EVALUATION OF STRENGTH CHARACTERISTICS OF MORTAR AND CONCRETE DURING CURING USING EMI AND SURFACE WAVE PROPAGATION TECHNIQUES

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

EVALUATION OF STRENGTH CHARACTERISTICS OF MORTAR AND CONCRETE DURING CURING USING EMI AND SURFACE WAVE PROPAGATION TECHNIQUES

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

> FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2016

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

26 January 2016

Nelly Binti Majain MK 1211008T

CERTIFICATION

- NAME : NELLY BINTI MAJAIN
- MATRIC NO. : MK 1211008T
- TITLE : EVALUATION OF STRENGTH CHARACTERISTICS OF MORTAR AND CONCRETE DURING CURING USING EMI AND SURFACE WAVE PROPAGATION TECHNIQUES
- DEGREE : MASTER OF ENGINEERING (CIVIL ENGINEERING)
- VIVA DATE :05 OCTOBER 2015

DECLARED BY

1. MAIN SUPERVISOR Assoc. Prof. Dr. Willey Liew Yun Hsien Signature

2. CO-SUPERVISOR

Dr. Lim Yee Yan

ACKNOWLEDGEMENTS

First and foremost I would like to thank God for giving me the strength and grace to complete this thesis. I am nothing without Him.

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Willey Liew Yun Hsien for being so understanding, kind, patient, generous and caring throughout my study period. Thank you for believing in me and for your willingness to take me as your student.

A special thank you to my co-supervisor Dr. Lim Yee Yan who contributed to the original idea of this thesis. Thank you for being so generous and for guiding me throughout these years. I am grateful that you have helped me so much in sharing your knowledge and information. Thank you also for sharing and allowing me to use some of your great research works.

I am also grateful to Prof. Ir. Dr. Abdul Karim Mirasa who always encouraged me to complete my studies. To all the technicians in the Concrete Laboratory, Electric and Electronic Lab and staff at the Faculty of Engineering, thank you for all your help and kind assistance. I would also like to thank my friends, Joel, Charles and the final year students for helping me out in conducting the experiments.

This thesis would not have been completed without the support of my family. I would like to thank my beloved parents and siblings (Genevive, Jonas, Regina, Sr. Marie Carmen and Emily) for their understanding and for their love and constant prayers.

I am also thankful to my best friend Melissa Nicholas for always encouraging me and believing in me. Thank you for always being there for me throughout all the ups and downs of my life.

Finally, I would like to thank all of my friends in Life Teen as well as my superiors (especially Ir. James Yong Hon Min) and colleagues in PY Konsep Perunding Sdn. Bhd. that have been my communities and sources of joy and support.

Nelly Majain 26 January 2016

ABSTRACT

Concrete is a non-homogenous material with complex microstructure, consisting of water, cement, aggregates and other suitable materials. During concreting of concrete structures, heat will be released due to the hydration process between cement and water. At this stage, curing process is crucial and it needs to be monitored so that the concrete will be able to achieve the desired strength and becomes durable. Due to the complexity of concrete microstructure, the evaluations for concrete curing and strength monitoring are difficult and have moved at a slower pace. However, in recent years the advancements of piezoelectric materials such as Lead Zirconate Titanate (PZT) have attracted interest among researchers to develop new non-destructive evaluation methods to investigate the performance of concrete. The key advantage of using PZT is that it can be placed anywhere even in remote and inaccessible locations as both actuator and sensor to monitor concrete structures. The electromechanical impedance (EMI) and surface wave propagation techniques employing PZT transducer have been developed by researchers as a nondestructive approaches for evaluating concrete. The main objective of this thesis is to evaluate the strength characteristics of mortar and concrete during curing using the EMI and surface wave propagation techniques. In order to achieve this, the research begins with conducting parametric study on free vibration of PZT transducer in the application of EMI technique. The work continues with experimental investigation to study the feasibility of using the EMI and surface wave propagation techniques employing PZT transducer for evaluation of strength characteristics of mortar and concrete during curing. The PZT transducers were attached to the mortar and concrete specimens through surface bonding and embedded methods. The results showed that by using the EMI and surface wave propagation techniques employing the PZT transducer, the duration of concrete setting and curing can be determined. Also, a good correlation between the concrete dynamic modulus of elasticity with compressive strength has been achieved by using the surface wave propagation method. For these reasons, the EMI and surface wave propagation techniques can be a useful tools to ensure the safety and quality of concrete structures during construction and service.

ABSTRAK

PENILAIAN CIRI-CIRI KEKUATAN MORTAR DAN KONKRIT SEMASA PENGAWETAN MENGGUNAKAN TEKNIK EMI DAN PERAMBATAN GELOMBANG PERMUKAAN

Konkrit merupakan bahan yang tidak homogen dengan mikrostruktur yang kompleks dan yang terdiri daripada air, simen, agregat dan bahan-bahan lain yang sesuai. Semasa kerja menuang konkrit dalam pembinaan struktur konkrit, haba akan dibebaskan melalui proses penghidratan di antara simen dan air. Pada peringkat ini, proses pengawetan adalah penting dan ia perlu dipantau supaya konkrit akan dapat mencapai kekuatan yang dikehendaki dan menjadi tahan lama. Oleh kerana konkrit mempunyai mikrostruktur yang kompleks, penilaian untuk pengawetan konkrit dan pemantauan kekuatan adalah sukar dan bergerak dengan kadar perlahan. Walau bagaimanapun, beberapa tahun kebelakangan ini, kemajuan bahan-bahan piezoelektrik seperti 'Lead Zirconate Titanate' (PZT) telah menarik minat kalangan penyelidik untuk membina teknik-teknik penilaian ujian tanpa musnah yang baru bagi Kelebihan utama menggunakan PZT ialah ia boleh mengkaji prestasi konkrit. diletakkan dimana-mana walaupun di tempat yang jauh dan lokasi yang tidak dapat diakses sebagai aktuator (penggerak) dan sensor (pengesan) untuk mengawasi struktur konkrit. Teknik elektromekanikal impedans (EMI) dan perambatan gelombang permukaan menggunakan transduser PZT telah dibangunkan oleh para penyelidik sebagai pendekatan tanpa musnah untuk penilaian konkrit. Objektif utama tesis ini adalah untuk membuat penilaian terhadap ciri-ciri kekuatan mortar dan konkrit semasa pengawetan menggunakan teknik-teknik EMI dan perambatan gelombang permukaan. Bagi mencapai objektif ini, penyelidikan ini bermula dengan menjalankan kajian parametrik terhadap getaran bebas transduser PZT dalam penggunaan teknik EMI. Penyelidikan diteruskan dengan kajian eksperimen untuk mengkaji kemungkinan menggunakan teknik EMI dan perambatan gelombang permukaan menggunakan PZT transduser untuk penilaian ciri-ciri kekuatan mortar dan konkrit semasa pengawetan. Transduser PZT diletakkan ke atas spesimen mortar dan konkrit melalui ikatan permukaan dan kaedah terbenam. Hasil kajian ini menunjukkan bahawa dengan menggunakan teknik EMI dan perambatan gelombang permukaan menggunakan transduser PZT, tempoh penetapan konkrit dan pengawetan boleh ditentukan. Selain itu, korelasi yang baik antara modulus dinamik keanjalan konkrit dengan kekuatan mampatan telah dicapai menggunakan kaedah perambatan gelombang permukaan. Oleh sebab itu, teknik EMI dan perambatan gelombang permukaan boleh menjadi kaedah yang berguna untuk memastikan keselamatan dan kualiti struktur konkrit semasa pembinaan dan perkhidmatan.

TABLE OF CONTENTS

			Pages
TITLE			i
DECL	ARATI	ON	ii
CERT	IFICAT	ION	iii
ACKN	OWLE	DGEMENTS	iv
ABST	RACT		v
ABST	RAK		vi
LIST	of coi	NTENTS	vii
LIST	OF TAE	BLES	xii
LIST	OF FIG	URES	xiii
LIST	OF ABE	BREVIATIONS	xix
LIST	OF SYN	1BOLS	XX
LIST	OF APF		xxiii
СНАР	TER 1:	INTRODUCTION	1
1.1	Introd		1
1.2	Object	ives and Scopes	5
1.3	Resear	rch Contributions	6
1.4	Thesis	Organization	7
СНАР	TER 2:	LITERATURE REVIEW	9
2.1	Overvi	ew of Structural Health Monitoring	9
2.2	Comm	on test for Concrete Materials	10
	2.2.1	Cement Testing	10
	2.2.2	Fine and Coarse Aggregate Testing	12
	2.2.3	Water Testing	12
2.3	Concre	ete Hydration Process and Curing of Concrete	12
	2.3.1	Conventional Test for Concrete Hydration	14

2.4	Conve	ntional Evaluation Methods for Concrete Curing and Strength	15
	Monito	pring	
	2.4.1	Compressive Strength of Concrete Cubes Method	15
	2.4.2	Concrete Flexural Strength Method	17
	2.4.3	Rebound Hammer Method	17
	2.4.4	Windsor Probe Method	18
	2.4.5	Maturity Method	19
	2.4.6	Ultrasonic Pulse Velocity	19
	2.4.7	Stress-Wave Propagation Methods	20
	2.4.8	Summary of Conventional Evaluation Methods for Concrete	21
		Curing and Strength Monitoring	
2.5	Applic	ation of smart materials in SHM	21
2.6	Piezoe	electricity and Piezoelectric Materials	22
	2.6.1	Background	22
	2.6.2	Fundamentals of Piezoelectric Materials	23
A	2.6.3	Piezoelectric Constitutive Relations	24
E	2.6.4	Classifications of Piezoelectric Materials	28
B	1 a	a. Piezoceramics	28
61		b. Piezopolymers	30
	2.6.5	Smart Materials: Current and Future Prospects	31
2.7	Applic	ation of Electromechanical Impedance (EMI) Technique in	32
	SHM		
	2.7.1	Physical Principles of EMI Technique	32
	2.7.2	Concrete Hydration Monitoring using EMI technique	35
	2.7.3	Advantages of EMI Technique	37
	2.7.4	Limitations of EMI Technique in Concrete Hydration	37
		Monitoring	
2.8	Analyt	ical Modeling of EMI Technique	38
2.9	Concre	ete Strength and Hydration Monitoring using Wave	42
	Propagation Technique		
	2.9.1	Stress Wave Propagation Principles	44
	2.9.2	Piezoelectric Transducers for Ultrasonic Wave Generation	47

	2.9.3	Signal Processing Implementation	48
2.10	Future	of Integrated Use of EMI and Wave Propagation Techniques	49
	for Co	ncrete Hydration and Strength Monitoring	
2.11	Summ	lary	49
СНАР	FER 3:	A PARAMETRIC STUDY ON FREE VIBRATION OF PZT TRANSDUCER IN THE APPLICATION OF ELECTROMECHANICAL IMPEDANCE (EMI) TECHNIQUE	51
3.1	Introd	uction	51
3.2	Materi	als and Methods	51
	3.2.1	Fundamentals of EMI Technique	51
	3.2.2	Theoretical Modelling of PZT Transducer	52
	3.2.3	Parametric Study of Admittance Signatures	54
3.3	Experi	mental Setup	56
3.4	Result	s and Discussion	56
3.5	Summ	lary	69
CHAP.	TER 4:	MONITORING OF MORTAR HYDRATION USING PIEZOELECTRIC BASED ELECTROMECHANICAL IMPEDANCE (EMI) TECHNIQUE	70
4.1	Introd	uction	70
4.2	Physic	al Principle of EMI Technique for Mortar Hydration	70
4.3	Experi	mental Setup	72
	4.3.1	Surface Bonded Method	72
	4.3.2	Embedded Method	73
4.4	Result	s and Discussion	75
	4.4.1	Surface Bonded Method	75
		a. Early Age Monitoring	76
		b. Hydration Monitoring After 1 Day	78
	4.4.2	Embedded Method	81
4.5	Summ	lary	84

CHAP	TER 5: MONITORING OF MORTAR DURING CURING USING PIEZOELECTRIC BASED SURFACE WAVE PROPAGATION TECHNIQUE	85
5.1	Introduction	85
5.2	Physical Principle of Surface Wave Propagation Technique	85
5.3	Experimental Setup	88
5.4	Signal Processing	90
5.5	Results and Discussion	95
5.6	Summary	102
СНАР	TER 6: EVALUATION OF STRENGTH CHARACTERISTICS OF CONCRETE DURING CURING USING PIEZOELECTRIC BASED SURFACE WAVE PROPAGATION TECHNIQUE	103
6.1	Introduction	103
6.2	Experimental Setup	103
6.3	Results and Discussion	110
6.4	Summary	116
CHAP	TER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS	117
7.1	Introduction	117
7.2	Review of Objectives	117
7.3	Conclusion of the Parametric Study on Free Vibration of PZT Transducer in the Application of EMI Technique	118
7.4	Conclusion on the Evaluation of Strength Characteristics of Mortar and Concrete during Curing using the EMI and Surface Wave Propagation Techniques	119
7.5	Implication of the Works	120
7.6	Recommendation for Future Works	121
REFE	RENCES	122
AUTH	IOR'S PUBLICATIONS	132

APPENDICES

-		405
	Admittance of PZT.	
A	MATLAB Code to Calculate the Analytical Value of Electrical	133

- B MATLAB Code to Compute Cross Correlation and Hilbert Transform 135
 Methods
- C Some experimental results from the Surface Wave Propagation 138 method.

LIST OF TABLES

Table 2.1:	Typical properties of PVDF and PZT	30
Table 3.1:	List of PZT's parameters and their corresponding values	55
Table 3.2:	Summary of the effects on conductance and susceptance signatures by increasing the values of various PZT's parameters.	67
Table 6.1:	Dynamic Modulus of Elasticity and Compression Strength of Concrete Cubes	115

LIST OF FIGURES

Figure 1.1:	Injaka Bridge Collapsed	2
Figure 2.1:	Le Chatelier Moulds	11
Figure 2.2:	Vicat's Apparatus	11
Figure 2.3:	Concrete curing using water and gunny sacks on	13
	concrete slab.	
Figure 2.4:	Isothermal Calorimeter Instrument	15
Figure 2.5:	Concrete Compressive Test Machine	16
Figure 2.6:	Concrete Flexural Test Machine	17
Figure 2.7:	Rebound Hammer Device	18
Figure 2.8:	Windsor Probe Device	18
Figure 2.9:	PUNDIT Instruments for Ultrasonic Pulse Velocity	20
6522	Method.	
Figure 2.10:	Piezoelectric Effect	23
Figure 2.11:	A Piezoelectric Element with Conventional Labels	26
RAN	of Axes.	
Figure 2.12:	Matrix for PZT and Quartz CITINAL AVELA CARAL	26
Figure 2.13:	Perovskite structure of PZT	28
Figure 2.14:	Various Types of Piezoceramic Materials	29
Figure 2.15:	Experimental Setup for EMI Technique	33
Figure 2.16:	Typical plot of admittance signature against	34
	frequency for an aluminium beam under different	
	health conditions in frequency range of 57-59 kHz.	
Figure 2.17:	A generic single degree of freedom electro-mechanical	39
Figure 2.18:	Idealized 1-D – Structure interaction	40
Figure 2.19:	Particle Motion of Elastic Waves	45
Figure 2.20:	Piezoelectricity Effect	47
Figure 3.1:	Elastically constrained 1-D PZT-structure interaction model.	53
Figure 3.2:	Freely suspended PZT patch	56
	(10 mm x 10 mm x 0.3 mm thickness)	

Figure 3.3:	Plot of admittance signatures versus frequency	57
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying length, I	
	(a) Conductance (b) Susceptance	
Figure 3.4:	Plot of admittance signatures versus frequency	58
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying thickness, h	
	(a) Conductance (b) Susceptance	
Figure 3.5:	Plot of admittance signatures versus frequency	59
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying density, ρ	
	(a) Conductance (b) Susceptance	
Figure 3.6:	Plot of admittance signatures versus frequency	60
	(0-1000 kHz) derived analytically from freely vibrating	
AT	PZT transducer with varying Young's modulus, Y_{11}^{E}	
	(a) Conductance (b) Susceptance	
Figure 3.7:	Plot of admittance signatures versus frequency	61
R V	(0-1000 kHz) derived analytically from freely vibrating	
112	PZT transducer with varying Poisson ratio, v	
NG.	(a) Conductance (b) Susceptance	
Figure 3.8:	Plot of admittance signatures versus frequency	62
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying mechanical loss factor, η	
	(a) Conductance (b) Susceptance	
Figure 3.9:	Plot of admittance signatures versus frequency	63
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying electric permittivity, E_{33}^{T}	
	(a) Conductance (b) Susceptance	
Figure 3.10:	Plot of admittance signatures versus frequency	64
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying electrical loss factor, $\boldsymbol{\delta}$	
	(a) Conductance (b) Susceptance	

Figure 3.11:	Plot of admittance signatures versus frequency	65
	(0-1000 kHz) derived analytically from freely vibrating	
	PZT transducer with varying piezoelectric strain	
	coefficient, d_{31} .	
	(a) Conductance (b) Susceptance	
Figure 3.12:	Conductance signatures versus frequency from freely	66
	vibrating PZT transducer (comparison between	
	experimental and analytical).	
Figure 4.1:	Pictorial illustration of experimental setup for EMI	71
	technique.	
Figure 4.2:	PZT patch surface bonded on specimen	72
Figure 4.3:	Section view of PZT patch configurations on Mortar	72
	Specimen	
Figure 4.4:	Prism PE1 with two embedded PZT patches	74
and the	at 75 mm distance from prism centre line	
Figure 4.5:	Section view of PZT patches, BE1 & BE2 Configurations	74
- AY 📑	on Mortar Specimen, PE1	
Figure 4.6:	Section view of PZT patch, BE3 Configurations	75
217	on Mortar Specimen, PE2	
Figure 4.7:	Conductance signatures versus frequency acquired	76
	from patch PR (room condition) in the frequency	
	range of 0 – 900 kHz.	
Figure 4.8:	Conductance signatures versus frequency acquired	77
	from patch PR (room condition) in the frequency range	
	of 100 – 300 kHz	
Figure 4.9:	Frequency of first PZT's resonance against time for all	78
	samples.	
Figure 4.10:	Conductance signatures versus frequency acquired	79
	from patch PR (room condition).	
Figure 4.11:	Frequency of resonance peak (26.5 kHz at day 1)	80
	against time for samples PR and PS.	

Figure 4.12:	Conductance signatures versus frequency acquired	81
	from embedded patch BE1 in the frequency range	
	of 70 – 110 kHz.	
Figure 4.13:	Conductance signatures versus frequency acquired	82
	from embedded patch BE2 in the frequency range	
	of 70 – 110 kHz.	
Figure 4.14:	Conductance signatures versus frequency acquired	83
	from embedded PZT patch for Prism PE2 submerged	
	in water (frequency range of 10 – 400 kHz).	
Figure 5.1:	Diagram of Surface Wave Propagation Approach	86
Figure 5.2:	Example of 10 kHz, 5-count tone burst excitation:	87
	(a) raw tone burst, (b) Smoothed tone burst	
Figure 5.3:	Configurations of PZT patches for	89
	(a) Prism A (Rough Surface)	
AT	(b) Prism B (Smooth Surface)	
Figure 5.4:	Section view of PZT patches Configurations on Mortar	89
ET 📑	Specimen.	
Figure 5.5:	Experimental Setup for Surface wave propagation on	90
112	Mortar Specimen	
Figure 5.6:	Estimate time of arrival using cross correlation	92
Figure 5.7:	Using Hilbert Transform to construct the envelope	93
	of a 3-count, Hanning windowed sinusoidal signal	
Figure 5.8:	Envelope of a signal represents the amplitude of	93
	the signal	
Figure 5.9:	Distribution of cross correlation and Hilbert Transform's	94
	envelope against time for Prism A at 30 kHz and 100 mm	
	Actuator-Sensor distance.	
Figure 5.10:	Surface wave packet and TOF (Sensor's amplitude is	95
	scaled by a factor of 100 for better schematic	
	comparison with the actuator signal)	

Figure 5.11:	Amplitude of actuator and sensor versus time step for	97
	Prism A at 30 kHz after 1 day	
	(a) Actuator-Sensor Distance: 60 mm (Prism A)	
	(b) Actuator-Sensor Distance: 100 mm (Prism A)	
	(c) Actuator-Sensor Distance: 160 mm (Prism A)	
Figure 5.12:	Amplitude of actuator and sensor versus time step for	99
	Prism B at 30 kHz after 1 day	
	(a) Actuator-Sensor Distance: 60 mm (Prism B)	
	(b) Actuator-Sensor Distance: 100 mm (Prism B)	
	(c) Actuator-Sensor Distance: 160 mm (Prism B)	
Figure 5.13:	Wave Speed versus Curing Time for Prism A and Prism B	101
	at Frequency of 30 kHz.	
	(a) Prism A and Prism B, 30 kHz,	
	Actuator-Sensor Distance: 60mm	
Æ	(b) Prism A and Prism B, 30 kHz,	
B	Actuator-Sensor Distance: 100mm	
- FY 📑	(c) Prism A and Prism B, 30 kHz,	
2.	Actuator-Sensor Distance: 160 mm	
Figure 6.1:	Experimental Setup for Surface wave propagation on	104
	Concrete Specimen IVERSITI MALAYSIA SABAH	
Figure 6.2:	Wires Soldered on PZT Patch	105
Figure 6.3:	Concrete Mixed inside Concrete Mixer	106
Figure 6.4:	Configurations of PZT patches on Concrete Specimen	107
Figure 6.5:	Section view of PZT patches Configurations on Concrete	107
	Specimen.	
Figure 6.6:	Concrete Cubes and Concrete Prism	108
Figure 6.7:	Curing of Concrete Cubes Submerged in Water	109
Figure 6.8:	Weighing of Concrete Cube	109
Figure 6.9:	Concrete Cube Compressive Test	110

Figure 6.10:	Amplitude of actuator and sensor versus time step for	111
	Concrete Prism at 30 kHz after 1 day	
	(a) Actuator-Sensor Distance: 60 mm (Concrete Prism)	
	(b) Actuator-Sensor Distance: 100 mm (Concrete Prism)	
	(c) Actuator-Sensor Distance: 160 mm (Concrete Prism)	
Figure 6.11:	Wave Speed versus Curing Time for Concrete Specimen	113
	with Actuator-Sensor Distance of 60 mm, 100 mm and	
	160 mm at Frequency 30 kHz.	
Figure 6.12:	Average Wave Speed versus Curing Time for Concrete	114
	Specimen.	
Figure 6.13:	Correlation of Dynamic Modulus of Elasticity and	116
	Compressive Strength of Concrete Cubes.	

LIST OF ABBREVIATION

ASTM	-	American Society for Testing and Materials
BS	-	British Standard
BS EN	-	British Standard European Norm
EMI	-	Electromechanical Impedance
IEEE	-	The Institute of Electrical and Electronics Engineers
MS	-	Malaysian Standard
NDE	-	Non-Destructive Evaluation
PVDF	-	Polyvinvylidene Fluoride
PWAS	-4	Piezoelectric Wafer Active Sensors
PZT		Lead Zirconate Titanate
	- and	Root Mean Square Deviation
SASW	BAY	Spectral Analysis of Surface Waves
SEF	-	Static Equivalent - Force
SHM	-	Structural Health Monitoring
SMA	-	Shape Memory Alloys
TOF	-	Time of Flight
UPV	-	Ultrasonic Pulse Velocity

LIST OF SYMBOLS

A a	-	Cross sectional area of PZT patch
Α	-	Constant mass matrix multiplier
b a	-	Width of actuator
С	-	Electrical capacitance of PZT patch
d	-	Distance
d 31	-	Piezoelectric constant of PZT patch
d _c	-	Strain coefficient tensors (converse)
d_d	-	Strain coefficient tensors (direct)
[<i>d</i> ^c]	-	Piezoelectric strain coefficient tensors (converse)
[<i>d</i> ^d]	-	Piezoelectric strain coefficient tensors (direct)
δ	-	Electrical loss factor
D 3	-	Electric charge density on surface normal to axis 3 of PZT
Di	-A	Electric displacement
[<i>D</i>]	-	Electric displacement vector
EZ C	-)	Young's modulus of elasticity
E3	4	Electric field applied along axis 3 of PZT patch
Ej T	Ð	Applied external electric field MALAYSIA SABAH
[<i>E</i>]	-	Applied external electric field vector
$\overline{\boldsymbol{\mathcal{E}}_{33}}^T$	-	Complex dielectric constant at zero stress
$\left[\overline{\varepsilon^{T}}\right]$	-	Complex dielectric permittivity tensor
f	-	Frequency
g 31	-	Piezoelectric voltage constant
γ	-	Wave number
H(x(t))	-	Hilbert Transform
h	-	Thickness of PZT patch
ha	-	Thickness of Actuator
i	-	Reference signature at different frequencies
j	-	Imaginary number
j	-	Amount of lag (in cross correlation)

k 31	-	Coupling factor
K _{εtr}	-	Dynamic Stiffness of Host Structure
K _{PZT}	-	Quasi-static stiffness of PZT patch
k	-	Wave number
1	-	Length of PZT patch
la	-	Length of Actuator
λ	-	Wavelength
ω	-	Angular frequency
φ	-	Admittance poles
ϕ	-	Displacement phase shift (phase angle)
η	-	Mechanical loss factor
p ₁₂ (j)	-	Cross Correlation
ρ	-	Density
R	-	Stiffness ratio
$R_{Xy}(t)$	-17	Cross Correlation of two signals x(t) and y(t)
<i>s</i> ^{<i>E</i>}	-	Elastic constant along axis 1 at zero electric field
$\left[\overline{s^{E}}\right]$	-	Complex elastic compliance tensor
S ₁	Ż	Strain of the PZT patch in direction 1
[<i>S</i>] <i>t</i>	Þ	Strain tensor UNIVERSITI MALAYSIA SABAH Time
θ	-	Angular Coordinate
τ	-	Time step (Hilbert Transform)
Τ	-	Curie temperature
T 1	-	Stress applied in the direction 1
[7]	-	Stress tensor
V	-	Wave Velocity
V P	-	P-wave Velocity
V ₅	-	S-wave velocity
V _R	-	Rayleigh wave velocity
V(t)	-	Sinusoidal voltage applied
\overline{V}	-	Voltage applied (in complex notation)

V	-	Poisson ratio
Va	-	Poisson ratio of actuator
W	-	Width of PZT patch
X1(n)	-	Data sequence 1
X2(n)	-	Date sequence 2
x(t)	-	Input signal
\overline{Y}	-	Complex electrical admittance
$\overline{Y_{11}^E}$	-	Complex Young's modulus of PZT patch along axis 1 at zero electric field
Ζ	-	Mechanical impedance of host structure
Z _{<i>i</i>,1}	-	Baseline admittance signatures at frequency interval <i>i</i>
Z _{i,2}	-	Admittance signatures at frequency interval, <i>i</i> with different temperature
Za	-	Mechanical impedance of actuator
Z _{a,eff}	-70	Effective mechanical impedance of actuator
Z _{s,eff}	-	Effective mechanical impedance of host structure
Zaxx	-	Mechanical impedance of actuator in <i>x</i> -direction
Zayy	-)	Mechanical impedance of actuator in y-direction
Z _{xx}	4	2-D Mechanical impedance of host structure in <i>x</i> -direction
Z _{yy}	Ð	2-D Mechanical impedance of host structure in y-direction
Z _{xy}	-	2-D Cross mechanical impedance of host structure in y- direction
Z _{yx}	-	2-D Cross mechanical impedance of host structure in <i>x</i> -direction

LIST OF APPENDICES

Page

- Appendix A: Matlab Code to Calculate the Analytical Value of 133 Electrical Admittance of PZT
- Appendix B: Matlab Code to Compute the Cross Correlation and 135 Hilbert Transform Methods.
- Appendix C: Some of the Experimental Results from the Surface 138 Wave Propagation Method. (Actuator/Sensor vs Time Readings for Prism A, 30 kHz, Actuator – Sensor Spacing: 160 mm)

