DESIGN AND DEVELOPMENT OF AUTONOMOUS BIOMIMETIC BLACKTIP SHARK

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

DESIGN AND DEVELOPMENT OF AUTONOMOUS BIOMIMETIC BLACKTIP SHARK

WONG WEI LOONG

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016 NAME : WONG WEI LOONG

MATRIC NO : **PK20118241**

TITLE: DESIGN AND DEVELOPMENT OF AUTONOMOUSBIOMIMETIC BLACKTIP SHARK

- DEGREE : MASTER OF ENGINEERING (MECHANICAL)
- VIVA DATE : 25 JANUARY 2016

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpt, equations, summaries and references, which have been duly acknowledged.

1 April 2016

Wong Wei Loong PK20118241

ACKNOWLEDGEMENT

I would to express my sincere gratitude and appreciation to my supervisor, Prof. Dr. Yeo Kiam Beng @ Abdul Noor, for the continuous support of my research, for his patience, motivation, and immense knowledge in Material Analysis and Modeling. His guidance helped me in all time of research and writing of this thesis. I could not have imagine having a better advisor and mentor for my MEng. study. I would also like to thank my co-supervisor, Mr. Kenneth Teo Tze Kin, for his advices, guidance and support in this research project.

Furthermore, I would also like to thank Mr. Yoong Hou Pin and Mr. Choong Wai Heng for their insightful comment and technical support work. Not to forget also the support from the Faculty of Engineering (FKJ), University Malaysia Sabah (UMS) and the Materials and Minerals Research Unit (MMRU), Faculty of Engineering (FKJ), University Malaysia Sabah (UMS) for providing the facilities, tools, equipment and financial support necessary for completing this research project.

Most of all, the constant love, support, encouragement and confidence given to me by my parents, Mr. and Mrs. Wong are the reason I am able to stand for the challenges in pursuing my Higher Education. I am also fortune to have a best friends like Mr. Ong Cheah Meng who is always available to help me overcome various obstacle. Finally, I also wanted to thank Ms. Tay Kai Xin for her care, love and happiness she brought to my life.

Wong Wei Loong PK20118241

ABSTRACT

The aim of this project is to design a biomimetic swimming device using a single actuator with a compliance body for locomotion in a liquid environment with basic autonomous manoeuvrability. The biological Blacktip shark is being utilized as the reference model. The working concept of the biomimetic robotic fish is based on a single non-uniform cantilever beam in fluid environment. The kinematic model and kinetic model approach has been utilized to develop the theoretical model by trajectory approximation theory and beam theory for estimating the robotic fish swimming performance. The theoretical model has shown to be comparatively close in estimating the measured result particularly in the prototype design parameter. The experimental result found that the prototype optimum tail beat frequency is 2 Hz at optimum actuation amplitude of 80 deg has been achieved for the prototype design parameters. The prototype is also able to be controlled manually for performing basic manoeuvrability (swim forward, yaw left and yaw right). A basic autonomous detect and avoid of obstacles in underwater environment with basic manoeuvrability have also been developed.

UNIVERSITI MALAYSIA SABAH

ABSTRACK

REKABENTUK DAN PEMBANGUNAN BIOMIMETIC IKAN YU BLACKTIP AUTOMASI

Matlamat projek ini adalah untuk mereka bentuk peranti biomimetic dengan pergerakan tunggal dan mekanisme yang flexible untuk bergerak di persekitaran bendalir dangan pergerakan automasi yang asas. Ikan Yu jenis Blacktip digunakan sebagai model rujukan. Konsep perekaan ikan robot biomimetic ini adalah berdasarkan pemahaman rusuk julur dalam bentuk yang tidak seragam di dalam persekitaran cecair. Model kinematik dan model kinetic digunaken untuk mendapatkan model teori daripada teori penghampiran trajektori dan teori rusuk. Teori model dapat menganggarkan keputusan daripada eksperimen terutamanya pada parameter rekabentuk prototaip. Daripada keputusan eksperimen didapati bahawa frekuensi optimum pergerakan ekor ialah 2 Hz dan pergerakan amplitud optimum ialah 80 darjah adalah parameter reka bentuk prototaip. Prototaip boleh dikawal secara manual untuk melaksanakan pergerakan asas (berenang ke depan, kiri dan kanan). Prototiap telah dihasilkan dan boleh mengesan dan mengelak halangan dengan pergerakan asas secara automasi di persekitaran air.

TABLE OF CONTENTS

		Page
TITLE		i
DECL	ARATION	ii
ACKN	OWLEDGEMENT	iii
ABST	RACT	iv
ABST	RACK	v
LIST	OF CONTENTS	vi
LIST	OF TABLES	xii
LIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	xix
LIST	OF NOTATION	xxi
LIST	OF APPENDIX	xxiv
LIST	OF PUBLICATION	XXV
СНАР	TER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Underwater Biomimetic Device	1
1.3	Problem Statement	2
1.4	Objective of Research	3
1.5	Scope of Research	4
1.6	Thesis Organization	5

CHAP	TER 2:	LITERATURE REVIEW	7
2.1	Introd	uction	7
2.2	Fish Ba	asic Morphology and Locomotion	7
	2.2.1	Fish Swimming Modalities	8
	2.2.2	Constraint of Fish Swimming in Water	12
2.3	The Bl	acktip Shark	13
	2.3.1	Shark Swimming Performance	14
2.4	Mathe	matical Theory of Fish Locomotion	17
	2.4.1	Fish Kinematics	17
	2.4.2	Fish Kinetics	18
2.5	Desigr	n of Biomimetic Robotic Fish	20
	2.5.1	Anguilliform Locomotion Mode	20
	2.5.2	Carangiform Locomotion Mode	20
	2.5.3	Thunniform Locomotion Mode	21
16	2.5.4	Ostraciiform Locomotion Mode	21
2.6	Biomir	netic Robotic Fish Actuator	22
E.	2. <mark>6.1</mark>	Single Link Actuator	22
P	2.6.2	Multilink or Multi Joint Actuator	22
	2.6.3	Smart material actuator	23
2.7	Currer	nt Trends of Robotic Fish	23
2.8	Contro	ol System and Mechanism of Robotic Fish	27
	2.8.1	RoboTuna Robotic Fish	28
	2.8.2	Improve Version of RoboTuna	29
	2.8.3	Robotic Pike Fish	31
	2.8.4	Compliant Body Robotic Fish	32
2.9	Summ	ary	33
	TED 3 .		24
СНАР	IER 3:	MATHEMATICAL MODELLING	34
3.1	Introd	uction	34
3.2	Blackti	ip Shark Kinematic Model	34
	3.2.1	Blacktip Shark Travelling Body Wave Model	35
	3.2.2	Kinematic Tail Path Model	36

3.3	Blackt	ip Shark Kinematic Motion Analysis	37
	3.3.1	Kinematic Motion Simulation w.r.t. Different Span Length $\ell_{\it body}$	39
	3.3.2	Kinematic Motion Simulation w.r.t. U/ℓ_{body} = 1.6 L/s	40
	3.3.3	Kinematic Motion Simulation w.r.t. $f = 2.32$ Hz	41
3.4	Kinetio	cs of Shark Model	42
	3.4.1	Elemental Shark Model	43
	3.4.2	Reaction Force of Fluid Resistance	45
	3.4.3	Motion Moment Excitation Analysis	46
	3.4.4	Resolving Time-Domain of Fish-Body Shedding Wave	47
	3.4.5	Resolving Space-Domain Boundary Conditions	50
	3.4.6	Shedding Wave Response of Fish	53
	3.4.7	Characteristic Response of Explicit Point at Tail-Foil	55
3.5	Kineti	c Motion Simulation of Model Shark Fish	56
	3.5.1	Body Geometry of Model Shark Fish	57
	3.5.2	Body Geometry Characteristic of Model Shark Fish	58
A	3.5.3	Kinetic Simulation of the Model Shark Fish	59
3.6	Perfor	mance Estimation of Model Shark Fish	62
P	3.6.1	Thrust and Speed Estimation Model	62
	3.6.2	Experimental Identification of Model Shark Fish Thrust	64
3.7	Summ	ary UNIVERSITI MALAYSIA SABAH	65
CHAP	TER 4:	PROTOTYPE DESIGN AND FABRICATION	66
4.1	Introd	luction	66
4.2	Conce	ptual Design	66
4.3	Prelim	ninary Design	67
4.4	Mater	ial Selection	68
	4.4.1	3D Printing Material	68
	4.4.2	Casting Material	69
4.5	Detail	Prototype Design	70
	4.5.1	Actuation Mechanism	71
	4.5.2	Compliant Tail Design	72
	4.5.3	Waterproof Housing and Manoeuvre Mechanism	73

4.6	Prototyp	pe Fabrication Process	74
	4.6.1 (Compliant Tail Fabrication Technique	74
	4.6.2 I	Prototype of Compliant Tail Fabrication	77
	4.6.3 I	Flexible Body Fabrication Techniques	79
	4.6.4 I	Prototype Flexible Body Fabrication	81
	4.6.5	Assembly of compliant tail and flexible body	82
4.7	Summa	ry	82
CHAF	PTER 5: F	PROTOTYPE CONTROL SYSTEM	84
5.1	Introduo	ction	84
5.2	Control	System Concept	84
5.3	The Cor	ntrol Firmware	85
	5.3.1 I	Main Program	86
	5.3.2	Tail Oscillation Function	87
l	5.3.3 I	Manual Control Function	87
B	5.3.4 I	Basic Autonomous Control Function	88
Z	5.3.5	Obstacle Detection Function	89
5.4	Control	Hardware	91
	5.4.1 I	Host Communication Hardware	92
	5.4.2 (Control Board	92
	5.4.3 I	Microcontroller	94
	5.4.4	USB to Serial Adapter	94
	5.4.5	Wireless Module	95
	5.4.6	Infrared Sensor	96
	5.4.7 I	Power supply	96
	5.4.8	Voltage regulator	97
	5.4.9 9	Servomotor	98
5.5	Control	Board Circuit Design and PCB Schematic Layout	98
	5.5.1 (Control Board Fabrication Result	100
5.6	Prototyp	be Complete Assemble	101
5.7	Control	Program Verification	102
	5.7.1 (Control Program Command	102

	5.7.2	Receive Feedback and Sent Command	103
5.8	Protot	ype Manual and Autonomous Manoeuvrability Verification	104
	5.8.1	Tail Actuation Verification	104
	5.8.2	Manual Manoeuvrability Control Verification	106
	5.8.3	Autonomous Manoeuvrability Control Verification	106
5.9	Protot	ype Swimming Motion Verification	107
	5.9.1	Experiment Setup	107
	5.9.2	Prototype Swimming Motion Verification Result	109
5.10	Protot	ype Swimming Propulsion Thrust Verification	112
	5.10.1	Propulsion Thrust Experiment Setup	112
	5.10.2	Propulsion Thrust Experiment Result	113
5.11	Protot	ype Swimming Speed Verification	114
	5.11.1	Swimming Speed Verification Experiment	114
	5.11.2	Swimming Speed Verification Result	114
5.12	Summ	ary	116
СНАР	TER 6	RESULT AND DISSCUSSION	117
	V.C.	UNIVERSITI MALAYSIA SABAH	
6.1	Introd	luction	117
6.2	Shark	Kinematic and Kinetic Motion Simulation	117
	6.2.1	Swimming Kinematic Motion Comparison	117
	6.2.2	Prototype Swimming Kinetic Motion Effect	118
6.3	Develo	opment of Prototype	119
	6.3.1	Semi Flexible Caudal Fins Fabrication	119
	6.3.2	Compliant Tail Fabrication	120
	6.3.3	Flexible Body Fabrication	121
	6.3.4	Prototype Buoyancy	122
	6.3.5	Prototype Control Program	122
	6.3.6	Prototype Electronic and Control Hardware	122
6.4	Biomir	metic Robotic Fish Swimming Performances Evaluation	123

	6.4.1	Average Body Displacement Evaluation	123
	6.4.2	Average Propulsion Thrust Evaluation	126
	6.4.3	Average Swimming Speed Evaluation	128
6.5	Summ	ary	130
СНАР	TER 7:	CONCLUSION	131
7.1	Overvi	ew	131
7.2	Conclu	ision	131
7.3	Future	Works	133
REFE	RENCE	S	134
APPE	NDIX		141
Appen	dix A:	Control firmware coding	141
Appen	dix B:	List of publication	149
R			
	V.	UNIVERSITI MALAYSIA SABAH	

LIST OF TABLES

Table 2.1:	Summary of mean kinematic parameters for species of shark	16
Table 2.2:	Summary of bioinspired robotic fish from U.S and U.K	25
Table 2.3:	Summary of bioinspired robotic fish from China and Estonia	26
Table 2.4:	Summary of bioinspired robotic fish from Japan	27
Table 3.1:	Kinematic motion for Blacktip shark and model shark parameters	38
Table 3.2:	Parameter of model material and actuation properties	56
Table 3.3:	Parameter of model kinematic values and geometric properties	56
Table 3.4:	Required geometry value of the model shark fish (Side view)	57
Table 3.5:	Required geometry value of the model shark fish (Top view)	58
Table 3.6 <mark>:</mark>	Material properties of design the model shark fish	59
Table 4.1:	Comparison of ABS and PLA thermoplastic	69
Table 4.2:	Silocast 588 silicone rubber physical properties	69
Table 5.1:	Manual control action	88
Table 5.2:	Autonomous control action	89
Table 5.3:	List of prototype commands	103
Table 6.1:	Error percentage of average body displacement between prototype and theoretical model	124
Table 6.2:	Error percentage of average body displacement between prototype and real Blacktip shark	125
Table 6.3:	Error percentage of average of propulsion thrust between prototype and theoretical model	127
Table 6.4:	Error percentage of average propulsion thrust between prototype and real Blacktip shark	128
Table 6.5:	Percentage error of average swimming speed between prototype and theoretical model	129

LIST OF FIGURE

		Page
Figure 2.1:	Fish morphology.	7
Figure 2.2:	Fish locomotion techniques associated with BCF propulsion.	8
Figure 2.3:	Forward swim of a butterfish.	9
Figure 2.4:	Backward swims of an eel.	9
Figure 2.5:	Forward swim of a whiting fish.	10
Figure 2.6:	Forward swim of a carp fish.	10
Figure 2.7:	Forward swim of a mackerel fish.	11
Figure 2.8:	Forward swim of a boxfish.	11
Figure 2.9:	Fish swimming drag and thrust.	12
Figure 2.10:	Fish pitch, roll and yaw.	13
Figure 2.11:	The Blacktip shark.	14
Figure 2 <mark>.1</mark> 2:	Blacktip shark swimming motion at 0.22 m/s forward speed.	15
Figure 2.13:	Relationships between specific tail beat amplitude A_{iail} / L , – specific wavelength $\lambda \setminus L$, actuation frequency f , and specific swimming speed U / L for Blacktip shark.	16
Figure 2.14:	Top view of fish swimming motion.	17
Figure 2.15:	Continuous flexible tail model.	19
Figure 2.16:	Internal structure and control system of RoboTuna.	28
Figure 2.17:	Simplified body motion control hardware of Robotuna.	29
Figure 2.18:	VCUUV subsystem layout.	29
Figure 2.19:	VCUUV system layout.	30
Figure 2.20:	PC/104 Stack.	30
Figure 2.21:	Layout of RoboPike.	31
Figure 2.22:	RoboPike actuator control flow.	32

Figure 2.23:	Design of a complaint body biomimetic robotic fish.	32
Figure 2.24:	Control flow of Alvarado's robotic fish.	33
Figure 3.1:	Variable used for describe the shark swimming kinematic.	34
Figure 3.2:	Comparison between biological Blacktip shark (top) and model shark fish (bottom) swimming kinematic motion.	39
Figure 3.3:	Comparison between biological Blacktip shark (top) and model shark fish (bottom) for the effect of double the swimming speed.	40
Figure 3.4:	Comparison between biological Blacktip shark (top) and model shark fish (bottom) for the effect of double the actuation frequency.	41
Figure 3.5:	Top view of flexible body model.	42
Figure 3.6:	Free body diagram of the elemental fish model.	43
Figure 3.7:	Geometric views of model base on Equation (3.66) and (3.67).	58
Figure 3.8:	Cross section area A , second moment of inertia I and added mass along m the model shark fish body span length base on equation (3.63), (3.64) and (3.65).	59
Figure 3 <mark>.9:</mark>	Model shark fish swimming kinetic motion.	60
Figure 3.10:	Effect of double the actuation moment. LAYSIA SABAH	60
Figure 3.11:	Effect of double the actuation frequency.	61
Figure 3.12:	Effect of double the actuation frequency and moment.	61
Figure 3.13:	Reference frontal area of the model shark fish.	62
Figure 3.14:	Drag coefficient analysis of the model shark fish.	63
Figure 3.15:	Drag coefficient of the prototype.	63
Figure 3.16:	Swimming thrust estimation.	64
Figure 4.1:	The shark skeleton anatomy.	66
Figure 4.2:	Concept design of the prototype, rigid section (red), flexible section (green) and semi flexible (blue).	67
Figure 4.3:	Side view of the Blacktip shark.	67

Figure 4.4:	Bottom view of the Blacktip shark.	67
Figure 4.5:	The Blacktip shark 3D model.	68
Figure 4.6:	Different view of prototype design.	70
Figure 4.7:	Isometric view of the prototype.	71
Figure 4.8:	Actuation mechanism design.	72
Figure 4.9:	Location of servomotors and transmission mechanism for tail attenuation and dive control.	72
Figure 4.10:	Compliant tail design.	73
Figure 4.11:	Waterproof housing and manoeuvre mechanism.	74
Figure 4.12:	Compliant tail mold and fabrication: (A) Combine fin support with caudal fin, (B) Pour rubber into caudal fin, (C) Combine actuation plate with tail, (D) Pour rubber into assembled tail, (E) Push hollow cone into the assembled, and (F) Pour rubber into assembled tail holder.	75
Figure 4.13:	Compliant tail fabrication process: (G) Remove the hollow cone and pin from the mold, (H) Combine cured tail and tail holder, and (I) Remove the cured compliant tail from the mold.	76
Figure 4.14:	Fabrication of caudal fin and the assembly of actuation plate.	78
Figure 4.15:	Fabrication process of tail holder.	78
Figure 4.16:	Combination compliant tail and tail holder.	79
Figure 4.17:	Disassembly of molds after compliant tail is cured.	79
Figure 4.18:	Compliant tail after removing unnecessary silicone rubber.	79
Figure 4.19:	 Compliant body fabrication process: (A) Assemble the bottom body internal mold by using the screws, (B) Combine both of skin mold and attach to the bottom, (C) Pour uncured rubber into the body mold, (D) Pushing top body internal mold into assembled mold, (E) Cured the silicone rubber, and (F) Removing cured compliant body from mold. 	80
Figure 4.20:	Fabrication process of the flexible body for step (a) to (f).	81

xv

Figure 4.21:	Fabrication process of the flexible body for step (g) to (h).	82
Figure 4.22:	Assembly of compliant tail (left) and flexible body (right).	82
Figure 5.1:	System concept of the robotic fish.	85
Figure 5.2:	Control firmware summary flowchart.	85
Figure 5.3:	Main program flowchart.	86
Figure 5.4:	Tail oscillation flowchart.	87
Figure 5.5:	Manual control function flowchart.	88
Figure 5.6:	Enabling and disabling autonomous control function flowchart.	89
Figure 5.7:	Obstacle detection function flowchart.	90
Figure 5.8:	Obstacle detection function flowchart (cont.).	91
Figure 5.9:	Block diagram of the host communication hardware.	92
Figure 5.10:	The size of host communication hardware.	92
Figure 5.11:	The control hardware connected to the computer.	92
Figure 5.12:	Block diagram of the robotic fish control hardware.	93
Figure 5.13:	The robotic fish control board hardware.	93
Figure 5.14:	Arduino Mini board the microcontroller unit.	94
Figure 5.15:	Arduino Mini programmer adapter.	94
Figure 5.16:	USB to Serial Adapter.	95
Figure 5.17:	Wireless module HC-11.	95
Figure 5.18:	IR sensor detector (Left) and emitter (Right).	96
Figure 5.19:	IR sensor attached to the robotic fish.	96
Figure 5.20:	Power pack without (left) and with (right) enclosure.	97
Figure 5.21:	The voltage regulator L7806CV (left) and L7805CV (right).	97
Figure 5.22:	The servomotors AMG15 (left) and HK15178 (right).	98
Figure 5.23:	Control board circuit design.	99

Figure 5.24:	Control board PCB schematic layout.	99
Figure 5.25:	Back view PCB control board.	100
Figure 5.26:	Different view of PCB control board.	100
Figure 5.27:	Connection of all components into the control board.	101
Figure 5.28:	Explode view of the biomimetic robot fish prototype.	101
Figure 5.29:	Control board outside (left) and inside (right) of prototype.	102
Figure 5.30:	Complete assembled biomimetic robotic fish prototype.	102
Figure 5.31:	Arduino software (left) and serial monitor (right).	103
Figure 5.32:	Change actuation amplitude (left) and frequency (right).	104
Figure 5.33:	Enable (left) and disable (right) autonomous control.	104
Figure 5.34:	Servomotor rotation limit.	105
Figure 5.35:	Tail actuation verification from 20 deg to 90 deg.	105
Figure 5.36:	Prototype yaw left (left) and yaw right (right) motions.	106
Figure 5.37:	Prototype forward swim motion.	106
Figure 5.38:	Series of Video Frame of Autonomous underwater test.	107
Figure 5.39:	Combine motion of autonomous underwater test.	107
Figure 5.40:	Test apparatus designed for swimming motion verification.	108
Figure 5.41:	Top view and isometric view of testing apparatus.	108
Figure 5.42:	Experiment setup of prototype fish swimming kinetic motion.	109
Figure 5.43:	Prototype head is fixed to simulate fixed-free beam model.	109
Figure 5.44:	Series of video frame of prototype swimming motion for a 2 Hz frequency at 60 deg actuation.	110
Figure 5.45:	Time history of body displacement variations for, tail-end (blue) middle tail (red) and mid-body (green) at 60 actuation degrees and 2 Hz frequency.	111
Figure 5.46:	Average body displacement at tail-end with oscillation frequency 1 Hz to 7 Hz for actuation from 20 deg to 90 deg.	111

Figure 5.47:	Prototype propulsion thrust experiment setup.	112
Figure 5.48:	Illustration of thrust measurement device detail.	112
Figure 5.49:	Different views of the thrust measurement device.	113
Figure 5.50:	Comparison of measured propulsion thrust versus swimming frequency.	113
Figure 5.51:	Swimming speed verification experiment setup.	114
Figure 5.52:	Video analysis of prototype swimming along tracking path.	115
Figure 5.53:	Average measured swimming speed versus swimming graph frequency.	115
Figure 6.1:	Different versions of semi flexible caudal fin fabricated.	119
Figure 6.2:	Production of T1, T2 and T3 version compliant tail side view (left) and front view (right).	120
Figure 6.3:	Production of T2, T4 and T5 version of compliant tail side view (left) and front view (right).	121
Figure 6.4:	Production of Flexible Body top view (left) and side view (right).	121
Figure 6 <mark>.5</mark> :	Prototype dorsal fin.	122
Figure 6.6:	Average body displacement at the end tail of the theoretical model and prototype.	124
Figure 6.7:	Average body displacement of Blacktip shark, theoretical model and prototype versus oscillation frequency.	125
Figure 6.8:	Comparison of theoretical model propulsion thrust and prototype propulsion thrust versus oscillation frequency.	126
Figure 6.9:	Average propulsion thrust of theoretical model, prototype and Blacktip shark versus oscillation frequency.	127
Figure 6.10:	Comparison of average swimming speed between theoretical model and prototype versus oscillation frequency.	128
Figure 6.11:	Comparison of average swimming speed of theoretical model Blacktip shark, model shark fish and prototype swimming speed.	129

LIST OF ABBREVIATIONS

3D	-	Three dimensional
ABS	-	Acrylonitrile Butadiene Styrene
ADAMS	-	Automated Dynamic Analysis of Mechanical System
BCF	-	Body and/or caudal fin
CRT	-	Compliant Robotic Tuna
CAD	-	Computer Aided Design
DOF	-	Degree Of Freedom
FDM	-	Fused Deposition Modelling
IR	-	Infrared
міт		Massachusetts Institute of Technology
PLA		Polylactic Asid
PZT	S.	Piezo Ceramic
RTV	(FO)	Room Temperature Vulcanization AYSIA SABAH
SMA	-	Smart-Memory Alloy
USB	-	Universal Serial Bus
тх	-	Transmit
RX	-	Receive
RF	-	Radio Frequency
РСВ	-	Printed Circuit Board
U.K	-	United Kingdom
U.S	-	United State
VCUUV	-	Vorticity Control Unmanned Undersea Vehicle
UC	-	University of California

UE	-	University of Essex
BUAA	-	BEIHANG University
ніт	-	Harbin Institute of Technology
ти	-	Tallinn University of Technology
FILOSE	-	Robotic Fish Locomotion and SEnsing
NMRM	-	National Maritime Research Institute
МНІ	-	Mitsubishi Heavy Industries
OU	-	Osaka University
DSP	-	Digital Signal Processor
MEI	-	Motion Engineering Inc.
PVC	-	Epoxy Polyvinyl Cloride
Li-ion	-20	Lithium-ion
САВ		Computer Aided Manufacturing
	AL.	UNIVERSITI MALAYSIA SABAH

LIST OF NOTATION

ℓ_{body}	-	Body span length [m]
ℓ _{excited}	-	Distance of moment point [m]
ℓ_{head}	-	Head length [m]
ℓ_{tail}	-	Tail length [m]
М	-	Moment [Nm]
M_{o}	-	Initial moment [Nm]
$M_{\it bending}$	-	Overall bending moment [Nm]
$M_{\it viscous}$	-	Bending moment [Nm]
т	-	Added mass per unit length [Kg/m]
η	-	Viscosity [N.s/m ²]
ρ		Material density [kg/m ³]
$ ho_{fluid}$		Fluid density [kg/m ³]
Q_1 and Q_1	<u>ind</u>	Constant relation with material response [Dimensionless]
R	BA	Tail radius of curvature [m]
R_i	-	Top view geometry constant value [m]
<i>r</i> ₁	-	Side view geometry constant value [m]
St	-	Strouhal number [Dimensionless]
T _{cycle}	-	Wave cycle period [s]
t	-	Time domain [s]
U	-	Forward swimming speed [m/s]
и	-	Unit step function (Dimensionless)
W	-	Lateral velocity [m/s]
Ø	-	Body wave frequency [Hz] xxii