DEVELOPMENT OF REAL-TIME MULTI POSE FACE RECOGNITION AND TRACKING SYSTEM

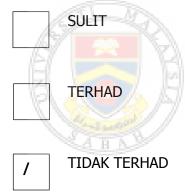
FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

DEVELOPMENT OF REAL-TIME MULTI POSE FACE RECOGNITION AND TRACKING SYSTEM

MANIMEHALA NADARAJAN

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH


BORANG PENGESAHAN STATUS TESIS

JUDUL : DEVELOPMENT OF REAL-TIME MULTI POSE FACE RECOGNITION AND TRACKING SYSTEM

IJAZAH : SARJANA KEJURUTERAAN

Saya <u>Manimehala Nadarajan</u> Sesi Pengajian <u>2012-2016</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

UNIVERSITI MALAYSIA SABAH

Disahkan oleh,

(Tandatangan Penulis)

Alamat Tetap: No 70 Jalan SG 7/8, Taman Seri Gombak, 68100 Batu Caves, Selangor Darul Ehsan

Tarikh: 31 Mei 2016

(Tandatangan Pustakawan)

(Ir. Dr. Muralindran Mariappan) Penyelia Utama

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries and references, which have been fully acknowledged.

31 May 2016

MANIMEHALA NADARAJAN MK1211006T

CERTIFICATION

NAME	:	MANIMEHALA NADARAJAN
MATRIC NUMBER	:	MK1211006T
TITLE	:	DEVELOPMENT OF REAL-TIME MULTI POSE FACE
		RECOGNITION AND TRACKING SYSTEM
DEGREE	:	MASTER OF ENGINEERING
		(ELECTRICAL AND ELECTRONICS ENGINEERING)
VIVA DATE	:	28 MARCH 2016

DECLARED BY;

1. MAIN SUPERVISOR

Ir. Dr. Muralindran Mariappan

2. CO- SUPERVISOR Dr. Rosalyn R. Porle

ACKNOWLEDGEMENT

Thank you GOD.

I would like to take this opportunity to express my deepest gratitude to my supervisor, Ir. Dr. Muralindran Mariappan who guided me well all the way upon completing my research. I truly appreciate his countless effort, motivation and patience in assisting my research at every angle. His profound knowledge has inspired me to explore engineering research. Credits to my co-supervisor, Dr. Rosalyn R. Porle for her aspiring guidance sharing her expertise. I would like to acknowledge my examiners, Prof. Dr. Ali Chekima (UMS) and Associate Professor Dr. Yahya Md Sam (UTM) for their insightful comments on my thesis.

I wish to avail myself of this opportunity to express countless thanks my mother and my sisters' endless encouragement that gave me all strength to go through difficulties. I am truly blessed to have my family by my side at every second.

Special thanks to Robotics and Intelligent Systems (myRIS) research group members especially Jong Chia Sing, Vigneswaran Ramu, Brendan Khoo, Choo Chee Wee and Mr. Irwan Baharudzaman who were there sharing new technologies and updating the latest research trend.

Thank you to all my friends especially, Chan Bun Seng, Rosdianah Ramli, Yeoh Chin Ean, Bairave Shanmugam and Shereen Netto for their kind moral support throughout the journey of obtaining this degree. Finally, I would also like to extend thank you to all the participants who were willingly sharing their precious time to the collection of database for this research.

UNIVERSITI MALAYSIA SABAH

Thank you.

Manimehala Nadarajan

ABSTRACT

The birth of telepresence robots in healthcare industries has made a significant transformation in the last few decades. Telepresence robot is remotely connected and embodied to perform several task such as patient monitoring, diagnosis, surgery and other task. Due to poor infrastructure especially in the interior of developing countries, a Medical Telediagnosis Robot (MTR) which works with a low bandwidth and on a low cost platform was developed. Unlike other tele-presence robots, MTR is capable of performing remote diagnosis during medical emergencies as it is equipped with basic medical instruments and dual vision system which comprises of a visual diagnostic system and a visual communication system. Visual communication system in MTR provides a basic face-to-face communication. The application of biometric system using face can greatly improve the current visual communication system as it is currently limited for only manual face recognition and tracking. It is difficult for the remote medical specialist to keep the patient and medical staff in an ideal field of view (FOV). It is also necessary for the remote medical specialist to identify the correct patient and medical staffs for diagnosis and verbal communication. To circumvent this problem, a real time face detection, recognition and tracking system (DRiT) is developed. To achieve a real time system, the DRiT system is designed with four modules which are operated in sequence and thus minimizing the execution time. Other challenges that were circumvented by the DRiT system are multi face pose, varying background condition during camera movement and changes in environment lighting with respect to time. DRiT is fully designed in LabVIEW platform which integrates software, hardware and GUI modules to complement with the current MTR platform. The background, lighting conditions and face pose were solved using hybrid approach utilizing skin color information to detect face. Neural Network was deployed to identify the profile of a person in multi poses and distances. A hardware together with software based face tracking is designed to ensure that the face region is still within the tracking view. Tracking a person continuously in a wider angle is a challenging task but this has been successfully achieved with DRiT system using a pan and tilt unit. DRiT is a standalone platform which is activated once the robot is navigated to the desired area. DRiT system creates a better visual communication between remote specialist and hospital members as the remote medical specialist will no longer require to execute manual control of the robot. The developed DRiT system was experimentally tested in real time and it yields an accuracy of 98% with an execution time of 56 ms.

ABSTRAK

PEMBANGUNAN SISTEM PENGECAMAN DAN PENGESANAN MUKA DALAM MASA NYATA BAGI PELBAGAI POSISI

Kelahiran robot telekehadiran di industri kesihatan menjangkau transformasi yang ketara sejak kebelakangan ini. Robot telekehadiran yang dikawal dari jauh berupaya melaksanakan beberapa tugas seperti pemantauan pesakit, diagnosis, pembedahan dan sebagainya. Kemudahan yang kurang memuaskan di kawasan pedalaman di negara- negara membangun menjurus kepada pembangunan Robot Perubatan Telediagnosis (MTR) yang berupaya untuk beroperasi pada bandwidth dan platform yang berkos rendah. Berbanding dengan robot telekehadiran yang lain, MTR berupaya membuat diagnosis dari jauh semasa kecemasan kerana robot ini dilengkapi dengan alat- alat perubatan asas dan juga sistem dual visual yang terdiri daripada sistem diagnostik dan sistem komunikasi visual. Sistem komunikasi visual dalam MTR menyediakan komunikasi asas muka-ke-muka. Aplikasi sistem biometrik menggunakan muka boleh mengembangkan sistem komunikasi visual semasa yang terhad kepada pengecaman dan pengesanan secara manual. Ianya sukar bagi pakar perubatan yang berhubung dari jauh untuk memastikan bahawa pesakit dan kakitangan perubatan berada di medan penglihatan yang sesuai (FOV). Selain itu, pakar perubatan harus mengenal pasti identiti pesakit dan kakitangan perubatan yang betul semasa diagnosis dan komunikasi verbal. Bagi mengatasi masalah ini, sistem pengecaman dan pengesanan muka dalam masa nyata telah dibentuk (DRiT). Bagi membolehkan operasi dalam masa nyata, sistem DRiT dibentuk dengan empat modul yang diproses mengikut turutan. Oleh itu, masa perlaksanaan dapat dikurangkan. Antara cabaran-cabaran lain yang ditangani oleh sistem DRiT adalah posisi muka yang berlainan, latar belakang yang berubah berikutan pergerakan kamera dan keadaan cahaya yang berubah pada satu- satu masa. DRiT direka sepenuhnya dalam perisian LabVIEW yang mengintegrasikan perisian, perkakasan dan modul GUI bagi memastikan DRiT berfungsi di atas platform yang sama seperti MTR. Masalah latar belakang dan pencahayaan telah diatasi dengan menggunakan pendekatan hibrid yang menggunakan maklumat warna kulit untuk mengesan muka. Rangkaian Neural telah digunakan untuk mengenalpasti profil seseorang dalam pelbagai posisi dan jarak. Pengesanan muka secara perkakasan dan persisian direka bagi memastikan muka masih berada di pandangan pengesanan. Mengesan seseorang secara berterusan dalam sudut yang lebih luas merupakan satu tugas vang mencabar tetapi telah berjava dicapai oleh sistem DRiT dengan menggunakan pan dan tilt unit. DRiT berfungsi atas platform sendiri yang diaktifkan apabila robot telah digerakkan ke kawasan yang diingini. Sistem DRiT mewujudkan komunikasi visual yang lebih baik antara ahli yang berhubung jauh dengan ahli di hospital kerana pakar perubatan tidak perlu mengawal robot secara manual. Sistem DRiT telah diuji dalam masa nyata dan menghasilkan kejituan sebanyak 98% dengan masa perlaksanaan sebanyak 56 ms.

LIST OF CONTENTS

TITLE	Page
	۱
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
LIST OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi
LIST OF APPENDICES	xvii
CHAPTER 1: INTRODUCTION	1
 1.1 Overview of Robots 1.2 Vision System in Telepresence Robot 1.3 Research Motivation 1.4 Research Objective 1.5 Scope of Work 1.6 Thesis Organization 	1 2 3 5 6 6
CHAPTER 2: LITERATURE REVIEW	9
 2.1 Overview 2.2 Biometric Face Technology 2.2.1 Challenges in Biometric Face Technology 2.2.2 Biometric System Classification 2.3 Telepresence Robot in Healthcare Industry 2.4 Application of Biometric Face Technology in Telepresence Robot 2.5 Motion Detection 2.5.1 Motion Detection Technique 	9 9 12 14 16 18 24 25
 2.6 Face Detection 2.6.1 Skin Color Detection Method 2.6.2 Color Space 2.6.3 Skin Color Model 2.7 Face Recognition 	28 29 30 33 34
5	

	2.7.1 Neural Network Technique	36
2.8	Face Tracking	39
	2.8.1 Face Tracking Technique	40
2.9	Chapter Summary	43
CHAI	PTER 3: METHODOLOGY	44
3.1	Overview	44
3.2	DRiT System Architecture	44
3.3	DRIT System Definition	47
3.4	DRiT System Design	48
3.5	Hardware Selection	52
	3.5.1 Actuator	52
	3.5.2 Image Sensor	53
	3.5.3 Microcontroller	54
3.6	Software Selection	54
	3.6.1 MATLAB	54
	3.6.2 LabVIEW	55
3.7	Chapter Summary	56
CHAI 4.1 4.2 4.3	PTER 4: MOTION AND FACE DETECTION Overview Motion Detection 4.2.1 Motion Detection Module Design 4.2.2 Experimental Results and Discussion Face Detection	57 57 57 57 60 65
	4.3.1 Skin Color Modelling	65
	4.3.2 Face Detection Module Design	67
	4.3.3 Experimental Results and Discussion	70
4.4	Chapter Summary	76
CHAI	PTER 5: FACE RECOGNITION	77
5.1	Overview	77
5.2	Image Preprocessing	77
5.3	Backpropagation Algorithm	81
5.4	DRiT Network Design	82
5.5	Experimental Results and Discussion	86
5.6	Chapter Summary	96

CHAPTER 6: FACE TRACKING

97

6.1	Overview	97
6.2	Machine Vision for Face Tracking	97
6.3	Template Matching	100
	6.3.1 Learning Phase	100
	6.3.2 Matching Phase	100
6.4	Pan and Tilt Image Tracking	102
6.5	PIC Microcontroller for Servo Motor Control	105
6.6	Experimental Results and Discussion	109
6.7	Chapter Summary	115
CHAP	TER 7: SYSTEM INTEGRATION	116
7.1	Overview	116
7.2	Hardware Setup	116
7.3	Graphical User Interface (GUI)	118
7.4	System Results and Discussion	122
7.5	Chapter Summary	132
CHAP	TER 8: CONCLUSION	133
8.1	Research Contribution	133
8.2	Future Work	134
REFE	RENCES	136
APPE	UNIVERSITI MALAYSIA SABAH	

Appendix A	Skin Samples
Appendix B	Circle Detection Data
Appendix C	Control Board Circuit Diagram
Appendix D	LabVIEW Programming Codes
Appendix E	PIC Programming Codes
Appendix F	MATLAB Programming Codes
Appendix G	List of Journals
Appendix H	List of Conference Papers Presented

Appendix I List of Book Chapters

LIST OF TABLES

		Page
Table 2.1	: Biometric Identifiers	11
Table 2.2	: Terms Used in Biometric Face Technology	15
Table 2.3	: Telepresence Robots in Hospitals	17
Table 3.1	: Rotation Angle for Roll, Yaw and Pitch	47
Table 4.1	: Classification of Mean Values for Motion Detection	64
Table 4.2	: Numerical Data for Face Detection	74
Table 5.1	: Output Target for Different Face Profiles	83
Table 5.2	: DRiT Neural Network Parameters	91
Table 5.3	: Sample Images for Training, Testing and Validation	95
Table 6.1	: PWM Range in Decimal and Hexadecimal	105
Table 7.1	: System Performance	131

LIST OF FIGURES

			Page
Figure 1.1	:	Application of Robots	1
Figure 1.2	:	Medical Telediagnosis Robot (MTR)	3
Figure 2.1	:	Human and Face Tracking Classification	14
Figure 2.2	:	RP Vita	18
Figure 2.3	:	Security Warrior	19
Figure 2.4	:	SIRA	20
Figure 2.5	:	Teleoperated Robot	21
Figure 2.6	:	PTU Telepresence Robot	22
Figure 2.7	:	Audiovisual Robot	23
Figure 2.8	:	Raspberry Pi Robot	22
Figure 2.9	:	Telepresence Robot	24
Figure 2.10	:	Motion Detection Techniques	25
Figure 2.11	÷	Face Detection Classification	28
Figure 2.12	÷	RGB Color Cube	31
Figure 2.13	2	HSV Color Space	32
Figure 2.14	1.	YCbCr Color Space	33
Figure 2.15	в	Face Recognition Techniques TI MALAYSIA SABAH	34
Figure 2.16	:	Face Recognition Process in Neural Network	36
Figure 2.17	:	Face Tracking Techniques	41
Figure 3.1	:	Overall System Architecture	45
Figure 3.2	:	Field of View for Pan and Tilt	46
Figure 3.3	:	Pan and Tilt Camera View	46
Figure 3.4	:	Roll, Yaw and Pitch Angle for Face	47
Figure 3.5	:	Overall System Flowchart	48
Figure 3.6	:	DRIT Module Flow	49
Figure 3.7	:	Futaba Servo Motor s3001 with Dimension	53
Figure 3.8	:	C600 Logitech Webcam	54
Figure 3.9	:	DRiT Software Processing in LabVIEW Platform	56
Figure 4.1	:	Flowchart of Motion Detection Module	58
Figure 4.2	:	No Motion	61

Figure 4.3	:	Motion	61
Figure 4.4	:	Thresholding	62
Figure 4.5	:	Morphological Operation	62
Figure 4.6	:	Histogram Report for Contour Image	63
Figure 4.7	:	Motion Detection Mean Value vs Number of Frames	64
Figure 4.8	:	Skin Samples	66
Figure 4.9	:	Histogram Plot of HSV Color Space	66
Figure 4.10	:	Flowchart of Face Detection	67
Figure 4.11	:	Skin Detection	71
Figure 4.12	:	Result of Dilated Images	71
Figure 4.13	:	Morphological Analysis	72
Figure 4.14	:	Face and Hand Radius vs Distance	73
Figure 4.15	:	Face and Hand Detection	73
Figure 4.16	:	Detected Face Region at Different Poses and Distances	74
Figure 4.17	÷	Face Detection with Different Pose and Skin Color	75
Figure 5.1	:	Face Recognition Block Diagram	78
Figure 5.2	1	Block Size 8x8 used for 2D-DCT	80
Figure 5.3	1	DRiT Neural Network Architecture	83
Figure 5.4		Preprocessing Stage	87
Figure 5.5	B	Histogram of Grayscale Input Image	88
Figure 5.6	:	Histogram of Equalized Image	88
Figure 5.7	:	MSE vs Number of Hidden Neurons	89
Figure 5.8	:	MSE vs Learning Rate	90
Figure 5.9	:	Performance Plot	92
Figure 5.10	:	Regression Plot	93
Figure 5.11	:	Receiver Operating Characteristics Plot	93
Figure 5.12	:	Confusion Matrix	94
Figure 5.13	:	Sample Images Not in Database	95
Figure 6.1	:	Tracking Field of View (one frame)	98
Figure 6.2	:	Flowchart of Face Tracking	99
Figure 6.3	:	Rotation Angle	102
Figure 6.4	:	Flowchart of Servo Motor Control	106
Figure 6.5	:	Face Tracked at Different Poses	109

Figure 6.6	:	Face Tracked at Different Distances with Different	110
		Templates	
Figure 6.7	:	Face Tracked when the Hand Overlaps	110
Figure 6.8	:	Equal PWM Values for Pan and Tilt Servo Motor	111
Figure 6.9	:	Maximum Delay Value for Overlapping Condition	111
Figure 6.10	:	Train of Pulses for Pan and Tilt Servo Motor	112
Figure 6.11	:	One cycle for Pan Direction	112
Figure 6.12	:	One cycle for Tilt Direction	113
Figure 6.13	:	Coordinates vs Frame Number of No Movement	113
Figure 6.14	:	Series of Frame Tracked with Pan and Tilt Control	114
Figure 7.1	:	Hardware Setup	117
Figure 7.2	:	Control Board	117
Figure 7.3	:	GUI Project Flow	118
Figure 7.4	:	DRiT Graphical User Interface	121
Figure 7.5	÷	Password Login Panel	122
Figure 7.6	÷	Password Key In Result	122
Figure 7.7	1	No Motion Detected	123
Figure 7.8		Tracking Stage	124
Figure 7.9	•	Tracking at New Background	125
Figure 7.10		Tracking at Different Distances MALAYSIA SABAH	125
Figure 7.11			126
Figure 7.12	:	Recognition and Tracking of Target in Database	127
Figure 7.13	:	Error Due to Pose with User Control	127
Figure 7.14	:	Template Tracking with Two People in Frame	128
Figure 7.15	:	Example of Person Not Registered in Database	128
Figure 7.16	:	System Reinitialize	129
Figure 7.17	:	Face Detected, Servo Motor Rotation and No Motion	129
Figure 7.18	:	Left and Right Movement of Target	130

LIST OF ABBREVIATIONS

AI	-	Artificial Intelligence
ANN	-	Artificial Neural Network
BP	-	Backpropagation
BPNN	-	Backpropagation Neural Network
CAMSHIFT	' -	Continuously Adaptive Mean Shift Algorithm
ССР	-	Capture Compare PWM
CCPR	-	Capture Compare PWM Register
CMOS	-	Complementary Metal-Oxide Semiconductor
COMPORT	-	Communication Port
CRT	-	Cathode Ray Tube
DC	-	Direct Current
DCT	-	Discreet Cosine Transform
DOF	÷	Degree of Freedom
DRIT	-	Detection, Recognition and Tracking System
EBGM	-	Elastic Bunch Graph Matching
FOV	-	Field of View
GUI	-	Graphical User Interface
нмм	Ъ	Hidden Markov Model ERSITI MALAYSIA SABAH
HSI	-	Hue Saturation Intensity
HSL	-	Hue Saturation Luminance
HSV	-	Hue Saturation Value
I/O	-	Input Output
ICA	-	Independent Component Analysis
ID	-	Identification
JPEG	-	Joint Photographic Experts Group
LabVIEW	-	Laboratory Virtual Instrument Engineering Workbench
LBP	-	Local Binary Pattern
LDA	-	Linear Discriminant Analysis
LED	-	Light Emitting Diode
MATLAB	-	Matrix Laboratory
MLP	-	Multi Layer Perceptron

MSE	- Mean Squared Error
MTR	- Medical Telediagnosis Robot
NN	- Neural Network
OSC	- Oscillator
PC	- Personal Computer
PCA	- Principal Component Analysis
PIC	- Peripheral Interface Controller
PIN	- Personal Identification Number
PLL	- Phase Locked Loop
РТ	- Pan Tilt
PTZ	- Pan Tilt Zoom
PWM	- Pulse Width Modulation
RAM	- Random Access Memory
RBF	- Radial Basis Function
RFID	- Radio Frequency Identification
RGB	- Red Green Blue
ROI	- Region of Interest
SIFT	- Scale Invariant Feature Transform
SOM	- Self Organizing Map
SVM	- Support Vector Machine RSITI MALAYSIA SABAH
USB	- Universal Serial Bus
USB Cdc	- USB Communication Device Class
VISA	- Virtual Instrument Software Architecture

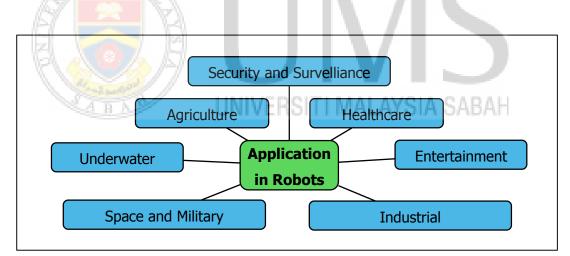
LIST OF SYMBOLS

- ⊕ Dilation
- \ominus Erosion
- d decimal
- D distance
- h hexa
- M Mega
- п рі
- μ Mean
- *Pdv* Decimal Value Parameter
- θ_T Total Angle of Rotation
- V_{max} Maximum Decimal Value
- V_{min} Minimum Decimal Value
- θ' New Angle
- θ Old Angle
- *Vc'* New Coordinate in Decimal
- *Vc* Old Coordinate in Decimal
- $\triangle \theta$ Angle difference

UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

		Page
Appendix A	Skin Samples	150
Appendix B	Circle Detection Data	151
Appendix C	Control Board Circuit Diagram	152
Appendix D	LabVIEW Programming Codes	153
Appendix E	PIC Programming Codes	157
Appendix F	MATLAB Programming Codes	162
Appendix G	List of Journals	163
Appendix H	List of Conference Papers Presented	164
Appendix I	List of Book Chapters	165



CHAPTER 1

INTRODUCTION

1.1 Overview of Robots

Robots are developed to accommodate the growing number of tasks in today's society. The use of robots are undeniable since many years ago. With the advancement of technology, robotics has been developing vastly and has a diverse application from sea to space. By and large, robots have major contributions as they are capable in doing many tasks. Robots are categorized according to the type of application as summarized in Figure 1.1.

Figure 1.1: Applications of Robots.

Robotics has achieved a remarkable transformation in the healthcare industry in the last few years. The dawn of medical robots in hospital applications has immensely enhanced the services offered in the hospitals. There are many mundane tasks in hospital that require the assistance of a robot and thus, many robots were built to execute corresponding chores. Such featured robots are surgical robot (Bergeles and Yang, 2014), patient lifting robot (Ding *et al.*, 2013), rehabilitation robots (Veneman *et al.*, 2007), service robot (Carreira *et al.*, 2006) and therapy robot (Wada and Shibata, 2007). Meanwhile, the rise of telepresence robot resulted in a large reap in medical fields. Telepresence robot have the benefit of providing a closer connection between two ends of users. This case is often highlighted in healthcare industries (Lu and Hsu, 2011).

1.2 Vision System in Telepresence Robot

Telepresence robots are designed with several modules such as navigation, communication and vision system. At present, the most common vision system deployed is usually used for the basic remote visual communication which is focused on a face-to-face communication. The people in the hospital communicates with the remote personal through a screen fixed on the robot. In fact, the patient will feel as if the doctor is near to them.

In the last few years, the development of vision system in medical telepresence robot has been improving drastically where biometric methods have been incorporated. Biometric is defined as the science of knowing a person from his inherent attributes (Reza *et al.*, 2012). There are many existing biometric methods such as face, fingerprint, gait, keystroke and others. The selection of a biometric method is based on the application of robot.

In a telepresence robot, audiovisual communication is one of the modules which corporates audio and visual (Mariappan *et al.*, 2014c). This enables the remote doctor to hear and talk (audio) and see (visual) with the patient and nurse. Besides, it was mentioned in a study that sight carries the highest percentage in a telepresence robot which is 70% and followed by hearing which is 20% (Salvini *et al.*, 2006). A study conducted by Vespa *et al.* (2007) shows that visual (face) information obtained a higher score than the verbal information (speech). This justifies that vision is a more powerful tool than audio.

Since visual carries more weight than audio, thus face is utilised to develop the advance vision system in telepresence robot. Therefore, biometric system using face is the most favourable to be applied in a telepresence robot. Some of the telepresence robot operating in hospital environment that has biometric face technology system are RP- Vita by Intouch Health (2015), Security Warrior by Luo *et al.* (2007) and SIRA by Bergasa *et al.* (2004). However, these robots has several disadvantages such as manual tracking and limitation for non-frontal face poses. This explains that the use of vision system with biometric method is still in developing stage for application in hospital telepresence robot.

1.3 Research Motivation

The use of telepresence robots has gained advantage recently. The benefit of the appearance in telepresence robot has been proven in many literature studies. In developing countries, rural healthcare lack of specialists who are the decision maker for every patient admitted. A specialist cannot commit or make any decision without having a firsthand contact with any patient. These concepts were then adapted by Mariappan *et al.* (2014c) to develop Medical Telediagnosis Robot (MTR) as illustrated in Figure 1.2.

AYSIA SABAH

Figure 1.2 : Medical Telediagnosis Robot (MTR).

Source : Mariappan *et al.* (2014c)

MTR is a form of telepresence robot that can aid in performing diagnosis during medical emergencies for patient with severe limb injuries. MTR allows medical specialist to remotely communicate live with the recipients (patient, nurse or medical officer) and being virtually present to provide directions in a medical procedure during an emergency or telerounding.

The visual communication system designed in MTR is focused on basic faceto-face communication which does not recognize or track the person's face automatically. In brief, MTR is manually controlled by the remote specialist with an aid of joystick which can be rotated at different directions. The control of joystick will allow the recipient to be in the ideal field of view (FOV) throughout the communication process. This is merely a traditional way of controlling a robot which will create a detachment between the specialist and the recipients because the doctor may not be able to pay his attention to the patient during diagnosis. This condition worsens when the recipients unintentionally leave the camera's FOV during the examination period. Once the switching between recipients takes place, the specialist will have to request for identity verification to ensure that he communicates with the right person. The repeated process of this action is not suitable to be done during an emergency.

UNIVERSITI MALAYSIA SABAH

To circumvent the problem, a real-time face recognition and tracking system (DRiT- detection, recognition and tracking) is designed to enhance the performance of visual interaction of MTR. DRiT can recognize a person who is registered in the database and thus a verbal communication is no longer needed. An automated face tracking with a hardware mechanism will ensure the person is still within the FOV. Thus, reducing the control of joystick by the remote specialist. The overall idea of DRiT system can fasten the tracking and verification process as DRiT system takes over the manual control of the robot. This system is comprised of several automated modules to execute various tasks namely face detection, face recognition and face tracking.

The DRiT system involves the implementation of biometric system using human face. There are several challenges that occurs in designing a real-time face recognition and tracking system. In an ideal environment, human face will appear to be different due to changes in face poses and sizes at different background. This changes happens when the person moves away or tilt their face. In most systems, tracking is limited due to the usage of a stationary camera. Thus, a moving camera will increase the FOV for tracking. A real-time intelligent system is needed which can automatically recognize and track human face at different poses and distances under varying background.

1.4 Research Objective

The main objective of this research is to design and develop a real-time face detection, recognition and tracking system (DRiT) for Medical Telediagnosis Robot (MTR) application. The objective can be achieved through the following tasks:

a. To detect human faces with multi pose.

The involuntary reactions will cause the human face to have variation in roll, yaw and pitch angle. The face detection module is designed with hybrid algorithm that will detect human face regardless of pose, size and background.

UNIVERSITI MALAYSIA SABAH

b. To recognize the profile of a person via Neural Network.

Recognition of the detected face is done through the face recognition module using Neural Network. The database consists of facial images taken at different angles and distances. The detected face is matched against the trained database.

c. To develop a pan and tilt hardware module for face tracking.

Face tracking module is implemented with template matching algorithm that tracks the detected face irrespective of pose, size and background. The two degree of freedom (DOF) pan and tilt unit is implemented to increases the tracking view.