SYNTHESIS AND CHARACTERIZATION OF PAN NANOFIBER REINFORCED WITH FUNCTIONALIZED CNT/CNF BY ELECTROSPINNING TECHNIQUE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

SYNTHESIS AND CHARACTERIZATION OF PAN NANOFIBER REINFORCED WITH FUNCTIONALIZED MIXTURE CNT/CNF BY ELECTROSPINNING TECHNIQUE

BRYAN BIN GINDANA

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER IN SCIENCE

FACULTY OF SCIENCES AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS THESIS

JUDUL: SYNTHESIS AND CHARACTERIZATION OF PAN NANOFIBER REINFORCED WITH FUNCTIONALIZED CNT/CNF BY ELECTROSPINNING TECHNIQUE

IJAZAH: IJAZAH SARJANA SAINS (KIMIA INDUSTRI)

Saya **BRYAN BIN GINDANA,** Sesi Pengajian **2013-2016,** mengaku membenarkan tesis Ijazah Sarjana Sains ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia UNIVER seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang

telah ditentukan oleh organisasi/badan

di mana penyelidikan dijalankan)

SULIT

TIDAK TERHAD

Disahkan oleh,

BRYAN BIN GINDANA MS1211017T

(Tandatangan Pustakawan)

Tarikh: 22 Ogos 2016

(Dr. Jahimin A. Asik) Penyelia

CERTIFICATION

- NAME : BRYAN BIN GINDANA
- MATRIC NO. : **MS1211017T**
- TITLE : SYNTHESIS AND CHRACTERIZATION OF PAN NANOFIBER REINFORCED WITH FUNCTIONALIZED CNT/CNF BY ELECTROSPINNING TECHNIQUE
- DEGREE : MASTER OF SCIENCE (KIMIA INDUSTRI)

1. SUPERVISOR Dr. Jahimin A. Asik

Signature

2. CO – SUPERVISOR Rubia Bte Idris

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, extractions, equations, summaries and references, which have been duly acknowledged.

14 Dec 2015

.....

Bryan Bin Gindana MS1211017T

ACKNOWLEDGEMENT

Shalom, thanks be to god the almighty Lord that by His grace, I have been able to complete my research and thesis. Never to forget my beloved family, especially to both of my parents for their supports and endless love regardless of anything, and to my only sister Carolina for inspiring me all the way long. I would also like to take this opportunity to express my sincere gratitude to my supervisors Dr. Jahimin Asik and Miss Rubia Idris; for providing and giving me the chance to undertake my research under their supervision. I have gained so many new experiences beyond my expectations. A million thanks for the valuable guidance and opportunities given. I also sincerely thank my mentor Mr. Puvaneswaren, for his everlasting guidance, sincerity and encouragement in helping me to carry out this project to the last bit of it. I also wish to express my highest regard to all the staff members of FSSA Chemistry laboratory, who had rendered their helps during the period of my research; especially to Mr. Sani, Taipin, Recyheidy, Jerry, and Puan Azimah. Not only that, I also wish to convey my appreciation toward Mrs. Marlenny and Imelda of IPB UMS, Mr Azli of FSSA Forestry, and Mr. Nizam of FST UKM. My uttermost gratitude for my dearest besties; Esteranza Victor Jr, Siti Shakinna Chu, and Billance Fung for their unparalleled endearment to keep uplifting me whenever I felt vulnerable, thank you that you guys has always believe in me that I can pull this through. Not to forget, my laboratory colleagues; Florinna, Arvyvie, and Brian for their helps in every way possible toward the completion of my research. Last but not least, I wish to avail myself of this opportunity, to express a sense of gratitude and love to all my acquaintances that had contributed their comments, criticisms and constructive advices, supports, assistances and the willingness to share priceless information and for everything mentioned and unmentioned. May this study imprint of many people.

Bryan Bin Gindana

14 December 2015

ABSTRACT

In this study, functionalization of CNT and CNF was done using oxidative acid treatment with concentrated HCl and HNO₃ solution mixture at 3:1 ratio. Various process variables such as duration, mode of treatment, agitation and temperature are controlled, and consequently the functional groups growth on the surfaces of both CNT and CNF was determined extensively by the aid of Fourier Transform Infrared Spectroscopy (FTIR). The study proceeds by synthesizing the PAN/CNT-CNF polymer nanocomposite fiber using electrospinning technique. The study used PAN polymer solution containing 10 wt % mixture of CNT: CNF at various ratios of 8:2, 2:8, 6:4, and 4:6. Some critical criterions of operational parameters such as applied voltage (12 kV, 12.5 kV, 13 kV) and working distance (13 cm, 14 cm, 15 cm) were also being optimized beforehand. The available evidences supported that, the optimal operational parameter set was found to be at 15 cm, 13 kV set division as validated by series of scrutinized characterization assessments; where the set up successfully produced the thinnest average nanofiber diameter at 318 nm with the range of 288 to 340 nm. The graphitized nanocomposite fiber was then assessed and characterized comprehensively based on its morphological and elementary study using FESEM-EDX, thermal stability behaviour using TGA and DSC, crystallography assessment by XRD analysis, and conductivity study via EIS. Based on the overall assessment of various field of characterizations, overwhelming evidences has led to the confirmatory conclusion, corroborating PB15Z as the best electrospun PAN/CNT-CNF nanocomposite fiber with an exceptionally thin fiber diameter of 280 nm with 232 nm to 304 nm in range. It possessing the highest carbon content approximately 80 % in total and a good conductivity value recorded at 2.3555 x 10^{-4} S/m. The fiber also showed the most stable behaviour under intense heat exposure, withstanding the thermal introduction with gradual decrease of weight without any sudden and major fluctuation of weight.

ABSTRAK

SINTESIS DAN PENCIRIAN SERAT NANO PAN DIPERKASA DENGAN CNT/CNF YANG TERFUNGSIONALISASI MENGGUNAKAN KAEDAH PEMINTALAN ELEKTRO

Di dalam kajian ini, kaedah rawatan secara pengoksidaan menggunakan asid dilakukan dengan larutan pekat HCl dan HNO₃ pada nisbah 3:1. Pelbagai pembolehubah seperti masa, mod rawatan, agitasi dan suhu adalah terkawal di dalam kajian ini, dan kemudiannya kehadiran kumpulan berfungsi diatas permukaan kedua-dua bahan karbon nano dicirikan dengan bantuan spektroskopi penjelmaan Fourier infra-merah (FTIR). Langkah berikutnya diteruskan dengan serat polimer komposit nano berasaskan PAN/CNT-CNF menghasilkan menggunakan kaedah pemintalan elektro. Kajian ini menggunakan larutan polimer PAN yang mengandungi 10 % berat campuran CNT: CNF dalam pelbagai nisbah, iaitu 8:2, 2:8, 6:4, dan 4:6. Parameter operasi kritikal seperti voltan gunaan (12 kV, 12.5 kV, 13 kV) dan jarak kerja (13 sm, 14 sm, 15 sm) dioptimumkan terlebih dahulu. Hasil kajian menunjukkan bahawa set parameter operasi optimum adalah 15 sm dan 13 kV; dimana ia berjaya menghasilkan purata diameter serat nano terkecil pada 318 nm dengan julat 288 nm hingga 340 nm. Serat komposit nano yang digrafitkan kemudiannya dicirikan secara menyeluruh dari aspek analisis morfologi dan kajian elemen menggunakan FESEM-EDX, kestabilan terma menggunakan TGA dan DSC, penilaian kristalografi menerusi analisis XRD, dan keupayaan kekonduksian elektrik melalui EIS. Secara keseluruhannya, berdasarkan variasi penilaian dan pencirian, bukti-bukti substansial telah membawa kepada kesimpulan bahawa PB15Z merupakan serat polimer komposit nano yang terbaik, dimana ia mempunyai diameter serat yang kecil iaitu 280 nm dengan julat pada 232 nm hingga 304 nm. Ia turut mempunyai kadar kandungan karbon yang tertinggi pada 80 % kandungan karbon, serta kekonduksian yang baik pada 2.3555 x 10⁴ S/m. Ia juga turut menunjukkan sifat tahan haba kerana tidak menunjukkan kehilangan berat secara drastik pada suhu tinggi.

TABLE OF CONTENTS

	Page
TITLE	i
CERTIFICATION	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xx
LIST OF SYMBOLS	xxii
LIST OF UNITS	xxiii
CHAPTER 1: INTRODUCTION	1
1.1 Background of Study	1
1.2 Relevance of Study	5
1.3 Objectives of Study UNIVERSITI MALAYSIA SABAH	6
1.4 Scope of Study	6
CHAPTER 2: LITERATURE REVIEW	8
2.1 An Introduction to Nanotechnology	8
2.1.1 Nanomaterials	8
2.1.2 Nanocomposite	9
2.2 Carbon and Carbon Nanomaterials	10
2.2.1 The Allotropes of Carbon	11
2.2.2 Carbon Nanotubes	13
a. Physiochemical properties of Carbon Nanotubes	17
2.2.3 Carbon Nanofiber	21
a. Physiochemical Properties of Carbon Nanofiber	23

2.3	Functionalized Carbon Nanomaterials27			
	2.3.1 Functionalization Approaches	27		
	2.3.2 Advantages of Functionalized Carbon Nanomaterials	29		
	2.3.3 Application of Functionalized Carbon Nanomaterials	31		
2.4	Polymer and Polymer Nanofibers	32		
	2.4.1 Polymer Classification	33		
	2.4.2 Polyacrylonitrile Polymer (PAN)	35		
	2.4.3 PAN nanofiber	35		
2.5	Nanofiber Treatment	36		
	2.5.1 PAN Nanofiber Treatment	37		
	a. Stabilization	37		
	b. Carbonization	38		
	c. Graphitization	39		
2.6	Nanocomposite Preparation	40		
2.7	Electrospinning Technology in Composite Preparation 4:			
13	2.7.1 Type of Electrospinning Setup	42		
E	2.7.2 Operational Principle	43		
B	2.7.3 Effect of Parameter	44		
	a. Solution Parameters	45		
	b. Processing Parameters RSITI MALAYSIA SABAH	47		
2.8	Instrumentations	52		
	2.8.1 Functional Group Determination	52		
	2.8.2 Crystallography Study	52		
	2.8.3 Thermal Analysis	53		
	a. Thermogravimetric Analysis (TGA)	53		
	b. Differential Scanning Calorimetry (DSC)	54		
	2.8.4 Morphology and Elementary Study	55		
	a. Field Emission Scanning Microscopy with Dispersive X-ray	55		
	Analysis (FE-SEM/EDX)			
	b. Transmission Electron Microscopy (TEM)	56		
	2.8.5 Conductivity Analysis	56		

CHAPT	TER 3: METHODOLOGY	58			
3.1	3.1 Overview of the Study				
3.2	Research Material and Experimental Design				
3.3	Functionalization of Carbon Nanomaterials				
3.4	Preparation of Polyacrylonitrile Carbon Nanomaterials Polymer	62			
	Solution Mixture				
	3.4.1 Preparation of Polyacrylonitrile Solution Mixture	63			
	3.4.2 Preparation of PAN/CNT-CNF Solution Mixture	63			
3.5	Electrospinning Set up and Parameters	64			
	3.5.1 Electrospinning Workstation Set up	64			
3.6	Electrospinning of Nanocomposite Fiber	66			
	3.6.1 Electrospinning Process	66			
	3.6.2 Electrospinning Operational Parameters	66			
	3.6.3 Optimization of Electrospinning Operational Parameter	67			
	3.6.4 Synthesis of Electrospun Polyacrylonitrile Carbon Nanotube/	68			
	Carbon Nanofiber (PAN/CNT-CNF) Nanocomposite Fiber				
3.7	Electrospun Nanocomposite Fiber Heat Treatment	69			
B	3.7.1 Stabilization	70			
	3.7.2 Carbonization	70			
	3.7.3 Graphitization UNIVERSITI MALAYSIA SABAH 7				
3.8	Characterization	72			
	3.8.1 Viscosity Analysis	73			
	3.8.2 Morphological and Surface Analysis	73			
	a. Field Emission Scanning Electron Microscopy with Energy	74			
	Dispersive X-ray Analysis				
	b. Transmission Electron Microscopy	75			
	3.8.3 Thermal Stability Analysis	75			
	a. Thermogravimetric Analysis	76			
	b. Differential Scanning Calorimetry	76			
	3.8.4 Functional Groups Analysis	77			

	3.8.5 Crystallography Analysis	78				
	3.8.6 Conductivity Analysis	78				
СНАРТ	ER 4: RESULTS AND DISCUSSION	80				
4.1	4.1 Assessment of Functionalized Carbon Nanomaterials					
	4.1.1 Functional Groups Study					
	4.1.2 Crystallography Study	83				
	4.1.3 Thermal Stability Study	85				
	4.1.4 Texture Morphology Study	90				
4.2	Assessment of Polymer/Carbon Nanomaterials Slurry	95				
	4.2.1 Viscosity Test	97				
4.3	Assessment of Optimisation Electrospinning Parameters	99				
	4.3.1 Morphological Study of Optimisation Electrospun Fiber (5:5)	102				
	PAN/CNT-CNF Nanocomposite Fibers					
	4.3.2 Thermal Stability of Optimisation Electrospun Fiber (5:5)	115				
	PAN/CNT-CNF Nanocomposite Fibers					
A	4.3.3 Summary of Optimisation Electrospining Parameters	125				
4.4	Assessment of Various Ratio Divisions of Electrospun PAN/CNT-CNF	126				
Z	Nanocomposite Fiber Produced Via Optimised Electrospinning					
17	Parameters Parameters					
	4.4.1 Morphological Study of PAN/CNT-CNF Nanocomposite Fiber	127				
	4.4.2 Morphological Comparison of PB15Z, PC15Z, PD15Z, and	141				
	PE15Z Nanocomposite Fiber					
	4.4.3 Thermal Stability of PAN/CNT-CNF Nanocomposite Fiber	144				
	4.4.4 Elementary Study of PAN/CNT-CNF Nanocomposite Fiber	152				
	4.4.5 Crystallography Study of Optimised PAN/CNT-CNF	154				
	Nanocomposite Fiber					
	4.4.6 Conductivity Study of PAN/CNT-CNF Nanocomposite Fiber	156				
	4.4.7 Functional Group Study of Selected PAN/CNT-CNF	150				
	Nanocomposite Fiber	123				

CHAPTER 5: CONCLUSIONS 16		
5.1	Summary	162
5.2	Study Limitations	167
5.3	Future Study	167
REFERENCES 169		

LIST OF TABLES

		Page				
Table 2.1:	The typical physical properties comparison of CNT and other materials					
Table 2.2: Typical properties comparison of VGCNF, SWNT, MWNT, and carbon fiber (CF)						
Table 3.1:	The specifications of carbon nanomaterials	59				
Table 3.2:	Combination ratios of CNT and CNF to PAN solution mixture	62				
Table 3.3:	Testing parameter specifications of Sample A	66				
Table 3.4:	Synthesis parameters of PAN/CNT-CNF composite nanofiber					
Table 4.1:	Viscosity values of polymer composite slurry at room temperature	95				
Table 4.2:	Summarized fiber texture morphology study	111				
Table 4.3:	TGA-DTG thermograms summarized data of electrospun fiber					
Table 4.4:	Summary of DSC thermograms and elementary analysis					
Table 4.5:	Optimum operational parameters obtained from optimisation					
Table 4.6:	PAN/CNT-CNF nanocomposite fibers samples	124				
Table 4.7:	Summarized Morphology Study of Electrospun Fiber PAN/CNT- CNF					
Table 4.8:	TGA-DTG thermograms summarized data of electrospun fiber	145				
Table 4.9:	DSC thermograms summarized data of electrospun fiber					

- Table 4.10:Elemental mass percentage of optimised PAN PAN/CNT-CNF152Nanocomposite Fiber
- Table 4.11: XRD Diffractograms Peak of Electrospun PAN/CNT-CNF 154 Nanocomposite Fibers
- Table 4.12:
 Conductivity values of PAN/CNT-CNF Nanocomposite Pellet
 155
- Table 4.13:Summarize FTIR spectra of graphitized PAN and PB15Z fiber158

LIST OF FIGURES

		Page				
Figure 2.1: Allotropes of carbon (a) diamond, (b) graphite, (c) carbon nanotube, (d) graphene, and (e) fullerene						
Figure 2.2:	Conceptual diagram of (a) single walled carbon nanotube (SWNT) and (b) multi walled carbon nanotube (MWNT)	14				
Figure 2.3:	The graphene honeycomb network with the graphite vector lattice					
Figure 2.4:	Schematic representation of relation between carbon nanotube and graphene making up different chiralities (a) armchair, (b) zigzag, and (c) chiral nanotube	17				
Figure 2.5:	High-resolution transmission electron microscopy (HRTEM) image of sidewall VGCNF with cup stacked structure model	23				
Figure 2 <mark>.6</mark> :	Polymer and their classifications	34				
Figure 2.7:	Stabilization reaction of PAN fiber MALAYSIA SABAH	38				
Figure 2.8:	Carbonization reaction of PAN fiber	39				
Figure 2.9:	The overall heat treatment of PAN fibers	40				
Figure 2.10:	Classifications of fibers by diameter	42				
Figure 2.11:	Type of electrospinning set up (a) horizontal type and (b) vertical type	43				
Figure 2.12:	General set up of electrospinning technique	44				
Figure 2.13:	Jet path between tip of capillary and collector	49				
Figure 2.14: Flow of solution pathway through the capillary tip						

Figure 3.1:	Flow chart of overall experimental design	60				
Figure 3.2:	Raw carbon nanomaterials 6					
Figure 3.3:	Polyacrylonitrile polymer powder					
Figure 3.4:	Schematic diagram of electrospinning set up	65				
Figure 3.5:	Schematic diagram of quartz tube sets specifications	71				
Figure 3.6:	Figure 3.6: Schematic diagram of tubular muffle furnace heating system set up					
Figure 3.7:	Brookfield Viscometer	73				
Figure 3.8: Field Emission Scanning Electron Microscope Energy Dispersive X-ray						
Figure 3.9:	FEI Technai Spirit Transmission Electron Microscope	75				
Figure 3.1 <mark>0:</mark>	PerkinElmer Thermogravimetric Analyzer	76				
Figure 3.11:	PerkinElmer Differential Scanning Calorimeter	77				
Figure 3.12:	PerkinElmer Fourier Transform Infrared Spectroscopy	78				
Figure 3.13:	Solartron Analyzer Electrochemical Impedance Spectroscopy	79				
Figure 4.1:	igure 4.1: FTIR spectra of (a) pristine CNF, (b) pristine CNT, (c) functionalized CNF, and (d) functionalized CNT					
Figure 4.2:	FTIR spectra of (A) high region, and (B) low region of samples (a) pristine CNF, (b) pristine CNT, (c) functionalized CNF, and (d) functionalized CNT	82				
Figure 4.3:	XRD pattern of (a) pristine CNT, (b) pristine CNF, (c) functionalized CNT, and (d) functionalized CNF	84				

- Figure 4.4: TGA-DTG thermograms of (a) raw MWCNT and (b) 86 functionalized MWCNT
- Figure 4.5: TGA-DTG thermograms of (a) raw CNF and (b) functionalized 88 CNF
- Figure 4.6: SEM images with 9KX magnification of (a) raw CNT (b) 91 functionalized CNT, (c) raw CNF, and (d) functionalized CNF
- Figure 4.7: TEM images of functionalized MWCNT viewed from (a) 9K 93 mag, (b) 18.5K mag, and (c) 49K mag
- Figure 4.8: TEM images of functionalized CNF viewed from (a) 4.8K mag, 95 (b) 13K mag, and (c) 30K mag
- Figure 4.9: The viscosity of various polymer slurry based on the 98 nanocomposite composition ratio at room temperature
- Figure 4.10: The visual observation of the (a) electrospinning set up, and 100 (b) ongoing electrospinning process
- Figure 4.11: Structure of electrospun of PAN/CNT-CNF nanofiber composite 101 (a) before heat treatment, (b) after heat treatment
- Figure 4.12: FESEM images of P A13X at (a) low magnification 5K X, (b) 102 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.13: FESEM images of P A13Y at (a) low magnification 5K X, (b) 104 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.14: FESEM images of P A13Z at (a) low magnification 5K X, (b) 105 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.15: FESEM images of P A14X at (a) low magnification 5K X, (b) 106 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.16: FESEM images of P A14Y at (a) low magnification 5K X, (b) 108 medium magnification 10K X, and (c) high magnification 25K X

- Figure 4.17: FESEM images of P A14Z at (a) low magnification 5K X, (b) 109 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.18: FESEM images of P A15X at (a) low magnification 5K X, (b) 110 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.19: FESEM images of P A15Y at (a) low magnification 5K X, (b) 111 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.20: FESEM images of P A15Z at (a) low magnification 5K X, (b) 112 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.21: TGA-DTG thermograms of (a) PA15X, (b) PA15Y, (c) PA15Z, 117 and (d) PAN fiber
- Figure 4.22: TGA thermograms of combined (a) P A15X, (b) P A15Y, (c) P 118 A15Z, and (d) graphitized PAN fiber
- Figure 4.23: DSC thermograms of (a) P A15X, (b) P A15Y, (c) P A15Z, and 122 (d) graphitized PAN fiber
- Figure 4.24: FESEM images of P B15Z at (a) low magnification 5K X, (b) 128 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.25: TEM images of P B15Z viewed from (a) 890 X mag, (b) 2.9K X 129 mag, (c) 6.8K X mag, and (d) 23K X mag
- Figure 4.26: FESEM images of P C15Z at (a) low magnification 5K X, (b) 131 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.27: TEM images of P C15Z viewed from (a) 890 X mag, (b) 2.9K X 132 mag, (c) 6.8K X mag, and (d) 18.5K X mag
- Figure 4.28: FESEM images of P D15Z at (a) low magnification 5K X, (b) 134 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.29: TEM images of P D15Z viewed from (a) 890 X mag, (b) 2.9K X 135 mag, (c) 6.8K X mag, and (d) 23K X mag

- Figure 4.30: FESEM images of P E15Z at (a) low magnification 5K X, (b) 137 medium magnification 10K X, and (c) high magnification 25K X
- Figure 4.31: TEM images of P E15Z viewed from (a) 890 X mag, (b) 2.9K X 139 mag, (c) 6.8K X mag, and (d) 13K X mag
- Figure 4.32: Fiber Diameter Comparison between Various Sample Ratios 142
- Figure 4.33: TGA-DTG thermograms of (a) PB15Z, (b) PC15Z, (c) PD15Z, 146 and (d) PE15Z
- Figure 4.34: Summarized Remaining Ash Value of Electrospun PAN/CNT- 149 CNF Nanocomposite Fiber
- Figure 4.35: DSC thermograms of (a) PE15Z, (b) PC15Z, (c) PB15Z, and (d) 151 PD15Z

Figure 4.36: EDX spectrum of PB15Z optimised PAN/CNT-CNF 153

Figure 4.37: The XRD diffractograms of (a) PD15Z, (b) PC15Z, (c) PB15Z, 155 and (d) PE15Z

Figure 4.38: The example of impedance plot from PE15Z 157

Figure 4.39: The FTIR spectra of (a) graphitized PAN fiber produced in 15 160 cm, 13 kV, and (b) PB15Z fiber

LIST OF ABBREVIATIONS

- 1D One dimension
- 2D Two dimension
- 3D Three dimension
- AC Alternating current
- C₆₀ Fullerene
- CF Carbon fiber
- CNF Carbon nanofiber
- CNT Carbon nanotube
- ConA Concanavalin
- DMAC Dimethylacetamide
- DMF Dimethylformamide
- DMSO Dimethlysulfoxide
- DNA Deoxyribonucleic acid
- DSC Differential scanning calorimetry
- DTG Differential thermogravimetric
- EDX Energy dispersive x-ray
- EIS _____ Electrochemical impedance spectroscopy
- FESEM Field emission scanning electron microscopy
- FTIR Fourier transform infrared spectroscopy
- MWNT Multiwall carbon nanotube
- NMR Nuclear magnetic resonance
- PAN Polyacrylonitrile
- PEEK Polyether ether ketone
- PMMA Polymethyl methacrylate
- PP Polypropylene
- PS Polystyrene
- Pt Platinum
- SEM Scanning electron microscope
- SWNT Single wall carbon nanotube
- TEM Transmission electron microscopy
- Tg Glass transition temperature

- TG Thermogravimetry
- TGA Thermogravimetric analysis
- Tm Melting temperature
- VGCNT Vapour grown carbon nanotube
- XRD X-ray diffraction

LIST OF SYMBOLS

0	-	Degree
Ε	-	Voltage
Ι	-	Current
Ζ′	-	Real impedance
Ζ″	-	Imaginary impedance
θ	-	Theta
п	-	Pi
σ	-	Conductivity
Ω	-	Ohm

LIST OF UNITS

	cm	-	Centimeter
	cm ⁻¹	-	Reciprocal wavelength
	cm ³	-	Centimeter cubic
	cP	-	Centipoise
	Ea	-	Activation energy
	eV	-	Electron volt
	g	-	Gram
	g/cm ³	-	Density
	GPa	-	Gigapascal
	hr	-	Hour
	К	-	Kilo
	KV	-	Kilovolt
1	m	~	Meter
q	mA ee	9	Milliampere
1	mg	-121	Milligram
Ą	min 🔍 🥠	A	Minute
	ml	1	Milliliter
	mm	-	Millimeter HSITT MALAYSIA SABAH
	mW	-	Milliwatts
	nm	-	Nanometer
	S/m	-	Electrical conductivity
	ТРа	-	Terapascal
	V	-	Volt
	W/mK ⁻¹	-	Thermal conductivity
	wt	-	Weight
	μm	-	Micrometer
	Ω.cm	-	Electrical resistivity