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ABSTRACT 

 

 
Concrete is a non-homogenous material with complex microstructure, consisting of 

water, cement, aggregates and other suitable materials. During concreting of 

concrete structures, heat will be released due to the hydration process between 

cement and water. At this stage, curing process is crucial and it needs to be 

monitored so that the concrete will be able to achieve the desired strength and 

becomes durable. Due to the complexity of concrete microstructure, the evaluations 

for concrete curing and strength monitoring are difficult and have moved at a slower 

pace. However, in recent years the advancements of piezoelectric materials such as 

Lead Zirconate Titanate (PZT) have attracted interest among researchers to develop 

new non-destructive evaluation methods to investigate the performance of concrete.  

The key advantage of using PZT is that it can be placed anywhere even in remote 

and inaccessible locations as both actuator and sensor to monitor concrete 

structures. The electromechanical impedance (EMI) and surface wave propagation 

techniques employing PZT transducer have been developed by researchers as a non-

destructive approaches for evaluating concrete. The main objective of this thesis is 

to evaluate the strength characteristics of mortar and concrete during curing using 

the EMI and surface wave propagation techniques. In order to achieve this, the 

research begins with conducting parametric study on free vibration of PZT transducer 

in the application of EMI technique. The work continues with experimental 

investigation to study the feasibility of using the EMI and surface wave propagation 

techniques employing PZT transducer for evaluation of strength characteristics of 

mortar and concrete during curing. The PZT transducers were attached to the mortar 

and concrete specimens through surface bonding and embedded methods. The 

results showed that by using the EMI and surface wave propagation techniques 

employing the PZT transducer, the duration of concrete setting and curing can be 

determined. Also, a good correlation between the concrete dynamic modulus of 

elasticity with compressive strength has been achieved by using the surface wave 

propagation method. For these reasons, the EMI and surface wave propagation 

techniques can be a useful tools to ensure the safety and quality of concrete 

structures during construction and service. 
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ABSTRAK 

 

 
PENILAIAN CIRI-CIRI KEKUATAN MORTAR DAN KONKRIT SEMASA 

PENGAWETAN MENGGUNAKAN TEKNIK EMI DAN PERAMBATAN 

GELOMBANG PERMUKAAN 

 
Konkrit merupakan bahan yang tidak homogen dengan mikrostruktur yang kompleks 

dan yang terdiri daripada air, simen, agregat dan bahan-bahan lain yang sesuai. 

Semasa kerja menuang konkrit dalam pembinaan struktur konkrit, haba akan 

dibebaskan melalui proses penghidratan di antara simen dan air. Pada peringkat ini, 

proses pengawetan adalah penting dan ia perlu dipantau supaya konkrit akan dapat 

mencapai kekuatan yang dikehendaki dan menjadi tahan lama. Oleh kerana konkrit 

mempunyai mikrostruktur yang kompleks, penilaian untuk pengawetan konkrit dan 

pemantauan kekuatan adalah sukar dan bergerak dengan kadar perlahan. Walau 

bagaimanapun, beberapa tahun kebelakangan ini, kemajuan bahan-bahan 

piezoelektrik seperti ‘Lead Zirconate Titanate’ (PZT) telah menarik minat kalangan 

penyelidik untuk membina teknik-teknik penilaian ujian tanpa musnah yang baru bagi 

mengkaji prestasi konkrit.  Kelebihan utama menggunakan PZT ialah ia boleh 

diletakkan dimana-mana walaupun di tempat yang jauh dan lokasi yang tidak dapat 

diakses sebagai aktuator (penggerak) dan sensor (pengesan) untuk mengawasi 

struktur konkrit. Teknik elektromekanikal impedans (EMI) dan perambatan 

gelombang permukaan menggunakan transduser PZT telah dibangunkan oleh para 

penyelidik sebagai pendekatan tanpa musnah untuk penilaian konkrit. Objektif utama 

tesis ini adalah untuk membuat penilaian terhadap ciri-ciri kekuatan mortar dan 

konkrit semasa pengawetan menggunakan teknik-teknik EMI dan perambatan 

gelombang permukaan. Bagi mencapai objektif ini, penyelidikan ini bermula dengan 

menjalankan kajian parametrik terhadap getaran bebas transduser PZT dalam 

penggunaan teknik EMI. Penyelidikan diteruskan dengan kajian eksperimen untuk 

mengkaji kemungkinan menggunakan teknik EMI dan perambatan gelombang 

permukaan menggunakan PZT transduser untuk penilaian ciri-ciri kekuatan mortar 

dan konkrit semasa pengawetan. Transduser PZT diletakkan ke atas spesimen mortar 

dan konkrit melalui ikatan permukaan dan kaedah terbenam. Hasil kajian ini 

menunjukkan bahawa dengan menggunakan teknik EMI dan perambatan gelombang 

permukaan menggunakan transduser PZT, tempoh penetapan konkrit dan 

pengawetan boleh ditentukan. Selain itu, korelasi yang baik antara modulus dinamik 

keanjalan konkrit dengan kekuatan mampatan telah dicapai menggunakan kaedah 

perambatan gelombang permukaan. Oleh sebab itu, teknik EMI dan perambatan 

gelombang permukaan boleh menjadi kaedah yang berguna untuk memastikan 

keselamatan dan kualiti struktur konkrit semasa pembinaan dan perkhidmatan. 
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