THE DEVELOPMENT OF AN EARLY DYSCALCULIA TEST

FACULTY OF PSYCHOLOGY AND EDUCATION UNIVERSITI MALAYSIA SABAH 2016

THE DEVELOPMENT OF AN EARLY DYSCALCULIA TEST

WONG KEN KEONG

FACULTY OF PSYCHOLOGY AND EDUCATION UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: THE DEVELOPMENT OF AN EARLY DYSCALCULIA TEST

IJAZAH: DOCTOR OF PHILOSOPHY (EVALUATION IN EDUCATION)

Saya **WONG KEN KEONG**, Sesi Pengajian <u>2012-2016</u>, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti termaktub di dalam AKTA RAHSIA 1972)

(mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh,

WONG KEN KEONG Tarikh: 22 Ogos 2016 (Tandatangan Pustakawan)

(Prof. Dr. Vincent Pang) Committee Chair (Dr. Chin Kin Eng @ Sporty) Committee Member 1 (Assoc. Prof. Dr. Tan Choon Keong) Committee Member 2

CERTIFICATION

NAME : WONG KEN KEONG

- MATRIC NO. : **PT2011-9074**
- TITLE OF THESIS : THE DEVELOPMENT OF AN EARLY DYSCALCULIA TEST
- DEGREE : DOCTOR OF PHILOSOPHY (EVALUATION IN EDUCATION)
- DATE OF VIVA : 14 JANUARY 2016

CERTIFIED BY;

3. **COMMITTEE MEMBER 2** Assoc. Professor Dr. Tan Choon Keong

DECLARATION

I, Wong Ken Keong, hereby declare that this thesis "The Development of an Early Dyscalculia Test" is an original work done by me for the award of the degree of Doctor of Philosophy in the Faculty of Psychology and Education. I also declare that the materials in this thesis are of my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

05 May 2016

Wong Ken Keong PT2011-9074

ACKNOWLEDGEMENT

My sincere thanks to the people who contributed to this research for the past few years, and also structured who I am.

First and foremost, I would like to thank my research supervisor, Prof. Dr. Vincent Pang who was abundantly helpful and offered invaluable assistance, support and guidance during my research journey. Without his assistance and dedicated involvement in every step throughout the process, this thesis would have never been accomplished. Deepest gratitude is also extended to my co-supervisor, Dr. Chin Kin Eng and second supervisor, Assc. Prof. Dr. Tan Choon Keong, without whose knowledge and assistance this study would not have been successful. Thank you very much for the support and understanding over these past three years.

Special thanks also to all my research grant committee members, especially Dr. Lee Kean Wah, Dr. Lay Yoon Fah and Dr. Sophia Abdullah for sharing the literature and invaluable assistance. Not forgetting to the research assistant, Miss Juilee who had always been there.

I also wish to express my love and gratitude to my beloved wife, Ng Lee Fong for her understanding and endless love, through the duration of my study. Thank you for the encouragement and comfort.

This research project would not have been possible without the support of many agencies. I wish to convey appreciations to the Malaysian Ministry of Education and Sabah Education Department for providing the financial means and laboratory facilities. I would like to acknowledge the financial support of the Malaysian Ministry of Education for the full scholarship and the Fundamental Research Grant Scheme (FRG0312-SS1-1/2012) for my Doctoral program.

UNIVERSITI MALAYSIA SABAH

Wong Ken Keong 05 May 2016

ABSTRACT

Dyscalculia is a specific mathematics learning disability that affects the ability to acquire basic numeracy skill and is known as a deficit in numerosity. The primary cause of dyscalculia currently appears to be a genetically determined disorder of number sense. In an effort to raise awareness and understanding of dyscalculia among parents, teachers, and the general public, this thesis is the Design and Development research (DDR) and involved development of the Early Dyscalculia Test (EDT), a computer-based instrument for early diagnosis of dyscalculia. To ensure that the target students were relevant to learning disability in mathematics, students in Numeracy and Literacy Screening Programme (LINUS) were chosen as respondents. Due to the large and widely dispersed of the population of LINUS students in Sabah, the cluster sampling method was employed as the main sampling method in this study. As a result, the total sample size in this study consisted of 448 LINUS students. The study findings were analyzed by referring to the results obtained from the EDT and involving the analysis of data of Item Response Model (IRM), Microsoft Excel and Statistical Package for the Social Sciences (SPSS). Results of this study indicated that the instrument constructed from the numerosity concept and mathematical thinking framework provided valid and reliable measures of dyscalculia and basic numeracy skill among LINUS students. The results showed that 89.7% of the variance in students' basic numeracy skill was accounted for by the four predictor variables (number sense, matching items, dot enumeration and number comparison) as a whole. Dyscalculic students and their non-Dyscalculic peers were also compared in terms of arithmetic abilities; and the results revealed that dyscalculic students were significantly weaker than their peers in these abilities. The findings of the present study provided implications towards developing a better understanding about the learning problems of the children with special reference to learning disability in mathematics. The findings could guide policy makers, administrators, authorities, teachers and parents to take the necessary measurements to help the children. UNIVERSITI MALAYSIA SABAH

ABSTRAK

PEMBANGUNAN UJIAN AWAL DYSCALCULIA (UAD)

Dyscalculia adalah merujuk kepada kesukaran pembelajaran matematik yang spesifik di mana ia memberi kesan kepada keupayaan untuk memperoleh kemahiran numerasi asas, dan juga dikenali sebagai defisit dalam numerositi. Setakat ini, punca utama dyscalculia adalah disebabkan oleh ketidakupayaan number sense secara genetik. Untuk memastikan bahawa murid sasaran adalah releven dengan masalah pembelajaran matematik, murid-murid dalam program literasi dan numerasi (LINUS) telah dipilih sebagai responden. Oleh kerana populasi murid-murid LINUS di Sabah yang besar dan tersebar luas, kaedah pensampalan kelompok telah digunakan sebagai kaedah pensampelan utama di dalam kajian ini. Jumlah sampel yang terlibat dalam kajian ini terdiri daripada 448 murid LINUS. Dapatan kajian telah dianalisis berpandukan kepada keputusan yang diperolehi dari UAD dan melibatkan penganalisisan data melalui Item Response Model (IRM), Microsoft Excel and Statistical Package for the Social Sciences (SPSS). Dapatan kajian ini menunjukkan bahawa instrumen yang dibina daripada konsep numerositi dan kerangka teori pemikiran matematik mempunyai kesahan dan kebolehpercayaan untuk mengukur dyscalculia dan kemahiran numerasi asas di kalangan murid-murid LINUS. Keputusan menunjukkan 89.7% daripada varians kemahiran numerasi asas murid telah menyumbang kepada empat pembolehubah peramal (number sense, matching items, dot enumeration and number comparison) secara keseluruhan. Murid-murid yang mempunyai dyscalculia dan rakan-rakan sebaya mereka yang tidak mempunyai dyscalculia juga telah dibandingkan melalui kebolehan aritmetik. Hasil kajian tersebut menunjukkan bahawa murid-murid ini adalah lebih lemah secara signifikan berbanding dengan rakan-rakan sebaya mereka dalam kebolehankebolehan ini. Dapatan kajian ini juga telah memberi implikasi dalam membangunkan kefahaman yang lebih baik tentang masalah pembelajaran murid-murid khususnya kepada masalah pembelajaran matematik. Hasil kajian ini boleh memberi motivasi kepada pengubal dasar, pentadbir, pihak berkuasa, guru-guru dan ibubapa untuk mengambil tindakan yang wajar dalam membantu pembelajaran murid-murid.

TABLE OF CONTENTS

		Page
TITLE		ii
DECL	ARATION	iii
ACKN	OWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vi
TABL	E OF CONTENTS	vii
LIST	OF TABLES	xiv
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	xix
CHAP 1.1	Introduction	1
1.2	Research Background	2
1.5	Theoretical Framework	5
1.4	1.4.1. Sense of numerosity	5 7
	1.4.2 Cognitive Development in Mathematical Thinking	, 8
1.5	Conceptual Framework	10
1.6	Research Objectives	12
1.7	Research Questions	13
1.8	Hypotheses	14
1.9	Significance of Study	14
1.10	Definition of Terms/Operational Definition	16
1.11	Limitation	18
1.12	Conclusion	18

CHAPTER 2: REVIEW OF LITERATURE

2.1	Introduction	20	
2.2	Learning Disabilities		
2.3	Dyscalculia	23	
	2.3.1 Symptoms and Causes of Dyscalculia	27	
	2.3.2 Diagnosis of Dyscalculia	28	
	a. Dyscalculia Screener	31	
	b. DyscalculiUM	31	
	2.3.3 Dyscalculia and Dyslexia	32	
	2.3.4 How Does Dyscalculia Affect Mathematics?	33	
	2.3.5 Prevalence of Dyscalculia	36	
	2.3.6 Mathematics Teaching and Learning for Students with Dyscalculia	39	
	2.3.7 Assessment of Dyscalculic Individuals	42	
2.4	Theory Foundation	43	
	2.4.1 Numerosity	44	
	2.4.2 Cognitive Development in Mathematical Thinking	47	
	2.4.3 Making Sense of Mathematic Through <i>Perception</i> , <i>Operation</i> and <i>Reason</i>	58	
	a. Perception	59	
	b. Operation	60	
	c. Reason	61	
2.5	Quality of Education in Malaysia	61	
	2.5.1 Mathematics Curriculum in Malaysia	62	
	2.5.2 Literacy and Numeracy Screenings (LINUS) Programme	64	
2.6	Recent Studies	65	
2.7	Conclusion	69	

CHAPTER 3: METHODOLOGY

3.1	Introduction	70
3.2	Research Design	71
	3.2.1 Design and Development Research (DDR)	72
3.3	Research Procedure	74
3.4	Research Schedule	75
3.5	Instrumentation	76
	3.5.1 Development of Instrument	76
	3.5.2 Validity of the Instrument	78
	a. Content Validity	79
	b. Construct Validity	79
	c. Criterion Validity	80
	3.5.3 Pilot Study	81
3.6	Quantitative Data	81
3.7	Data Collection	
3.8	Data Analysis	82
	3.8.1 Quantitave Data Analysis	82
	3.8.2 Standardized Score	84
	a. Z-score	84
	b. T-score	85
	c. Stanine Score	85
	d. Inverse Efficiency Score (IES)	88
3.9	Population and Sample	90
	3.9.1 Cluster Sampling	90
	3.9.2 Population	93
	3.9.3 Research Sample Size	93
3.10	Ethical Issues	96

	3.10.1 Parental Consent	97
3.11	Conclusion	97

CHAPTER 4: INSTRUMENTATION

۵۵

55
99
107
112
112
113
114
114
115
116
117
117
118
118
119
119
119
121
121
121
121
121

5.3.2	Prevale Studer	ence rates of Dyscalculia According to the Category of LINUS	122
5.3.3	Prevale	ence Rates of Dyscalculia According to Gender	122
5.3.4	Prevale	ence Rates of Dyscalculia According to Location of the School	123
5.3.5	Analys	es of Students' Performance in the EDT Constructs	123
	a. Perf	ormance Based on Stanine Score	123
	i.	Simple Reaction Time	124
	ii.	Number Sense	125
	iii.	Matching Items	126
	iv.	Dot Enumeration	126
	v.	Number Comparison	127
	vi.	Arithmetics Test	128
6	b. Des	criptive Statistics of the Students' Performance	128
Infere	ential Sta	atistics Analysis	130
5.4.1	Tests o	of Normality	131
Hypot	theses T	esting (Inferential Statistics)	134
5.5.1	Differe Catego	nce in the Prevalence Rates of Dyscalculia According to the bry of LINUS Students	134
5.5.2	Differe Gender	nce in the Prevalence Rates of Dyscalculia According to	136
5.5.3	Differe Locatio	nce in the Prevalence Rates of Dyscalculia According to on of the School	138
5.5.4	Differe the Stu	nce in the Performance of Arithmetics Construct According to Idents' Classification	140
5.5.5	Best Pr	redictor of Numerosity to the Basic Numeracy Skill	141
	a. Hom	noscedasticity	142
	b. Line	arity	142
	c. Inde	pendence	145
	d. Mult	icollinearity and Singularity	145
	e. Mult	iple Linear Regression Analysis	147
Concl	usion		150

5.4

5.5

5.6

CHAPTER 6: CONCLUSION AND DISCUSSION				
6.1	Introduction			
6.2	Summary of Findings			
6.3	Discussion of Study	152		
6.4	Instrumentation	153		
	6.4.1 Early Dyscalculia Test (EDT)	153		
	a. EDT vs. Dyscalculia Screener	154		
	b. EDT vs. DyscalculiUM	155		
	6.4.2 Dyscalculia Classification	156		
	6.4.3 Reliability and Validity of the EDT	157		
6.5	Prevalence Rate of Dyscalculia	157		
	6.5.1 LINUS Students	158		
	6.5.2 Gender	160		
	6.5.3 School Location	161		
6.6	Student's Performance in the EDT Construct	162		
	6.6.1 Student's Performance Data Separated by EDT Construct	164		
	a. Simple Reaction Time	165		
	b. Numerosity	165		
	c. Arithmetics	166		
6.7	Best Predictor for Basic Numeracy Skill	167		
6.8	Implications of the Findings	169		
	6.8.1 Implications on the Development of Theories	169		
	6.8.2 Implications on Curriculum Development	169		
	6.8.3 Implications on School and Classroom Practice	170		
	6.8.4 Implications on Parents	171		
6.9	Suggestions for Further Research	172		
6.10	Conclusion	173		

xii

REFERENCES

APPENDIX A	School Location Issued by the Educational Planning and Research Division (EPRD)	187
APPENDIX B	Information Letter and Evaluation Form of Expert	202
APPENDIX C	Research Permission Letter From Malaysian Ministry of Education	228
APPENDIX D	Research Permission Letter From Sabah State Education Department	229
APPENDIX E	Parent's Consent Form	230
APPENDIX F	Items of EDT	232
APPENDIX G	Screen Shot of EDT	251
APPENDIX H	Analysis of Reliability	255
APPENDIX I	Rasch Analysis	276
APPENDIX J	Analysis of Independent Sample T-test	280
	One-way ANOVA Analysis	283
APPENDIX L	Multiple Regression Analysis	287
APPENDIX M	Gantt Chart INIVERSITI MALAYSIA SABAH	291
APPENDIX N	Construct of LINUS Programme	295

175

LIST OF TABLES

		Page
Table 2.1:	Prevalence Rate of Dyscalculia	38
Table 2.2:	Tests of Basic Numerical Capacities - The Idea of numerosity	47
Table 2.3:	Symbols as Process and Concept	58
Table 2.4:	Malaysia Educational System in WEF	62
Table 3.1:	Research Schedule	75
Table 3.2:	Quantitative Data Analysis of Research	83
Table 3.3:	Performance Score of EDT	87
Table 3.4:	Population of Primary School Students in Sabah	93
Table 3.5:	Population of LINUS Students throughout Sabah	93
Table 3.6:	Research Sample Size	95
Table 3.7:	Summary of Research Population and Sample	96
Table 4.1:	Constructs of EDT	100
Table 4.2:	Summary of Dyscalculia Classification MALAYSIA SABAH	110
Table 4.3	Results from the Pilot Study	113
Table 4.4	Reliability and Item Fit of EDT	113
Table 4.5:	EDT as Rated by Experts for Content Validity	114
Table 4.6:	Construct Validity of EDT	115
Table 4.7:	Analysis of Pearson Correlations for Criterion Validity	116
Table 5.1:	Demography of Respondents	117
Table 5.2:	LINUS Numeracy Students	118
Table 5.3:	Gender of the Respondents	118
Table 5.4:	School Location of Respondents	119
Table 5.5:	EDT Screening Results	120

Table 5.6:	Prevalence Rates of Dyscalculia According to the Category of LINUS Students	122
Table 5.7:	Prevalence Rate of Dyscalculia according Gender	123
Table 5.8:	Prevalence Rates of Dyscalculia According to School location	123
Table 5.9:	Students' Performance in the EDT Constructs	124
Table 5.10:	Descriptive Statistics of the LINUS Students' Performance and Comparison amongst the Subgroups Identified through EDT	129
Table 5.11:	First Test of Normality	131
Table 5.12:	Second Test of Normality	132
Table 5.13:	Results of Independent Sample T-Test for H_{0^1}	135
Table 5.14:	Results of Independent Sample T-Test for H_{0^2}	137
Table 5.15:	Results of Independent Sample T-test for H_{0^3}	139
Table 5.16:	One-way ANOVA Analysis for H_{0^4}	140
Table 5.17:	Post Hoc Tests for H_{0^4}	141
Table 5.18:	One-way ANOVA Analysis for H ₀₅	145
Table 5.19:	Tests of Multicollinearity and Singularity	146
Table 5.20:	One-way ANOVA Analysis	147
Table 5.21:	Results of Multiple Linear Regression Analysis	149
Table 5.22:	Stepwise Regression Analysis	149
Table 6.1:	Overall Performance of LINUS Students in EDT	163

LIST OF FIGURES

		Page
Figure 1.1:	Research Theoretical Framework	7
Figure 1.2:	Formal Mathematics is Built on Embodied and Symbolic Thought	10
Figure 1.3:	The Research Conceptual Framework	11
Figure 1.4:	LINUS Screening Process	15
Figure 2.1:	Relation of Dyslexia and Dyscalculia	35
Figure 2.2:	Paths for Informal and Formal Development of Arithmetic	45
Figure 2.3:	Four-step Developmental Model of Numerical Cognition	47
Figure 2.4:	Different Kinds of Mental Entities Arising through Perception, Action and Reflection	48
Figure 2.5:	Outline of the Cognitive Development from a Child to the Research Mathematician	49
Figure 2.6:	Actions and Objects in Building Various Mathematical Knowledge Structures	51
Figure 2.7:	Cognitive Development through Three Worlds of Mathematics	53
Figure 2.8:	Spectrum of outcomes from increasing compression of Symbolism	54
Figure 2.9:	Procedural knowledge as part of conceptual knowledge	55
Figure 2.10:	Compressing a Schema into a Thinkable Concept	55
Figure 2.11:	Embodied Compression	56
Figure 2.12:	Literacy and Numeracy Target in Year 2010	68
Figure 3.1:	Research Procedure	74
Figure 3.2:	Z-score, T-score and Stanine Score in Normal Curve	86
Figure 3.3:	Stanine Score	87
Figure 3.4:	The normal score distribution showing the relationship between stanines and standardised scores.	88
Figure 3.5:	Research Sampling Approach	92

Figure 4.1(a) :	Simple Reaction Time (Left side)	101
Figure 4.1(b) :	Simple Reaction Time (Right side)	102
Figure 4.1(c) :	Simple Reaction Time (Pop – up message)	102
Figure 4.2 (a) :	Number Sense Test Instruction	103
Figure 4.2 (b):	Number Sense Test	103
Figure 4.3 (a) :	Matching Items Test Instruction	104
Figure 4.3 (b) :	Matching Items Test	104
Figure 4.4 (a) :	Dot Enumeration Test Instruction	105
Figure 4.4 (b):	Dot Enumeration Test	105
Figure 4.5 (a) :	Number Comparison Test Instruction	106
Figure 4.5 (b) :	Number Comparison Test	106
Figure 4.6 (a) :	Arithmetic Test Instruction	107
Figure 4.6 (b):	Arithmetic Test	107
Figure 4.7:	The Model of Dyscalculia Classification	108
Figure 5.1:	Pie Chart for EDT Screening Results	120
Figure 5.2:	Students' Stanine Score for Simple Reaction Time	125
Figure 5.3:	Students' Stanine Score for Number Sense	125
Figure 5.4:	Students' Stanine Score for Matching Item	126
Figure 5.5:	Students' Stanine Score for Dot Enumeration	127
Figure 5.6:	Students' Stanine Score for Number Comparison	127
Figure 5.7:	Students' Stanine Score for Arithmetics Test	128
Figure 5.8:	Box Plot for First Normality Test	131
Figure 5.9:	Box plot for Second Normality Test	132
Figure 5.10:	Normal Q-Q Plot	133
Figure 5.11:	Detrended Normal Q-Q Plot	133

Figure 5.12:	Studentized Residual against Predicted Value for Basic Numeracy Skill	142
Figure 5.13:	Partial Regression Plot of Basic Numeracy Skill against Number Sense	143
Figure 5.14:	Partial Regression Plot of Basic Numeracy Skill against Matching Items	143
Figure 5.15:	Partial Regression Plot of Basic Numeracy Skill against Dot Enumeration	144
Figure 5.16:	Partial Regression Plot of Basic Numeracy Skill against Number Comparison	144
Figure 6.1:	Students' Overall Performance in the EDT	164

LIST OF ABBREVIATIONS

EDT	-	Early Dyscalculia Test
GTP	-	Government Transformation Programme
LINUS	-	Literacy and Numeracy Screening
DS	-	Dyscalculia
RD	-	Risk of Dyscalculia
PA	-	Poor Arithmetics
NS	-	Normal Students
SRT	-	Simple Reaction Time
NS	-	Number Sense
MI	D.	Matching Items
DE	- 0	Dot Enumeration
	7	Arithmetics Test
217	2h	
AB	S/	UNIVERSITI MALAYSIA SABAH

REFERENCES

- Adler, B. 2008. *What is Dyscalculia?* Cognitive Centre in Sweden (www.dyscalculiainfo.org). Retrieved on July 1, 2010, from URL: <u>http://www.dyscalculiainfo.org/.</u>
- Alcock L., Simpson A. 1999. The Rigour Prefix. In O. Zaslavsky (Ed.), *Proceedings of the* 23rd Conference of the International Group for the Psychology of Mathematics Education. Haifa: Israel. **2**: 17–24.
- Attwood, T. 2013. Dyscalculia and Dyslexia: Two Different Issues, or Part of the Same Problem. The Dyscalculia Group, First and Best in Education Ltd. Retrieved on May 8, 2013, from URL: <u>http://www.dyscalculia.me.uk/articles.html</u>
- Bailey, K. D. 2001. *Methods of Social Research (4th Edition)*. New York: Free Press.
- Banddeley, A. D. 2002. Is Working Memory Still Working? *European Psychologisy*, **7**(2): 85-97.
- Beacham, N. & Trott, C. 2005. Development of a first-line screener for dyscalculia in Higher Education. *The Skill Journal*, **81**: 13-19
- Beacham, N. & Trott, C. 2006. Project Report: Wider use of DyscalculiUM. An electronic screening tool for dyscalculia in Higher Education. *MSOR Connections*, 6(2): 1-8.
- Blazkova, R. 2005. *Teacher Training for Teaching Learning Disabled Individuals: Dyscalculia*. Faculty of Pedagogy, Masaryk University, Brno, Czech Republic
- Boyle, R. 2009. TIMSS 2007 and the need for change. Vinculum, 46(2).
- Bruyer, R. & Brysbaert, M. 2011. Combining Speed and Accuracy in Cognitive Psychology: Is The Inverse Efficiebcy Score (IES) A Better Dependent Variabkle Than The Mean Reaction Time (RT) and The Percentage of Errors (PE)? *Psychologica Belgica*, **51**(1): 5-13.
- Bryant, D. P. 2005. *Math Disability in Children: An Overview*. Charles and Helen Schwab Foundation.

Butterworth, B. 1999. *The mathematical brain*. London: Macmillan.

- Butterworth, B. Varma, S. & Laurillard, D. 2011. Dyscalculia: From Brain to Education. *SCIENCE*, **332**:1049-1053.
- Butterworth, B. & Laurillard, D. 2011. Low Numeracy and Dyscalculia: Identification and Intervention. *ZDM Mathematics Education*, **42**(6): 527- 539.
- Butterworth, B. 2002a. *Dyslexia AND Dyscalculia: A Review and Programme of Research*. Institute of Cognitive Neuroscience & Department of Psychology. University College London.

- Butterworth, B. 2002b. *Screening for Dyscalculia: A New Approach. Mathematical Difficulties: Psychology, Neuroscience and Interventions.* Oxford: SEN Presentation Summary.
- Butterworth, B. 2003. *Dyscalculia Screener: highlighting children with specific learning difficulties in maths*: London: nferNelson Publishing Company Limited.
- Butterworth, B. 2005. The development of arithmetical abilities. *Journal of Child Psychology and Psychiatry*, **46**(1): 3–18.
- Carroll L. J. & Rothe J. P. 2010. Levels of Reconstruction as Complementarity in Mixed Methods Research: A Social Theory-Based Conceptual Framework for Integrating Qualitative and Quantitative Research. *International Journal of Environmental Research and Public Health*, **7**: 3478-3488.
- Ceglowski, D. A., Logue, M. E., Ullrich, A. & Gilbert, J. 2009. Parents' Perceptions of Child Care for Children with Disabilities. *Early Childhood Education Journal*, **36**(6): 497-504.
- Center for Teaching and Learning of Mathematics (CTLM). 1986. Progress of Dr. Ladislav Kosc's work on dyscalculia. *Focus on Learning Problems in Math*, **8**(3&4).
- Chen, H. T. 2006. A Theory-Driven Evaluation Perspective on Mixed Methods Research. *Reaearch In The Schools. Mid-South Educational Research Association*, **13**(1): 75-83.
- Chin, K. E. 2013. *Making Sense of Mathematics: Supportive and Problematic Conceptions with Special Reference to Trigonometry*. University of Warwick. (Unpublished PhD Thesis).
- Chin, Kin-Eng. & Tall, D. 2012. Making Sense of Mathematics through Perception, Operation and Reason: The Case of Trigonometric Functions. *The 36th Conference of the International Group for the Psychology of Mathematics Education*, Taipei.
- Chin Kin Eng, Vincent Pang, Wong Ken Keong, Tan Choon keong, Lee Kean Wah, Lay Yoon Fah & Sopiah Abdullah. 2014. A Preliminary Study for Dyscalculia in Sabah, Malaysia. *Proceedings of International Conference on Education in Mathematics, Science & Technology (ICEMST 2014).* Konya, Turkey: 462-469.
- Cohen, J. 1992. A power primer. *Psychological Bulletin*, **112**(1), 155-159.
- Cohen, L., Manion, L. & Morrison, K. 2002. *Research Methods in Education: 5th Edition*. London: Taylor and Francis Group.
- Cohen, R. J. & Swerdlik, M.E. 2005. *Psychological Testing and Assessment (6th Edition)*. New York: McGraw Hill.
- Cornoldi, C & Lucangeli, D. 2004. Arithmetic Education and Learning Disabilities in Italy. *Journal of Learning Disabilities*, **37**(1): 42 – 49.
- Creswell, J. W. 2005. *Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research*. New Jersey: Pearson Education.

- Croft, G., Boyer, W. & Hett, G. 2009. Self-actualization: The Heart and Soul of a Potential-based Life Skills Program for a child with Multiple Disabilities. *Early Childhood Educational Journal*, **37**(1): 43-49.
- Curriculum Development Centre. 2003. *Integrated curriculum for primary schools. Curriculum specifications mathematics.* Kuala Lumpur: Ministry Of Education, Malaysia.
- Delgado-Rico, E., Carretero-Dios, H. & Ruch, W. 2012. Content validity evidences in test development: An applied perspective. *International Journal of Clinical and Health Psychology*, **12**(3): 449-460.
- Department for Education and Skills (DfES). 2001. *Guidance to support pupils with Dyslexia and Dyscalculia*. London: Department of Education and Skills.
- Department for Education and Skills (DfES). 2004. *Delivering Skills for Life; The national strategy for improving adult literacy and numeracy skills: A Framework for Understanding Dyslexia. Information on theories and approaches to dyslexia and dyscalculia.* London: Newnorth Print Ltd.
- De Smedt, B., Verschaffel, L. & Ghesquière, P. 2009. The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. *Journal of Experimental Child Psychology*, **103**: 469–479.
- Desoete, A., Roeyers, H. & De Clercq, A. 2004. Children with mathematics learning disabilities in Belgium. *Journal of learning disabilities*, **37**: 50-61.
- Devine, A., Soltész, F., Nobes, A., Goswami, U. & Szucs, D. 2013. Gender differences in developmental dyscalculia depend on diagnostic criteria. *Learning and Instruction*, **27**: 31-39.
- Doig, B., McCrae, B. & Rowe, K. 2003. *Effective numeracy strategies from research and practice in early childhood.* Commonwealth Department of Education, Science and Training. Australia.
- Farrell, M. 2009. *Foundations of Special Education: An Introduction*. United Kingdom: A John Wiley & Sons, Ltd. Publication.
- Feikes, D. & Schwingendorf, K. 2008. The Importance of Compression in Children's Learning of Mathematics and Teacher's Learning to Teach Mathematics. *Mediterranean Journal for Research in Mathematics Education*, **7**(2).
- Flanagan, D. P. & Alfonso, V. C., 2011. *Essentials of Specific Learning Disability Identification*. New Jersey: John Wiley & Sons, Inc.
- Fossey, A. 2014. Principles of Psychometrics and Measurement Design. *2014 User Conference*. San Antonio. March 04 07, 2014.
- Freeman, D. 1998. *Doing Teacher Research: From Inquiry To Understanding*. Toronto: Heinle & Heinle.
- Fuchs, L. S. 2005. Improving Outcomes, Building Identification Models, and Understanding Disability. *Journal of Learning Disabilities*, **38**(4): 350-352.