfur, zinc and 
phosphorus at the side of the worn scar of the C1 
specimens produced at different loads. 
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Figure 4.39: The weight percentage of carbon and iron at the  worn 
scar of the NC specimens produced at different loads. 
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Figure 4.40: The weight percentage of  oxygen, sulfur, zinc and 
phosphorus at the worn scar of the NC specimens 
produced at different loads. 
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Figure 4.41: The weight percentage of carbon and iron at the worn 
scar of the M1 specimens produced at different loads. 
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Figure 4.42: The weight percentage of  oxygen, sulfur, zinc and  
phosphorus at the worn scar of the M1 specimens  
produced at different loads. 
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