BANANA (*Musa* spp.) BY-PRODUCTS AS POTENTIAL ANTIMICROBIAL BIOPRESERVATIVE

FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH 2015

BANANA (*Musa* spp.) BY-PRODUCTS AS POTENTIAL ANTIMICROBIAL BIOPRESERVATIVE

TIN HOE SENG

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH 2015

DECLARATION

I hereby declare that the materials in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

27 January 2015

TIN HOE SENG PN2007-8435

CERTIFICATION

NAME	:	TIN HOE SENG
MATRIC NO	:	PN2007-8435
TITLE	:	BANANA (<i>Musa</i> spp.) BY-PRODUCTS AS POTENTIAL ANTIMICROBIAL BIOPRESERVATIVE
DEGREE	:	DOCTOR OF PHILOSOPHY (FOOD SCIENCE)

DECLARED BY

1. SUPERVISOR SIGNATURE Associate Professor Dr. Chye Fook Yee UNIVERSITI MALAYSIA SABAH

2. CO-SUPERVISOR

Associate Professor Dr. Mohd. Ismail Abdullah

3. CO-SUPERVISOR

Professor Dr. Charles S. Vairappan

ACKNOWLEDGEMENT

I would like to thank my supervisor, Associate Prof. Dr Chye Fook Yee, my cosupervisor Associate Prof. Dr. Ismail bin Abdullah and Prof. Dr. Charles S. Vairappan for compassionately providing their guidance and expertise in this research.

Specially thanks to Ministry of Science, Technology and Innovation for providing National Science Fellowship (NSF) scholarships. To all the lecturers, staff and laboratory technicians in School of Food Science and Nutrition and Institute for Tropical Biology Conservation, I would like to express my gratitude for presenting their assistance, supportive and practical opinions.

I would also like to acknowledge my fellow lab colleagues for their support and cooperation while I'm working in the lab. They have been good friends and mentors all throughout my study. To my family, I would like to deliver my appreciation for giving me supports, encouragement and holding me up morally throughout this study.

ABSTRACT

Banana by-products were investigated for its antibacterial components and selected bioactive fractions have been applied as bio-preservative in broth and food model. Banana plant parts were extracted using various solvent infusions and tested for antibacterial activity using agar-well diffusion assay. The by-product with the strongest antibacterial activity was further studied for the influences of geographical origin, drying methods and extraction methods in succession. Selected extraction parameters (time, temperature and solvent percentage) were then optimized using Face-Center Central Composite Design (FFCCD) in Response Surface Methodology (RSM). Purification and identification of bioactive components were performed using chromatographic approach based on the spectroscopic data. Potent antibacterial fraction was applied in broth model to evaluate the effects of food compositions on the antibacterial efficacy. Subsequently, carrot cubes were used as food model in assessing the bioactive properties of BWF-3 and its' mechanism of inhibition was also elucidated. Results showed the methanolic extract obtained from banana inflorescence (buds) of Musa balbisiana cv. Saba having the highest antibacterial activity against Staphylococcus aureus (SA), Bacillus cereus (BC), Listeria monocytogenes (LM) and Vibrio parahaemolyticus (VP). The geographical origin of banana inflorescence does not seem to affect the antibacterial properties. However, oven dried samples at 50°C was found to preserve the antibacterial activity similarly to those freeze dried samples, but significantly (p<0.05) better than sun dried samples. Optimized extraction parameters by RSM (extraction time: 6.0 h, extraction temperature: 35°C, methanol to water percentage: 94% v/v) achieved higher antibacterial activity against the four tested pathogenic bacteria. The optimized methanolic extract obtained from the inflorescence buds was then partitioned into chloroform, ethyl acetate, butanol and water fractions. Water partition was further undergone SPE purification yield 3 fractions and tested for bioactivity. The bioactive fraction 3 (BWF-3) contained epigallocatechin and its derivatives and tryptophan identified using LC-ESI-MS/MS. Meanwhile, three antibacterial compounds namely 31norcyclolaudenone, cycloartenol and (24R)-4a,24-trimethyl-5a-cholesta-8,25(27)dien-3b-ol were identified from the chloroform partition. Methanolic-water fraction (H₂O Fr.) and SPE-fraction 3 (BWF-3) showed the most prominent antibacterial activity (MIC H₂O Fr.: 8.0 mg/ml – 25.0 mg/ml, MIC BWF-3: 0.6 mg/ml – 2.5 mg/ml) against SA, BC, LM and VP, as compared to other fractions. Among the food components, only protein and oil at 1% significantly (p<0.05) reduced the antibacterial efficacy of BWF-3 against SA and LM. Food model based decontamination of carrot cubes using BWF-3 effectively suppressed the growth of LM for seven consecutive days in chilled (4°C) storage, which is comparable to sodium hypochlorite at the concentration of 100 ppm. Microscopic examination revealed cell membrane LM was altered after exposed to the bioactive BWF-3. Additionally, survival of LM increased with the fortification of ferum (II) and (III) at concentration as low as 1 mM but not for calcium, magnesium, manganese and glucose. Compatibility of BWF-3 as food bio-preservatives was proven as their efficacy and applicability was found comparable to those industrial synthetic

preservatives. In conclusion, banana inflorescence fractions are potential ingredient that could serves as an alternative to the current synthetic antibacterial as a decontaminating solution as well as preserving the minimally processed foods. Nevertheless, more studies associated with toxicity and safety evaluation should be carried out before the antibacterial fraction could be used as biopreservative in foods.

ABSTRAK

BAHAN HASILAN SAMPINGAN PISANG (Musa spp.) SEBAGAI BIO-PENGAWET ANTIMIKROORGANISMA BERPOTENSI

Bahan hasilan sampingan pisang telah dikaji bagi mengasingkan dan mengenalpasti komponen antibakteria bagi kegunaan bio-pengawet dalam model kaldu mikrobiologi dan makanan. Bahagian-bahagian daripada hasilan sampingan pisang telah diekstrak menggunakan pelbagai pelarut diuji untuk aktiviti antibakteria menggunakan kaedah penyerapan agar. Kesan kedudukan geografi, cara pengeringan dan faktor pengektrakan terhadap aktiviti antibakteria turut diuji. Pendekatan sistematik digunakan untuk mengkaji factor pengekstrakan (cnth. masa, suhu dan campuran pelarut) dan pengoptimuman kaedah pengekstrakan menggunakan Face-Center Central Composite Design (FFCCD) design "response methodology" (RSM) diaplikasikan untuk surface memperoleh kaedah pengekstrakan efektif serta mempunyai ekstrak bersifat antibakteria yang tinggi. Pengasingan dan pengenalpastian kompoun antibakteria dilakukan dengan menggunakan pendekatan kromatografi berdasarkan prinsip spektrometri. Kesan komposisi makanan terhadap potenti fraksi antibakteria dilakukan dalam kaldu mikrobiologi. Seterusnya, kiub lobak merah diaplikasikan sebagai model makanan dalam ujian penilaian potensi antibakteria dan mekanisma antibakteria turut diselidik. Ujian menunjukan ekstrak metanol daripada bunga jantung pisang Musa balbisiana cy. Saba menunjukan sifat antibakteria terhadap Staphylococcus aureus (SA), Bacillus cereus (BC), Listeria monocytogenes (LM) dan Vibrio parahaemolyticus (VP). Kedudukan geografi tidak menunjukan kesan yang signifikan terhadap aktiviti antibakteria. Akan tetapi, pengeringan ketuhar pada suhu 50°C didapati mengekalkan aktiviti antibakteria serupa dengan pengeringan sejukbeku dan signifikan lebih baik dapipada pengeringan matahari. Kaedah RSM telah membolehkan pengekstrakan komponen antibakteria pada tahap optimum dengan efisyen (masa pengekstrakan: 6.0 jam, suhu pengekstakan: 35°C, peratus metanol kepada air: 94%). Ekstrak metanolik optimum turut disesekat kepada klorofom, etil asetat, butanol dan air. Sesekat air terus ditulenkan dengan menggunaan ektraksi fasa pejal dan 3 fraksi diperoleh. Fraksi bio-aktif tersebut dikenalpasti mengandungi kompoun antibakteria seperti epigalokatekin and derivatif dan triptofan dengan menggunakan kromatografi cecair bepandukan iisim ion molekul. Selain itu, tiga kompaun bersifat anktibakteria turut diasingkan datipada sesekat klorofom iaitu 31-norsiklolaudenon, sikloartenol dan 24R)-4a,24trimetil-5a-kolesta-8,25(27)-dien-3b-ol. Sesekat metanolic air (H₂O Fr.) dan fraksi SPE 3 (BWF-3) menunjukkan kelebihan dalam aktiviti antibakteria (MIC H₂O Fr.: 8.0 mg/ml - 25.0 mg/ml, MIC BWF-3: 0.6 mg/ml - 2.5 mg/ml) terhadap SA, BC, LM and VP. Di kalangan komposisi makanan, 1% penambahan protein dan lemak menurunkan aktiviti BWF-3 terhadap SA dan LM secara signifikan (p<0.05). Proses penyahkontaminasi permukaan lobak merah merencat pertumbuhan LM 7 hari berturut pada penyimpanan sejuk (4°C), setanding dengan piawai komersial natrium klorida pada kepekatan 100ppm. Pemeriksaan mikroskop menunjukkan perubahan pada sel membran sel selepas didedahkan kepada BWF-3. Tambahan

pula, pertumbuhan LM meningkat selepas penambahan ion besi (II) and (III) pada kepekatan sebanyak 1 mM, tetapi peningkatan ini tidak didapati pada penambahan kalsium, magnesium, mangan dan glukosa. Keberkesanan BWF-3 sebagai biopengawet telah dibuktikan setanding dengan pengawet sintetik komersial. Oleh yang demikian, fraksi jantung pisang berpotensi untuk digunakan sebagai alternatif kepada pengawet sintetik sebagai cecair penyahkontaminasi bagi makan proses minimum. Namun, pengajian terhadap toksikologi dan keselamatan fraksi sebelum digunakan sebagai bio-pengawet dalam makanan perlu dijalankan.

TABLE OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vii
CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	XV
SYMBOLS AND ABBREVIATIONS	xviii
LIST OF APPENDIXES	xxii
CHAPTER 1: INTRODUCTION NIVERSITI MALAYSIA SABAH	1
 CHAPTER 2: LITERATURE REVIEW 2.1 Banana/ plantain as economic commodity 2.1.1 Classification and taxonomy 2.1.2 Global production and market of banana 2.1.3 Industrial applications of banana 2.1.4 Utilization and waste management of banana by-products 2.2 Biological active compounds from banana/plantain 2.2.1 Phenolics 2.2.2 Terpenes 2.2.3 Nitrogen containing compounds 2.3 Foodborne diseases: Incidents and implications 2.4 Factors affecting secondary metabolites constituents from plant 	8 8 11 12 13 15 15 20 25 27 30
 materials as natural antimicrobials 2.4.1 Maturity 2.4.2 Geographical origin 2.4.3 Postharvest handling 2.5 Extraction technologies of antimicrobials from natural sources 2.5.1 Choice of solvents 	30 31 32 32 32

2.5.2 Particle size	35
2.5.3 pH of extraction solvent	35
2.5.4 Extraction temperature	36
2.5.5 Conventional extraction methods	36
2.5.6 Emerging extraction methods	37
2.6 Separation, purification and isolation of plant antimicrobials	38
2.6.1 Liquid-liquid partitioning	38
2.6.2 Purification and clean up	39
2.6.3 Isolation	40
2.6.4 Elucidation and identification	41
2.7 Natural antimicrobial assessment techniques	44
2.7.1 <i>In vitro</i> susceptibility test	44
2.7.2 Efficacy of antimicrobial compounds using food model system	47
2.7.3 Application of plant natural antimicrobials in foods	49
2.8 Antimicrobial mode of action of plant antimicrobial compounds	51
2.8.1 Inhibition of nucleic acid synthesis	51
2.8.2 Inhibition of cytoplasmic membrane function	51
2.8.3 Inhibition of energy metabolism	53
2.9 Challenges and future prospects of natural antimicrobial	53

CHAPTER 3: EFFECT OF EXTRACTION PARAMETERS ON THE ANTIMICROBIAL ACTIVITY OF *Musa spp*. BY-PRODUCTS

Introduction Materials and Methods 3.2.1 Materials 3.2.2 Sample preparation 3.2.3 Determination of antibacterial activity of <i>Musa balbisiana</i> cv.	56 58 58 59 59
 3.2.4 Solvent extraction of crude extracts 3.2.5 Extraction of antimicrobial protein and protein hydrolysate from inflorescence 	60 61
3.2.6 Effect of geographical origin	62
3.2.7 Effects of extraction techniques	62
	62
	63
	64
	64
3.3.1 Antimicrobial activity of banana by-products based on various extractions	64
3.3.2 Determination of Extraction Solvent	68
3.3.3 Effects of geographical origin of banana (cv. Saba) inflorescence on antimicrobial activity	71
3.3.4 Effects of conventional, reflux, ultrasonic assist and microwave- assisted extraction on antimicrobial activity of inflorescence cv. Saba buds extracts	74
3.3.5 Effects of drying methods on antibacterial activity of cv. Saba buds extracts.	76
	 Materials and Methods 3.2.1 Materials 3.2.2 Sample preparation 3.2.3 Determination of antibacterial activity of <i>Musa balbisianacv</i>. Saba extracts 3.2.4 Solvent extraction of crude extracts 3.2.5 Extraction of antimicrobial protein and protein hydrolysate from inflorescence 3.2.6 Effect of geographical origin 3.2.7 Effects of extraction techniques 3.2.8 Effect of drying methods 3.2.9 Extraction parameters on antibacterial activity of the extracts 3.2.10 Statistical analysis Results and Discussion 3.3.1 Antimicrobial activity of banana by-products based on various extractions 3.3.2 Determination of Extraction Solvent 3.3.3 Effects of geographical origin of banana (cv. Saba) inflorescence on antimicrobial activity 3.3.4 Effects of conventional, reflux, ultrasonic assist and microwave-assisted extraction on antimicrobial activity of inflorescence cv. Saba buds extracts 3.3.5 Effects of drying methods on antibacterial activity of cv. Saba

3.3.6 Effects of extraction condition on antimicrobial activity of <i>Musa</i> balbisiana cv. Saba inflorescence extracts.	78
3.4 Conclusion	86
CHAPTER 4: OPTIMIZATION OF ANTIMICROBIAL EXTRACTS	
FROM <i>Musa balbisiana</i> cv. Saba USING RESPONSE SURFACE METHODOLOGY (RSM)	
4.1 Introduction	87
4.2 Materials and Methods	88
4.2.1 Materials	88
4.2.2 Extraction and the Determination of three levels of Independent	89
variables (X_1, X_2, X_3)	
4.2.3 Determination of antibacterial activity of <i>Musa balbisiana</i> cv.	89
Saba extracts	
4.2.4 Establishment of optimum extraction conditions using RSM	90
4.3 Results and Discussion	91
4.3.1 Fitting of RSM Model	91
4.3.2 Effect of Extraction Conditions on SA Inhibition	94
4.3.3 Effect of Extraction Conditions on BC Inhibition 4.3.4 Effect of Extraction Conditions on LM Inhibition	96 98
4.3.5 Effect of Extraction Conditions on VP Inhibition	98 100
4.3.6 Maximum response point and the verification of the Quadratic	100
Response Surface model	102
4.3.7 Optimization of extraction methods for antibacterials	103
4.4 Conclusion	106
CHAPTER 5: ISOLATION, PURIFICATION AND IDENTIFICATION	
OF POTENTIAL BIOACTIVE COMPONENTS DERIVED	
FROM Musa balbisiana cv. Saba EXTRACT	
5.1 Introduction UNIVERSITI MALAYSIA SABAH	108
5.2 Materials and Methods	110
5.2.1 Materials	110
5.2.2 Solvent extraction and liquid-liquid partitioning 5.2.3 Thin layer chromatography (TLC) profiling	111 111
5.2.4 High performance liquid chromatography (HPLC) profiling	111
5.2.5 Isolation, purification and identification of potential bioactive	112
components from methanolic chloroform partition of <i>Musa</i>	112
balbisiana cv. Saba buds extract	
5.2.6 Isolation, purification and identification of potential bioactive	112
fraction from methanolic water partition of <i>Musa balbisiana</i> cv.	
Saba buds extract	
5.2.7 Determination of antibacterial activity of Musa balbisiana cv.	114
Saba extracts	
5.2.8 Statistical analysis	116
5.3 Results and Discussion	116
5.3.1 Chemical profiling of partitions from methanolic extracts of <i>Musa</i>	116
<i>balbisiana</i> cv. Saba buds	110
5.3.2 Compounds isolation from chloroform partition of <i>Musa</i> balbisiana cv. Saba buds methanolic extract	119

5.3.3 Identification of potential bioactive compounds in bioactive water fraction (BWF-3) from <i>Musa balbisiana</i> cv. Saba buds methanolic extract	123
5.3.4 Antimicrobial susceptibility test of fractions and compounds	129
5.3.5 Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)	134
5.4 Conclusion	137
CHAPTER 6: EFFECTS OF FOOD COMPOSITION ON ANTIBACTERIAL EFFICACY OF <i>Musa balbisiana</i> cv. Saba BWF-3 EXTRACT	
6.1 Introduction	138
6.2 Materials and Methods	140
6.2.1 Extraction of BWF-3 from methanolic extract of banana inflorescence (<i>Musa balbisiana</i> cv. Saba)	140
6.2.2 Influence of food components on the efficacy of antibacterial activity	141
6.2.3 Statistical analysis	142
6.3 Results and Discussion	143
6.3.1 Interactive effects of intrinsic food composition	143
6.3.2 Interactive effects of extrinsic food properties	155
6.4 Conclusion	160
CHAPTER 7: ANTIBACTERIAL EFFICACY OF <i>Musa balbisiana</i> cv. Saba BWF-3 EXTRACT AGAINST <i>Listeria</i> <i>monocytogenes</i> IN CARROT CUBE MODEL	
7.1 Introduction	161
7.2 Materials and Methods	164
7.2.1Extraction of BWF-3 from methanolic extract of banana inflorescence (<i>Musa balbisiana</i> cv. Saba)	164
7.2.2 Bacteria strains	164
7.2.3 Preparation of bacterial cultures	164
7.2.4 Antibacterial efficacy of BWF-3 as decontamination solution of <i>Listeria monocytogenes</i> in carrot cubes	165
7.2.5 Determination of potential antibacterial mode of action of BWF 7.2.6 Statistical analysis	166 167
7.3 Results and Discussion	167
7.3.1 Antibacterial efficacy of BWF-3 as decontamination solution of <i>Listeria monocytogenes</i> in carrot cubes	167
7.3.2 Potential antibacterial mode of action of BWF-3 7.4 Conclusion	174 178
CHAPTER 8: SUMMARY	179
REFERENCES	181
APPENDIXES	238

LIST OF TABLES

Table 2.1	Major genomic groups and cultivars of banana in the world (Robinson, 1996)	9
Table 2.2	Character used in taxonomic scoring of banana cultivars (Simmonds & Shepherd, 1955)	10
Table 2.3	Classification of banana cultivars by using scoring methods (Simmonds & Shepherd, 1955)	11
Table 2.4	Top five major world producers of bananas and plantains	12
Table 2.5	Important bioactive phenolics isolated from banana/plantain	18
Table 2.6	Important bioactive terpenes isolated from banana/plantain	23
Table 2.7	Important bioactive biological amines isolated from banana/ plantain	26
Table 2.8	Estimated costs of foodborne diseases by country	29
Table 2.9	Solvents used for active component extraction	34
Table 2.10	Non-conventional methods used to obtain plant extracts	38
Table 2.11	Antimicrobial susceptibility assays and methods	44
Table 2.12	Food model systems used to determine efficacy of plant- based antimicrobial	50
Table 3.1	Antimicrobial activity of various <i>Musa</i> spp. by-products against selected foodborne pathogenic bacteria	65
Table 3.2	Initial antibacterial screening of <i>Musa balbisiana</i> cv. Saba buds extracts using various extraction solvent	70
Table 3.3	Effect of geographical origin of cv. Saba buds on antimicrobial activity of their methanolic extract	73
Table 3.4	Effect of extraction methods on antibacterial activity of the methanolic extracts of <i>Musa balbisiana</i> cv. Saba buds	75

Page

- Table 3.5Effects of various drying methods on the antibacterial77activity of Musa balbisiana cv. Saba buds extracts
- Table 3.6Effects of various solvent to sample ratio on the 79
antibacterial activity of *Musa balbisiana* cv. Saba buds
extracts
- Table 3.7Effects of extraction time on the antimicrobial activity of81Musa balbisiana cv. Saba buds extract
- Table 3.8Effects of extraction temperature on the antimicrobial83activity of Musa balbisiaba cv. Saba buds extract
- Table 3.9Effects of various methanol to water percentage on the85antibacterial activity ofMusa balbisianacv.saturact
- Table 4.1Three variable, three level Central Composite Face Centered92Experimental Design and the antibacterial activity of the
Musa balbisiana cv. Saba against S. aureus (SA), B. cereus
(BC), L. monocytogenes (LM) and V. parahaemolyticus (VP)
- Table 4.2Regression coefficients and analysis of the model for the
response variable of *Musa balbisiana* cv. Saba buds against
S. aureus (SA), *B. cereus* (BC), *L. monocytogenes* (LM) and
V. parahaemolyticus (VP)
- Table 4.3Estimated optimum conditions with the Predicted and102Experimental values of responses for SA, BC, LM, VP
- Table 5.1Antimicrobial activity of the inflorescence of Musa balbisiana131cv. Saba by well diffusion assay
- Table 5.2Minimum inhibitory concentration (MIC) and minimum 135
bactericidal concentration (MBC for water fraction of *Musa*
balbisiana cv. Saba extract
- Table 7.1Reduction of Listeria monocytogenes ATCC 12932 after 169
decontamination using Bioactive Water Fraction 3 (BWF-3,
100 and 200 ppm), and sodium hypochlorite (SH, 100 ppm)
for 1, 2 and 5 minutes at 10°C and 25°C

LIST OF FIGURES

		5
Figure 2.1	Phenolics type compounds structures isolated from <i>Musa</i> spp.	17
Figure 2.2	Phenylphenalenones type structures isolated from <i>Musa</i> spp.	20
Figure 2.3	Cholesterol-type triterpene alcohol structures isolated from <i>Musa</i> spp.	22
Figure 2.4	Cycloartane-type triterpene alcohol and ketones structures isolated from <i>Musa</i> spp.	24
Figure 2.5	Nitrogen-containing structures isolated from Musa spp.	26
Figure 4.1	Response surface plots of the antibacterial activity of <i>Musa balbisiana</i> cv. Saba against <i>S.aureus</i> as affected by (a) extraction time and temperature; (b) MeOH-H ₂ O % (v/v) and temperature; (c) MeOH-H ₂ O % (v/v) and time.	95
Figure 4.2	Response surface plots of the antibacterial activity of <i>Musa</i> balbisiana cv. Saba against <i>B. cereus</i> as affected by (a) extraction time and temperature; (b) MeOH-H ₂ O % (v/v) and temperature; (c) MeOH-H ₂ O % (v/v) and time.	97
Figure 4.3	Response surface plots of the antibacterial activity of <i>Musa</i> balbisiana cv. Saba against <i>L. monocytogenes</i> as affected by (a) extraction time and temperature; (b) MeOH-H ₂ O % (v/v) and temperature; (c) MeOH-H ₂ O % (v/v) and time.	99
Figure 4.4	Response surface plots of the antibacterial activity of <i>Musa balbisiana</i> cv. Saba against <i>V. parahaemolyticus</i> as affected by (a) extraction time and temperature; (b) MeOH-H ₂ O % (v/v) and temperature; (c) MeOH-H ₂ O % (v/v) and time.	101
Figure 5.1	HPLC profile and isolation fraction for BWF-3 on Cosmosil <i>n</i> -nap column.	113
Figure 5.2	Figure 5.2: TLC profile of chloroform (1 st lane from the left of each TLC), ethyl acetate (2 nd lane), butanol (3 rd lane) and water (4 th lane) partition from <i>Musa balbisiana</i> cv. Saba buds methanol extracts eluted using a) hexane: ethyl acetate (3: 1) and visualized under UV-light at 254 nm, 365 nm and 5 % (w/v) phosphomolybdic acid-ethanol solution (PMAE).	117
Figure 5.3	HPLC profiling for a) chloroform, b) ethyl acetate, c) butanol and d) water partition from <i>Musa balbisiana</i> cv. Saba bud methanol extract.	118

Page

Figure 5.4 Structure and ¹H-¹H COSY and ¹H-¹³C HMBC for of 31-120 norcyclolaudenone from Musa balbisiana cv. Saba. Structure and ¹H-¹H COSY and ¹H-¹³C HMBC for of Figure 5.5 122 Cycloartenol from Musa balbisiana cv. Saba. Structure and ¹H-¹H COSY and ¹H-¹³C HMBC for of (24R)-Figure 5.6 123 4a,24-trimethyl-5a-cholesta-8,25(27)-dien-3b-ol from Musa balbisiana cv. Saba. Figure 5.7 Chromatogram of secondary metabolites purified from water 125 partition through SPE Strata-X and tentative compounds identified from *Musa balbisiana* cv. Saba buds partition. Figure 5.8 Proposed fragmentation of the gallocatechin dimmers. 126 Figure 5.9 Proposed fragmentation of the gallocatechin dimmers. 127 Figure 5.10 Proposed fragmentation of the gallocatechin dimmers. 129 Figure 6.1 Influence of protein on the antibacterial efficacy of BWF-3 on 144 Listeria monocytogenes and Staphylococcus aureus at concentration of 1000 µg/ml and 500 µg/ml respectively. Figure 6.2 Influence of oil on antibacterial efficacy of BWF-3 on Listeria 147 monocytogenes and Staphylococcus aureus at concentration of 1000 µg/ml and 500 µg/ml respectively. Figure 6.3 Influence of starch on antibacterial efficacy of BWF-3 on 150 *Listeria monocytogenes* and *Staphylococcus aureus* at concentration of 1000 µg/ml and 500 µg/ml respectively. Figure 6.4 Influence of sodium chloride (NaCl) on antibacterial efficacy 153 of BWF-3 on Listeria monocytogenes and Staphylococcus aureus at concentration of 1000 µg/ml and 500 µg/ml respectively. Figure 6.5 156 Influence of incubation temperatures on antibacterial efficacy of BWF-3 on Listeria monocytogenes and Staphylococcus aureus at concentration of 1000 µg/ml and 500 µg/ml respectively. Figure 6.6 Influence of pH on antibacterial efficacy of BWF-3 on *Listeria* 158 monocytogenes and Staphylococcus aureus at concentration of 1000 µg/ml and 500 µg/ml respectively. Figure 7.1 Viable count of *Listeria monocytogenes* after dipping for a) 1 171 minute, b) 2 minutes and c) 5 minutes treatment with Bioactive Water Fraction -3 (BWF-3) at 100 ppm and 200 ppm, sodium hypochlorite (100 ppm) and water (control) at 10 °C and for 6 days under refrigerated temperature (4 °C).

Page

- Figure 7.2 Viable count of *Listeria monocytogenes* after dipping for a) 1 173 minute, b) 2 minutes and c) 5 minutes treatment with Bioactive Water Fraction -3 (BWF-3) at 100 ppm and 200 ppm, sodium hypochlorite (100 ppm) and water (control) at 25 °C and storage for 6 days under refrigerated temperature (4 °C).
- Figure 7.3 Effect of cation ferum [Fe (II) and Fe (III)], manganese 176 (Mn), magnesium (Mg), calcium (Ca) and glucose (Glu) on antibacterial activity of BWF-3 against *Listeria monocytogenes.*
- Figure 7.4 Effect of BWF-3 on *Listeria monocytogenes* on carrot cube of 177 a)negative control b) treatment at ½ MIC, c) MIC and d)MBC.

LIST OF SYMBOLS AND ABBREVIATIONS

ΑΤΡ	adenosine triphosphate
a -	alpha
ATCC	American Type Culture Collection
AUD	Australian Dollar
ВС	Bacillus cereus
β-	beta
BWF-3	bioactive water fraction
Са	Calsium
С	carbon
CO ₂	carbon dioxide
CDC	Centre for Disease Control, Unites States of America
CHCL ₃	chloroform
c.v.	coefficient of variance
CFU	colony forming unit
COSY	Correlation spectroscopy
cv.	cultivar
Da	Dalton UNIVERSITI MALAYSIA SABAH
°C	degree Celsius
DI H ₂ O	deionized water
DOA	Department of Agriculture, Malaysia
Diff.	differences
DAD	diode array detector
EGC	(-)-epigallocatechin
eV	electron volt
ESI	electrospray ionization
et al.	et alii (and others, individuals)
EtOH	ethanol
EtoAC	ethyl acetate
e.g.	<i>exemplii gratia</i> (such as)

FeCl ₃	ferric chloride
Fe(III)	ferric ion
Fe ³⁺	ferric ion
FeCl ₂	ferrous chloride
Fe(II)	ferrous ion
Fe ²⁺	ferrous ion
F-value	Fisher value
FD	freeze drying
GAEs	gallic acid equivalents
g	gram
НМВС	Heteronuclear Multiple Bond Correlation
HSQC	Heteronuclear single quantum coherence spectroscopy
h	hour
HCI	hydrochloric acid
H ₂	hydrogen
H ₂ O ₂	hydrogen peroxide
kg 🔄 📕	kilogram
	liquid chromatography
LC/MS	liquid chromatography-mass spectrometry
LC/MS/MS	liquid chromatography-tandem mass spectrometry
LLE	liquid-liquid extraction
LM	Listeria monocytogenes
Mg	magnesium
Mn	manganase
m/z	mass to charge ratio
MeOH	methanol
МТ	metric ton
μg	microgram
µg/ml	microgram per milliliter
μΙ	microlitre
μM	micromolar
μΜ	micromolar

mg	milligram
mg/L	milligram per liter
mg/ml	milligram per milliliter
ml	milliliter
mm	millimeter
mM	millimolar
МВС	minimum bactericidal concentration
MIC	minimum inhibition concentration
МОН	Ministry of Health, Malaysia
min	minute
mol/L	mol per liter
М	molar
n-BuOH	n-butanol
NMR	neuclear magnetic resonance
na	no inhibitory activity
ND	not determined
NOESY	Nuclear Overhauser effect spectroscopy
n 🛛 🦯 👘	number
OD	optical density
OD	oven drying UNIVERSITI MALAYSIA SABAH
%	percentage
p	pi
±	plus-minus
рН	power of hydrogen
н	proton
Qtof	quadrupole-time of flight
ROS	reactive oxygen species
R	regression coefficient
RSM	response surface methodology
rpm	revolution per minute
Na	sodium
NaCl	sodium chloride

- **SPE** solid phase extraction
- **SD** standard deviation
- SA Staphylococcus aureus
- **SD** sun drying
- TLC thin layer chromatography
- **TSA** Tryptone soy agar
- **TSB** Tryptone soy broth
- **UV** ultraviolet
- USD United States Dollar
- US United States of America
- **VP** Vibrio parahaemolyticus
- **VIS** visible light
- v/v volume by volume
- H₂O water
- w/v weight by volume
- WTP willingness to pay
- WHO World Health Organization
- World Trade Organization

UNIVERSITI MALAYSIA SABAH

LIST OF APPENDIX

Appendix A	Banana production data shown as (a) top 20 Malaysia's food and agricultural commodities 2010 (b) fruit crop production in Sabah 2007 (c) hectares and production of banana in Malaysia 2003	238
Appendix B	Growth stage of banana plant from juvenile to fruiting	240
Appendix C	Photo of <i>Musa balbisiana</i> cv. Saba a) inflorescence and b) buds	241
Appendix D	Bacterial concentration curve showing log CFU/ml versus absorbance a) <i>Staphylococcus aureus</i> ATCC 25923, (b) <i>Bacillus cereus</i> ATCC 11778, (c) <i>Listeria monocytogenes</i> ATCC 12932 and (d) <i>Vibrio parahaemolyticus</i> ATCC 17802	242
Appendix E	Isolation scheme of compounds from extracts from the inflorescence of <i>Musa balbisiana</i> cv. Saba	243
Appendix F	Proton (¹ H) chart of compound A from <i>M. balbisiana</i> cv. Saba buds extract	244
Appendix G	Carbon (¹³ C) chart of compound A from <i>M. balbisiana</i> cv. Saba buds extract	245
Appendi <mark>x H</mark>	Distortionless Enhancement by Polarization Transfer (DEPT 135) chart of compound A from <i>M. balbisiana</i> cv. Saba buds extract	246
Appendix I	Heteronuclear single quantum coherence spectroscopy (HSQC) chart of compound A from <i>M. balbisiana</i> cv. Saba buds extract	247
Appendix J	Heteronuclear Multiple Bond Correlation (HMBC) chart of compound A from <i>M. balbisiana</i> cv. Saba buds extract	248
Appendix K	Correlation Spectroscopy (COSY) chart of compound A from <i>M. balbisiana</i> cv. Saba buds extract	249
Appendix L	Proton (¹ H) chart of compound B from <i>M. balbisiana</i> cv. Saba buds extract	250
Appendix M	Carbon (¹³ C) chart of compound B from <i>M. balbisiana</i> cv. Saba buds extract	251
Appendix N	Distortionless Enhancement by Polarization Transfer (DEPT 135) chart of compound B from <i>M. balbisiana</i> cv. Saba buds extract	252

- Appendix O Heteronuclear single quantum coherence spectroscopy 253 (HSQC) chart of compound B from *M. balbisiana* cv. Saba buds extract
- Appendix P Heteronuclear Multiple Bond Correlation (HMBC) chart of 254 compound B from *M. balbisiana* cv. Saba buds extract
- Appendix Q Correlation Spectroscopy (COSY) chart of compound B from 255 *M. balbisiana* cv. Saba buds extract
- Appendix R Proton (¹H) chart of compound C from *M. balbisiana* cv. Saba 256 buds extract
- Appendix S Carbon (¹³C) chart of compound C from *M. balbisiana* cv. Saba 257 buds extract
- Appendix T Distortionless Enhancement by Polarization Transfer (DEPT 258 135) chart of compound C from *M. balbisiana* cv. Saba buds extract
- Appendix U Heteronuclear single quantum coherence spectroscopy 259 (HSQC) chart of compound C from *M. balbisiana* cv. Saba buds extract
- Appendix V Heteronuclear Multiple Bond Correlation (HMBC) chart of 260 compound C from *M. balbisiana* cv. Saba buds extract
- Appendix W Correlation Spectroscopy (COSY) chart of compound C from 261 *M. balbisiana* cv. Saba buds extract
- Appendix X Mass spectrometry elemental composition analysis for 262 compounds detected in BWF-3: (a) compound 1, (b) compound 2, (c) compound 3, (d) compound 4, (e) compound 5, (f) compound 6, g) compound 7, (h) compound 8, (i) compound 9, (j) compound 10, (k) compound 11, (l) compound 12 and (m) compound 13
- Appendix Y Mass fragment analysis for compounds detected in BWF-3: (a) 275 compound 1, (b) compound 2, (c) compound 3, (d) compound 4, (e) compound 5, (f) compound 6, g) compound 7, (h) compound 8, (i) compound 9, (j) compound 10, (k) compound 11, (l) compound 12 and (m) compound 13