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ABSTRACT 
 

Analysis of the cold adaptation strategy of Antarctic yeast Glaciozyma 
antarctica PI12 

 
Psychrophilic yeast Glaciozyma antarctica PI12 was isolated from Antarctica. However, 
the information related to psychrophilic yeast and genus Glaciozyma is limited. 
Therefore, characterization of growth, cell doubling time, cell division, aerobic and 
partial anaerobic respiration system, morphology and the growth at -12oC, -7oC and -
5oC were carried out. Our result showed that G. antarctica PI12 formed whitish 
creamy colony on PDA media, and has an optimal growth temperature of 12oC in YPD 
media. Its cell doubling time is 15.8 hours per generation, and the cell division occurs 
on either poles of the cell. G. antarctica PI12 can grow under both aerobic and 
partially anaerobic conditions, but with a faster growth at aerobic condition. Little is 
known about the other genes which are involved in the cold adaptation of G. 
antarctica PI12. Therefore, to understand the adaptation strategies of G. antarctica 
PI12, RNA-seq was carried out followed by a de novo assembly of G. antarctica PI12 
transcriptome using the Trinity assembly package. Thermal stresses such as -12oC, 
0oC, 16oC and 20oC were used to induce a maximum number of expressed genes by 
G. antarctica PI12. We have obtained approximately 465 million of reads using the 
paired-end Illumina sequencing platform. These reads was assembled into 6,301 
unique genes, which comprised of a total of 46,196 unique transcripts (UT) sequences 
(mean sequence length ~1, 555 bp) including 29,885 UTs with coding sequence 
(CDS). Our data provide the first comprehensive sequence resource available for 
functional genomics studies in G. antarctica PI12. Besides, the gene expression 
patterns of G. antarctica PI12 in response to rapid temperature shifts were 
determined. 205 and 206 genes were affected when the cells were rapidly shifted 
from 12oC to 0oC or -12oC in minimal media, and YPD media. When the cells were 
rapidly shifted from 12oC to 16oC and 20oC, 116 genes were expressed. We grouped 
the genes obtained from minimal media and YPD into the early cold response (ECR, 
0oC for six hours); late cold response (LCR, 0oC for 24 hours); early freeze response 
(EFR, -12oC for six hours); and late freeze response (LFR, -12oC for 24 hours). On the 
other hand, we grouped expressed genes in the heat shock response to the early heat 
response (EHR, 16oC for six hours); and late heat response (LHR, 16oC and 20oC for 
24 hours); early heat response (EHR, 20oC for six hours); and late heat response 
(LHR, 20oC for 24 hours). Interestingly, there are groups of genes expressed 
consistently according to the time incubation at six and 24 hours. The result implies 
that the thermal specific early and late responses are mediated by a different and yet 
uncharacterized regulatory proteins. An adaptation model of G. antarctica PI12 which 
involved three components, namely the inactivation, the adaptive and the cell death 
was constructed based on the results, it indicates the complexity of the adaptation 
strategy of G. antarctica PI12 to adapt to a changing temperature. 
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ABSTRAK 
 
Glaciozyma antarctica PI12 adalah sejenis yis basidiomycetes dan psikrofilik yang 
telah diasingkan daripada Antartika. Namun, maklumat yang berkaitan dengan yis 
psikrofilik dan genus Glaciozyma adalah terhad. Untuk memahami dengan lebih lanjut 
mengenai G. antartica PI12, siasatan terhadap ciri-ciri pertumbuhan, masa gandaan 
sel, pembahagian sel, system respirasi aerobic dan anaerobic seprara, morfologi dan 
kadar tumbuh semasa dieram pada -12oC, -7oC dan -5oC. Permehatian kami 
menunjukkan bahawa G. antarctica PI12 mempunyai permukaan berkrim putih pada 
media Potato Dextrose Agar (PDA), dan mempunyai suhu pertumbuhan optimum 
pada suhu 12oC dalam media C dalam media Yeast Peptone Dextrose (YPD). Masa sel 
mengganda adalah 15.8 jam setiap generasis, dan pembahagian sel yang berlaku 
pada kedua-due belah hujung sel. G. antarctica PI12 boleh bertumbuh bawah kedua-
dua keadaan aerobik dan anaerobik, walaupun begitu, keadaan aerobik memberikan 
pertumbuhan yang lebih cepat. Maklumat terhadap gen-gen yang terlibat dalam 
adaptasi sejuk atau panas di dalam G. antarctica PI12 juga terhad. Oleh itu, kajian 
RNA-seq telah dilaksanakan dan diikuti oleh pemasanga RNA secara de novo 
menggunakan pakej pemasangan Trinity. Tegasan haba seperti -12oC, 0oC, 16oC dan 
20oC telha digunakan untuk mendorong bilangan maksimum gen yang disalin oleh G. 
antarctica PI12. Sekira-kira 465 juta daripada penjujukan Illumina telah diperolehi. 
Termasuk 6301 gen yang unik, terdiri daripada sejumlah 46,196 transkrip unik (UT) 
urutan (min panjang urutan ~ 1,555 bp) termasuk 29,885 SUA dengan pengekodan 
urutan (CDS) yang diperlukan oleh G. antarctica PI12 semasa keadaan haba. Data 
kami merupakan sumber urutan komprehensif yang pertama yang ada untuk 
pelengkap data genomik G. antarctica PI12 yang sedia ada. Selain itu, corak ekspresi 
gen G. antarctica PI12 sebagai tindak balas kepada perubahan suhu pesat telah 
ditentukan. 205 gen dan 206 gen terjejas apabila sel-sel telah beralih secara pantas 
daripada 12oC kepada 0oC atau -12oC dalam YPD and MM. 116 gen telah terjejas 
apabila sel-sel telah beralih secara pantaas daripada 12oC hingga 16oC atau 20oC. 
Gen-gen diperolehi daripada semua eksperimen adalah reaksi sejuk awal (ECR, 0oC 
selama enam jam); reaksi sejuk lewat (LCR, 0oC untuk 24 jam); reaksi membekukan 
awal (EFR, -12oC selama enam jam); dan reaksi pembekuan lewat (LFR, -12oC untuk 
24 jam). Kami juga mengkumpulkan gen dinyatakan dalam reaksi kejutan haba 
kepada reaksi hangat awal (EHR, 16oC selama enam jam); dan reaksi hangat lewat 
(LHR, 16oC dan 20oC selama 24 jam); reaksi haba awal (EHR, 20oC selama enam 
jam); dan reaksi haba lewat (LHR, 20oC selama 24 jam). Kami juga terkumpul gen 
bersalin konsisten mengikut masa pengeraman pada enam dan 24 jam. Keputusan 
kami menunjukkan bahawa reaksi tertentu berfungsi pada keadaan berubah awal dan 
lewat telah diantarai oleh protein-protein yang berbeza dan protein yang belum 
dicirikan. Selain itu, satu model penyesuaian G. antarctica PI12 mengandungi tiga 
komponen, iaitu komponen menyahaktifkan, komponen penyesuaian dan komponen 
kematian sel telah dibina berdasarkan keputusan yang didapati, model tersebut 
menunjukkan kerumitan strategi adaptasi daripada G. antarctica PI12 untuk 
menyesuaikan diri dengan suhu yang berubah-ubah. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1  Preamble 

Cold adapted microorganisms are excellent candidates to provide the understanding 

of molecular adaptations of a cell towards extreme conditions. Psychrophilic and 

psychrotrophic microorganisms are first referred to those cold adapted bacteria 

(Morita, 1975). However, the term is now generally refers to those organisms capable 

to survive, and proliferate at extremely cold condition. Psychrophiles show metabolic 

fluxes, which are comparable with those exhibited by mesophiles at moderate 

temperatures (Mihaela et al., 2009). Moreover, the enzymes produce by the 

pyschrophiles offer more novel opportunities for biotechnological applications (Zhao et 

al., 2011).  

 

In order to gain a better understanding of the cold adaptation of psychrophiles, 

more than 10 cold adapted microorganisms genome have been sequenced to achieve 

that purpose. Among the sequenced genomes are, Colwellia psychrerythraea, 

Desulfotalea psychrophila, Methanococcoides burtonii, Methonagenium frigidum, 

Polaribacter filamentus, Polaribacter irgensii, Pseudoalteromonas haloplanktis TAC125, 

Psychrobacter arcticus 273-4, Psychrobacter cryohalolentis K5 and Psychromonas 

ingrahamii (Auman et al., 2006; Bakermans et al., 2006; Corien et al., 2009; Gosink et 

al., 1998; Jeroen et al., 1999; Medigue et al., 2005; methe et al., 2005; Rabus et al., 

2004 & Sauders et al., 2003). The genome of the yeast used in this study, Glaciozyma 

antarctica PI12, also has been sequenced using the Roche, 454 and Illumina 

sequencing platforms. The genome size is about 2.2 million base pairs, sorted into 21 

scaffolds, which consisted of a total of 7857 genes. About 10% of the genes found in 

the genome of G. antarctica PI12 are known to be novel genes. Some cold active and 

adaptation genes such as α-amylase (Ramli et al., 2013), β-mannanse (Parvizpour et 

  



2 
 

al., 2014), antifreeze protein 1 (Hashim et al., 2013), and antifreeze glycopeptides 

(AFGP) (Shah et al., 2012) have been identified and cloned.    

 

Margesin (2009) highlighted several cold adaptation strategies that are 

common among psychrophilic microorganisms, including changes in amino acid 

copiousness that favor protein mobility; production of RNA and protein chaperones; 

desaturated membrane lipids; expression of cold shock protein; and increasing the 

cell wall elasticity. Generally, cold adaptations are grouped into three categories: 1) 

control of molecular motion, 2) resource efficiency, and 3) temperature-specific alleles 

(Margesin, 2009). However, there are many more genes that are involved in thermal 

adaptation that have yet been identified. 

 

The genome sequence data per se will not provide information on genes that 

are expressed during cold adaptation. Therefore, RNA-seq or transcriptomic 

sequencing can provide further information of genes that are involved in cold 

adaptation. The recent RNA-seq, or known as deep RNA sequencing, is based on the 

NGS (next generation sequencing) technology. RNA-seq analysis can be carried out 

with or without the genome information (Feng et al., 2012). 

 

 The objectives of this study are to determine the adaptation mechanisms and 

strategies of Glaciozyma antarctica PI12 to thermal stresses, and to characterize the 

physiological profile of G. antarctica PI12. This thesis is divided into three chapters to 

address the above objectives. First, the characterization of G. antarctica PI12 will be 

determined based on the growth at its optimal growth temperature at 12oC, the 

growth at sub-zero temperatures -12oC, -7oC and -5oC, the doubling time of G. 

antarctica PI12 using cell counter, aerobic and anaerobic of G. antarctica PI12 and 

microscopic analyses based on fluorescent microscope and also Scanning Electron 

Microscope (SEM) to observe G. antarctica PI12 cell division and bud division. 

Moreover, the molecular techniques, such as genomic analysis and transcriptomic 

analysis will be applied to G. antarctica PI12. Transcriptomic analysis using RNA-seq is 

set to determine the genes that are involved during thermal stresses adaptation of G. 

antarctica PI12. 
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1.2  Objectives 

1. To determine the growth rate, doubling time, anaerobic and  aerobic effects of 

G. antarctica PI12 at their optimum growth temperature at 12oC, 

2. To characterize the morphological features of G. antarctica PI12 using 

Scanning Electron Microscope (SEM), 

3. To establish a de novo transcriptomic database of G. antarctica PI12, 

4. To identify the differential gene expression (DEG) patterns of G. antarctica 

PI12 in respond to various temperature shifts using Minimal Medium (MM), 

5. To identify the differential gene expression (DEG) patterns of G. antarctica 

PI12 in respond to various temperature shifts using Yeast Peptone Dextrose 

(YPD). 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

2.1  Antarctica, the extreme niche 

Antarctica is known to be the world’s largest continent, with the area size around 14 

million km2. The continent is covered by two massive ice sheets, namely the East 

Antarctica, and the West Antarctica ice sheets. The two gigantic ice sheets are 

separated by a 3, 500 km long range, known as the Transantarctic Mountain, it is also 

known to be the largest ice-free area in the continent of Antarctica (~23, 000 km2).  

 

Antarctica is the coldest region on Earth, this is due to the rarefied solar 

radiation expose to the continent, only 16% of that solar radiation at equatorial region 

is exposed to Antarctica. Not only that, the high average surface elevation surface of 

the ice sheets, which in most of the places exceed 4, 000 m. To date,  the lowest 

temperature recorded in Antarctica was -89.4oC at Vostok (Krause & Flood, 1997).  

 

Despite the fact it is the coldest region on Earth, some of the areas receive 

thermal increment based on the geographical differences in climate. It also depends 

on: 1) the length of the thaw period; 2) the length of the thaw period, and; 3) the 

number of the thaw day in summer.  

 

2.2  Departure of the continent of Antarctica from the Supercontinent of  

        Gondwana 

Antarctica was a part of the supercontinent of Gondwana in more than 170 million 

years ago. The supercontinent of Gondwana consisted of the continents, which are 

known as Antarctica, Australia, New Zealand, South America, India and Africa. 

According to the continental shifting theory, the Gondwana broke apart into seven 

continents and shifting occurred. Fossils and rocks found in Antarctica also were 

found in other continents. The finding also suggests that Antarctica was once a much 
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warmer place before it separated from the Gondwana. It is because when Antarctica 

was still attached to Gondwana, West Antarctica was partially in the northern 

hemisphere, and East Antarctica was at the equator (Stonehouse, 2002).  

 

The shifting of the Antarctica continent to the south is a lengthy process. The 

shifting slowly introducing coldness to the continent as it shifts toward the south. 

Therefore, all the living organisms that were once lived on this continent undergo 

multiple natural selections, especially natural selection based on the changing of 

temperatures. The idea of natural selection proposed by Charles Darwin in year 1859 

is that, the organisms that successfully adapt or evolved with certain traits survived, 

whereas, those organisms failed to adapt were eliminated by the changing 

environment. Rogers (2007) also stated that a strong natural selection in Antarctica 

controlled by the environmental factors led to an adaptation of the Antarctic biota.     

 

2.3  Endemism of microorganisms found in Antarctica  

According to Cowan et al. (2011), even though Antarctica is geographically isolated, it 

has not been microbiologically isolated. This is because it constantly receives a 

population of non-indigenous microorganisms, mostly were transported from the 

southern hemisphere continents by a high altitude aeolian process (Pearce et al., 

2009; Hughes & Convey, 2010; Cowan et al., 2011). Nevertheless, there is no 

quantitative method developed to measure the total inorganic, and organic inputs to 

the Antarctic, but Cowan et al. (2011) assuming the value would be larger per annum, 

with around 1010-1012 cells for 1 m2 x 1-cm deep soil profile of non-indigenous 

microorganisms can be found (Cowan et al., 2011). 

 

Non-indigenous microorganisms are possibly introduced to Antarctica as an 

aeolian particle, or the anthropogenic impact (human activity) (Cowan et al., 2011). 

Aeolian particle capture experiments have demonstrated that most of the non-

indigenous microorganism is introduced to Antarctica as an aeolian particle (Pearce et 

al., 2009; Cowan et al., 2011). For example, the southern oceans generate aerosols, 

which serve to be a vehicle for transport of marine microorganism and marine aerosol 

nutrient input in the near-coastal terrestrial of the Antarctic continent (Bokhorst et al., 

2007). Besides, a growing number of human visitations to Antarctica are also known 

as the factor the non-indigenous microorganisms were introduced to Antarctica. 


