OCCURRENCE OF IRIDOVIRUSES AND BACTERIAL PATHOGENS IN BIVALVES, SCAVENGING FISH AND TRASH FISH IN MARINE AQUACULTURE FACILITIES IN SABAH, MALAYSIA

BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2015

OCCURRENCE OF IRIDOVIRUSES AND BACTERIAL PATHOGENS IN BIVALVES, SCAVENGING FISH AND TRASH FISH IN MARINE AQUACULTURE FACILITIES IN SABAH, MALAYSIA

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2015

DECLARATION

I hereby declare that material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

26 August 2015

Suraini Lajimin MY1211002T

CERTIFICATION

- NAME : SURAINI LAJIMIN
- MATRIC NO : MY1211002T
- TITLE : OCCURRENCE OF IRIDOVIRUS AND BACTERIAL PATHOGENS IN BIVALVES, SCAVENGING FISH AND TRASH FISH IN MARINE AQUACULTURE FACILITIS IN SABAH, MALAYSIA
- DEGREE : MASTER OF SCIENCE (MARINE BIOTECHNOLOGY)
- VIVA DATE : 05 AUGUST 2015

DECLARED BY

ACKNOWLEDGEMENT

First and foremost I am grateful to the almighty God for the good health, blessing and His guidance to me during my study to complete this thesis. I would like to express my gratitude to my parents and family for their love, understanding, moral supports and monetary supports throughout my study. They have given me strength to continue and finally complete my study. I am also deeply grateful to Dwenovel Dennis John for his continuous support, be it in the form of transportation, food and partner in entertainment until I completed this thesis.

I would like to express my sincere gratitude and appreciation to my supervisor, Prof. Madya Dr. Julian Ransangan for the continuous support of my master study, for his patience, guidance and motivation throughout the past few years. His guidance helped me in all the time of research and writing this thesis. My sincere thanks to my fellow lab mates in Borneo Marine Research Institute; Afizah, Asra, Tamrin and Veronica and staffs of Borneo Marine Research Institute without their help and supports this thesis would not be completed. I also would like to express my gratitude to Borneo Marine Research Institute, Universiti Malaysia Sabah for providing the accommodation, equipments and consumable during my study. I would to express thank the Fisheries department for their cooperation and accommodation during completing this study. Last but not least I would like to express my deepest gratitude to Ministry of Education Malaysia (MyBrain) for funding me during my study in Universiti Malaysia Sabah and not to forget to the Ministry of Science, Technology and Innovation (MOSTI) for providing the research grant fund (SCF0078-SEA-2012). Without their support this study will not able to be completed.

Suraini Lajimin 26 August 2015

ABSTRACT

Study was carried out to determine the occurrence of iridovirus and bacterial pathogen in bivalves, scavenging fish and trash fish collected from marine aquaculture facilities in Sabah. Bivalves and scavenging fish were collected from Kota Marudu, Kuala Penyu and Tuaran over a period of year from May 2012 to April 2013. Meanwhile, trash fish specimens were collected from fisheries landing stations Kudat, Semporna, Lahad Datu, Kuala Penyu and Kota Kinabalu. From the Polymerase Chain Reaction (PCR) analysis, specimens of bivalves and scavenging fish (n=2068) were detected positive for iridovirus (266), Photobacterium damselae (53), Vibrio harveyi (135), Vibrio alginolyticus (44) and Vibrio parahaemolyticus (147). Meanwhile, 35 of trash fish (n=221) specimens were also detected positive for iridovirus using PCR. The DNA of positive iridovirus samples was then characterized by DNA sequencing. From the DNA sequencing analysis, it was shown that the iridovirus found on bivalves, scavenging fish and trash fish are from the genus Megalocytivirus (Iridoviridae). Further strain divergence analysis suggested that the megaloctivirus from bivalves and scavenging fish are from the same strain that is the Infectious Spleen Kidney and Necrosis Virus (ISKNV) with the average percentage of nucleotide similarity of 98.77%. Similarly, the megalocytivirus from trash fish also showed the highest average percentage nucleotide similarity to ISKNV (99.40%), which suggested that the megalocytivirus in Sabah are from the strain of ISKNV. Finding of this study revealed that some of the bivalves and scavenging fish which are abundance in the aquaculture facilities particularly floating net cage, are carrier of iridovirus, Vibrio harveyi, Vibrio parahaemolyticus, *Vibrio alginolyticus* and *Photobacterium damselae*. These animals can become the hosts of viral and bacterial pathogens and possibly transmit them to cultured fish. Finding of this study also showed that the trash fish can become the carrier of iridovirus and may transmit it to cultured fish during feeding. Therefore, the study suggests that the aquaculture facilities should often be cleaned from biofouling organisms such as bivalves to prevent disease outbreak. Furthermore, the use of trash fish should be minimized for the similar reason.

ABSTRAK

KEJADIAN IRIDOVIRUS DAN BAKTERIA DI DALAM BIVALVIA, IKAN KECIL DAN MAKANAN IKAN DI DALAM FASILITI AKUAKULTUR MARIN

Kajian telah dijalan untuk memastikan kejadian iridovirus dan bakteria di dalam bivalvia, ikan kecil dan makanan ikan yang dikumpul daripada fasiliti akuakultur. Bivalvia dan ikan kecil diambil daripada Kota marudu, Kuala Penyu dan Tuaran, penggambilan sampel telah dijalankan selama setahun daripada Mei 2012 sehingga April 2013. Manakala sampel makanan ikan diambil daripada Kudat, Semporna, Lahad Datu, Kuala Penyu dan Kota Kinabalu. Daripada analisis Polymerase Chain Reaction (PCR), sampel bivalvia dan ikan kecil (n=2068) telah didapati positif iridovirus (266), Photobacterium damselae (53), Vibrio harveyi (135), Vibrio alginolyticus (44) dan Vibrio parahaemolyticus (147). Di samping itu, 35 daripada sampel makanan ikan (n=221) juga telah didapati positif iridovirus dengan menggunakan PCR. Kemudian, DNA sampel yang positif iridovirus telah dianalisis menggunakan kaedah DNA seguencing untuk pencirian iridovirus yang dijumpai didalam sampel. Keputusan analisis DNA sequencing menunjukkan bahawa iridovirus yang dijumpai di dalam bivalvia, ikan kecil dan makanan ikan adalah daripada genus megalocytivirus (Iridoviridae). Analisis untuk penentuan strain menunjukkan yang megalocytivirus yang dijumpai didalam bivalvia dan ikan kecil adalah daripada strain Infectious Spleen Kidney and Necrosis Virus (ISKNV) dengan purata peratus kesamaan nukleotida sebanyak 98.77%. megalocytivirus yang dijumpai didalam makanan ikan juga adalah daripada ISKNV dengan purata peratus kesamaan nukleotida sebanyak 99.40 yang mana menunjukkan bahawa megalocytivirus di Sabah adalah daripada strain ISKNV. Berdasarkan keputusan kajian; bivalvia dan ikan kecil yang berada di fasiliti akuakultur boleh menjadi pembawa kepada iridovirus, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio alginolyticus dan Photobacterium damselae. Bivalvia dan ikan kecil boleh menjadi perumah kepada virus dan bacteria patogen dan boleh melepaskan patogen tersebut kedalam ikan kultur. Kajian ini juga menunjukkan bahawa makanan ikan juga boleh menjadi pembawa kepada iridovirus. Penggunaan makanan ikan didalam akuakultur boleh menjadi salah satu cara untuk menjangkitkan iridovirus kepada ikan yang dikultur. Oleh itu, kajian ini mencadangkan untuk selalu membersihkan kawasan fasiliti akuakultur untuk mengurangkan kehadiran organisma biofouling seperti bivalvia. Oleh itu, pengunaan makanan ikan harus dikurangkan yang digunakan juga harus dikaji terlebih dahulu untuk memastikan makanan ikan tersebut tidak dijangkiti patogen supaya penyakit dalam akuakultur dapat dikurangkan.

LIST OF CONTENTS

		Page
TIT	LE	i
DEC	CLARATION	ii
CER	TIFICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	STRACT	v
ABS	STRAK	vi
LIS	T OF CONTENTS	vii
LIS	T OF TABLES	xi
LIS	T OF FIGURES	xiii
LIS	T OF ABBREVIATIONS	xvi
LIS	T OF SYMBOL	xviii
LIS	T OF APPENDIX	xix
CHA	APTER 1: GENERAL INTRODUCTION	1
1.1	Aqu <mark>aculture in</mark> Malaysia	1
1.2	Dis <mark>eases Outbr</mark> eak in Aquaculture	5
1.3	Iridovirus in Aquaculture	5
1.4	Bacterial Diseases in Fish	6
1.5	Transmission of Pathogens	7
1.6	Correlation of Water Parameter and Pathogens	7
1.7	Significance of Study	8
1.8	Objective of Study	8
CHA	APTER 2: OCCURRENCE OF IRIDOVIRUSES AND BACTERIAL PATHOGEN IN BIVALVES ABD SCAVENGING FISH	9
2.1	Introduction	10
2.2	Literature Review	11
	2.2.1 Iridoviruses	11
	2.2.2 Iridovirus	12
	2.2.3 Chloriridovirus	12

	2.2.4	Ranavirus	13
	2.2.5	Lymphocytivirus	14
	2.2.6	Megalocytivirus	15
	2.2.7	Bacterial Pathogens	16
2.3	Materia	als and Methods	19
	2.3.1	Study Sites and Samples Collection	19
	2.3.2	Samples Processing	24
	2.3.3	DNA extraction	27
	2.3.4	Iridovirus Detection by Polymerase Chain Reaction (PCR)	27
	2.3.5	Bacterial Detection by Polymerase Chain Reaction (PCR)	28
	2.3.6	Gel Electrophoresis	28
	2.3.7	Statistical Analysis	31
2.4	Result	S	32
	2.4.1	Polymerase Chain Reaction (PCR)	32
	2.4.2	Water Parameter	37
	2.4.3	Statistical Analysis	39
2.5	Discus	sion	44
2.6	Conclu		47
CHA	APTER :	3: DETECTION OF IRIDOVIRUS IN TRASH FISH SPECIMENS	48
3.1	Introd	uction	49
3.2	Literat	ure Review	50
	3.2.1	Trash Fish	50
	3.2.2	Pathogens in Trash Fish	51
3.3	Materia	al and Methods	52
	3.3.1	Sampling Sites and Specimens Collection	52
	3.3.2	DNA Extraction	55
	3.3.3	Polymerase Chain Reaction (PCR)	55
	3.3.4	Gel Electrophoresis	56
3.4	Result	5	57
3.5	Discus	sion	61
3.6	Conclu	ision	63

CHA	PTER	4: CHARACTERIZATION OF IRIDOVIRUS USING MOLECULAR METHOD	64
4.1	Introd	uction	65
4.2	Literat	ure Review	66
	4.2.1	Megalocytivirus	66
	4.2.2	Characterization using Molecular Method	67
4.3	Materi	al and Methods	69
	4.3.1	Polymerase Chain Reaction (PCR)	69
	4.3.2	PCR Product Purification	69
	4.3.3	DNA Cloning	70
		a. Ligation Reaction	70
		b. Transformation Reaction	71
		c. Colonies Selection	72
		d. Plasmid Extraction and Purification	73
	4.3.4	Restriction Reaction	74
	4.3.5	DNA sequencing	74
	4.3.6	Contig Analysis	75
2	4.3.7	BLAST Analysis	79
	4.3 <mark>.</mark> 8	Phylogenetic Tree Analysis	81
	NG.	a. Genus Determination RSITI MALAYSIA SABAH	82
		b. Strain Determination	83
4.4	Result	S	84
	4.4.1	PCR Product Purification	84
	4.4.2	Cloning, Plasmid Extraction and Restriction Enzyme Reaction	87
	4.4.3	Plasmid Purity	92
	4.4.4	BLAST Analysis of Sequences Samples	95
	4.4.5	Phylogenetic Tree Analysis for Genus Determination of Iridoviruses Isolates	100
	4.4.6	Viral Strain Determination Megaocytivirus Isolates	107
4.5	Discus	sion	115
4.6	Conclu	ision	117
СНА	PTER	5: GENERAL CONCLUSION	118
REF	ERENC	XES	121

APPENDICES PUBLISHED PAPER

LIST OF TABLES

		Page
Table 1.1:	Estimated production from aquaculture, Malaysia, 2008-2012	2
Table 1.2:	Production of brackishwater/marine aquaculture by State, 2008-2012	3
Table 1.3:	Production of freshwater aquaculture by State,2008-2012	4
Table 2.1:	Total number of samples collected from Kuala Penyu according to month	24
Table 2.2:	Total number of samples collected from Kota Marudu according to month	25
Table 2.3:	Total number of samples collected from Tuaran according to month	25
Table 2.4:	PCR primers used in the amplification of major capsid protein gene of Iridoviridae	30
Table 2.5:	List of primers used in PCR detection of bacterial pathogens	30
Table 2.6:	Summary of Iridovirus detection according to type of specimens and sampling site	35
Table 2.7:	Results for Bacterial pathogen detection using Polymerase Chain Reaction (PCR)	36
Table 2.8:	Summary of correlation between the water parameter and occurrence of iridovirus in Kota Marudu	40
Table 2.9:	Summary of correlation between the water parameter and occurrence of iridovirus in Kuala Penyu	41
Table 2.10:	Summary of correlation between the water parameter and occurrence of iridovirus in Tuaran	42
Table 2.11:	Summary for ANOVA analysis	43
Table 3.1:	Food of small pelagic fish	51

Table 3.2:	PCR primers used in the amplification of major capsid protein gene of <i>Iridoviridae</i>	56
Table 3.3:	List of samples detected positive iridoviruses	58
Table 3.4:	Summary of Iridoviruses detection in trash fish	60
Table 4.1:	Primers used in the nested PCR amplification of the complete coding sequence of Major Capsid Protein gene of Iridoviridae	69
Table 4.2:	Information provided along with plasmids samples to AITBiotech for their references	75
Table 4.3:	The concentration, purity and absorbance value of the recombinant plasmids sent for sequencing	92
Table 4.4:	Results of BLAST analysis of MCP gene sequences of the 96 isolates of iridoviruses in this study	96
Table 4.5:	Percentage of nucleotide similarity of MCP gene of 75 iridoviruses isolates from bivalves and scavenging fish with other references sequences available at NCBI	102
Table 4.6:	Percentage of nucleotide similarity of MCP gene of 21 iridoviruses isolates from trash fish with other references sequences available at NCBI	106
Table 4.7: 1 B	Percentage of nucleotide similarity of 75 iridoviruses isolates with references sequence (Megalocytivirus genus) from NCBI for strain determination of the iridoviruses isolates	109
Table 4.8:	Percentage of nucleotide similarity of 47 iridoviruses isolates with references sequence (Megalocytivirus genus) from NCBI for strain determination of the iridoviruses isolates	114

LIST OF FIGURES

		Page
Figure 2.1:	Map shows the sampling sites	20
Figure 2.2:	Conditions of sampling site in Marudu Bay	21
Figure 2.3:	Conditions of sampling site in Kuala Penyu	22
Figure 2.4:	Conditions of sampling site in Tuaran	23
Figure 2.5:	Samples collected and analyzed in this study	24
Figure 2.6:	Dissection of specimens	25
Figure 2.7:	Percentage of iridovirus detected in bivalves and scavenging fish collected from Kota Marudu, Tuaran and Kuala Penyu	33
Figure 2.8:	Percentage of specimens collected from Kuala Penyu detected for iridovirus.	33
Figure 2.9:	Percentage of bivalves samples in Kota Marudu detected positive iridovirus according to month	34
Figure 2.10:	Percentage of specimens of bivalves and scavenging fish from Tuaran detected positive iridovirus	34
Figure 2.11:	Water parameters recorded in Kota Marudu from May 2012 to April 2013	37
Figure 2.12:	Water parameters recorded in Tuaran from May 2012 to April 2013	38
Figure 2.13:	Water parameters recorded in Kuala Penyu from May 2012 to April 2013	38
Figure 3.1:	Map shows (black triangle) the locations of the five fishery landing stations at which the trash fish specimens were collected	53
Figure 3.2:	Pictures of trash fish specimens collected in this study	54
Figure 3.3:	Percentage of iridovirus detection in trash fish collected from Kuala Penyu, Kota Kinabalu, Kudat, Lahad Datu and Semporna	59

Figure 4.1:	Plasmid transformation steps	72
Figure 4.2:	Screening of <i>E.coli</i> transformant	73
Figure 4.3:	The steps in contig sequence analysis using SeqMan of Lasergene (DNASTAR, 7.1)	78
Figure 4.4:	Steps in the BLAST analysis	80
Figure 4.5:	Purified PCR products of MCP gene	84
Figure 4.6:	Purified PCR products of MCP gene	85
Figure 4.7:	Purified PCR products of MCP gene	85
Figure 4.8:	Purified PCR products of MCP gene	86
Figure 4.9:	Purified PCR products of MCP gene	86
Figure 4.10:	Purified PCR products of MCP gene	87
Figure 4.11:	Purified PCR products of MCP gene	87
Figure 4.12:	Cloning of PCR products into PGEM-TEasy vector (Promega)	88
Figure 4.13:	Purified recombinant plasmid restricted with <i>EcoR1</i> of cloned MCP gene	89
Figure 4.14:	Purified recombinant plasmid restricted with ABAH EcoR1 of cloned MCP gene	89
Figure 4.15:	Purified recombinant plasmid restricted with <i>EcoR1</i> of cloned MCP gene	90
Figure 4.16:	Purified recombinant plasmid restricted with <i>EcoR1</i> of cloned MCP gene	90
Figure 4.17:	Purified recombinant plasmid restricted with <i>EcoR1</i> of cloned MCP gene	91
Figure 4.18:	Purified recombinant plasmid restricted with <i>EcoR1</i> of cloned MCP gene	91
Figure 4.19:	Phylogenetic tree constructed based on 96 MCP gene sequences	101
Figure 4.20:	Phylogenetic tree constructed based on the most variable region of 42 MCP gene sequences	105

Figure 4.21:	Phylogenetic tree constructed based on 91 MCP gene sequences	108
Figure 4.22:	Phylogenetic tree analysis of strain divergence based on 47 major capsid protein gene sequences of viral strains within the genus Megalocytivirus	113
Figure 5.1	Propose framework of prevention of iridovirus in net cage aquaculture	120

LIST OF ABBREVIATION

AFCD	Aquaculture Fisheries Division
ATPase	Adenosine Triphosphate
ΑΤV	Ambystoma tifrinum virus
BIV	Bohle iridovirus
BLAST	Basic Local Alignment Search Tool
BLASTN	Basic Local Alingment Search Tool Nucleotide
CDS	Coding Sequences
СТАВ	Cetyltrimethylammonium Bromide
DNA	Deoxyribonucleotide Acid
DNTPs	Deoxynucleotide Triphosphates
DTAB	Dodecyltrimethylammonium Bromide
dsDNA	Double stranded Deoxyribonucleotide Acid
E. coli	Escherichia coli
EDTA	Ethylenediaminetetraacetic Acid
EtBr	Ethdium Bromide
FAO	Food and Agriculture Organization
FLD	Fish Lymphocystis Disease
FV-3	Frog Virus 3 VERSITI MALAYSIA SABAH
GIVD	Grouper Iridovirus Disease
GSIVD	Grouper Spawner Iridovirus Disease
IBC	Inclusion Body-bearing Cell
ΙCTV	International Committe of Taxonomy of Virus
IIV	Invertebrate iredescent virus
IIV-1	Invertebrate iridescent virus 1
IIV-3	invertebrate iridescent virus 3
IIV-6	Invertebrate iridescent virus 6
IPTG	Isopropyl B-D-1-thiogalactopyranoside
ISKNV	Infectious Spleen Kidney Necrosis Virus
LAMP	Loop-mediated isothermal amplification
LB	Luria-Bertani
LCDV	Lymphocytivirus disease virus

LCDV-1	Lymphocytivirus disease virus 1
LCDV-2	Lymphocytivirus disease virus 2
LCDV-C	Lymphocytivirus disease virus in China
LYCIV	Large Yellow Croaker Iridovirus
МСР	Major Capsid Protein
MgCl ₂	Magnesium Chloride
NaCl	Natrium Chloride
NCBI	National Center for Biotechnology Information
OIE	World Organization for Animal Health
ORFs	Open Reading Frames
OSGIV	Orange-Spotted Grouper Iridovirus
PCR	Polymerase Chain Reaction
RBIV	Rock Bream Iridovirus
RFLP	Restriction Fragment Length Polymorphism
RSIV	Red Sea bream Iridovirus
RSIVD	Red Sea Bream Iridoviral disease
RT-PCR	Reverse Transciptase Polymeras Chain Reaction
SBIV	Seabass Iridovirus
SGD	Sleepy Grouper Disease
SGIV	Singapore Grouper Iridovirus
SGIVD	Singapore Grouper Iridovirus Disease
SOC	Super Optimum Growth
TAE	Tris-acetate-EDTA buffer
TE	Tris-EDTA buffer
TFV	Tiger Frog Virus
TGIV	Taiwan Grouper Iridovirus
TGIVD	Taiwan Grouper Iridovirus Disease
TRBIV	Turbot Reddish Body Iridovirus
UV	Ultraviolet
UPGMA	Unweighted Pair Group Method with Arithmetic Mean
X-GAL	5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside

LIST OF SYMBOLS

%	Percentage
°C	Degree Celsius
μΙ	Microliter
μM	Micromolar
2X	2 times concentrated
5X	5 times concentrated
10X	10 times concentrated
1X	working concentration
bp	basepair
et al.	And others
g geog	Gram
MALE	Molar
mg/ml	milligram per milliliter
mg/L	milligram per liter
mi	mililiter
mM	Milimolar
ng/ μl	nanogram per microliter
nM	Nanomolar
nm	Nanometer
ppt	Part per Thousand
rpm	Revolution per minute
sp.	Species
U	Unit
v	Voltage

LIST OF APPENDICES

		Page
Appendix A:	List of bivalves and scavenging fish collected	145
Appendix B:	List of samples detected positive iridoviruses	182
Appendix C:	Electrophoresis image of iridovirus detection of bivalve and scavenging fish from Kuala Penyu	187
Appendix D:	Electrophoresis image of iridovirus detection of bivalve from Kota Marudu	198
Appendix E:	Electrophoresis image of iridovirus detection of bivalve and scavenging fish from Tuaran	215
Appendix F:	Representative of electrophoresis image of bacteria detection of bivalve and scavenging fish	232
Appendix G:	List of trash fish collected for this study	234
Appendix H:	Electrophoresis image of iridovirus detection of trash fish	238
Appendi <mark>x I:</mark>	MCP gene sequences used for genus determination of Iridoviruses isolates	243
Appendix J:	MCP gene sequences used for strain divergence analysis of Iridoviruses isolates	247

CHAPTER 1

GENERAL INTRODUCTION

1.1 Aquaculture in Malaysia

Aquaculture in Malaysia was first introduced in 1920's. The aim of aquaculture introduction was to improve country's economy in term of exports revenue and alternative seafood supply to satisfy the increasing demand for seafood (FAO, 2008). According to Othman (2008), Malaysia has high potential for aquaculture development because of its favorable climate as well as vast natural resources. Malaysia is also known as one of the countries that has high fish consumption. Furthermore, fishes are one of the cheapest sources of animal protein.

Aquaculture is defined as the farming of aquatic organisms including fish, mollusks, crustaceans and aquatic plants with some sort of intervention in the rearing process to enhance production, such as regular stocking, feeding and protection from predators. Aquaculture can be divided into various stages namely; hatchery operation, nursery operation and grow-out operation. And depending on the species being farmed, aquaculture can be carried out in freshwater, brackish water or marine water. Therefore, aquaculture can be used to produce fish, mollusks, crustaceans and aquatic plants for both human consumption and ornamental purposes.

Aquaculture production in Malaysia is increasing every year. Table 1.1 shows the estimated aquaculture production in Malaysia from 2008 to 2012. While Tables 1.2 and 1.3 shows the estimated production by states from 2008 to 2012 of marine/brackish water aquaculture and freshwater aquaculture, respectively. Obviously, Sabah has been the biggest contributor in term of aquaculture production of marine/brackish water in Malaysia.

Table 1.1: Estimated production from aquaculture, Malaysia, 2008 to2012

	2008	2009	2010	2011	2012		
Number of aquaculture culturist	30,634	23,986	26,291	28,599	29,482		
Aquaculture production (`000 Tonnes)	354	473	581	526	634		
Freshwater							
Quantity ('000 Tonnes)	96	153	155	122	164		
Value (RM million)	471.80	704.30	760.34	684.15	992.39		
Brackishwater/Marin							
Quantity ('000 Tonnes)	259	320	426	404	471		
Value (RM million)	1,268.25	1,617.66	2,038.46	1,821.22	1,765.71		

Source: Fisheries Department, Malaysia, 2012

	2008		2009		2010		2011		2012	
State	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
	(tonnes)	(RM '000)	(tonnes)	(RM `000)	(tonnes)	(RM '000)	(tonnes)	(RM '000)	(tonnes)	(RM `000)
Perlis	268	5,799	363	4,851	354	4,330	118	1,462	89	1,241
Kedah	1,468	17,150	4,379	45,133	4,896	43,633	3,281	30,787	2,659	33,467
Pulau Pinang	22,676	174,344	21,497	230,054	31,859	347,837	34,168	433,414	34,498	444,726
Perak	48,884	213,756	46,766	252,917	48,191	270,132	36,279	241,633	31 ,025	165,348
Selangor	26,629	182,730	43,517	211,424	53,179	222,649	37,792	207,189	20,900	173,759
Negeri Sembilan	447.49	5,381	1,164	15,035	1,405	17,165	1,418	17,394	1,016	12,440
Melaka	18 <mark>3.74</mark>	<mark>2,61</mark> 2	212	2,391	216	2,063	141	1,993	124	2,987
Johor	27,028	303,266	-30,347	289,096	32,278	302,880	18,194	228,919	16,290	217,902
Pahang	<mark>5,</mark> 917	123, <mark>24</mark> 3	10,670	224,354	12,260	260,632	4,216	80,632	3,807	67,678
Terengganu	1,953	24,582	2,072	26,778	2,076	26,118	2,165	29,606	4,150	59,453
Kelantan	229	3,278	1,079	14,880	598	7,676	410	5,372	609	8,496
Sarawak	4,143	66,741	5,459	66,305	8,604	129,902	9,592	145,394	9,434	142,529
Sabah	118,754	146,365	152,153	234,445	229,734	403,384	256,514	397,424	364,013	435,594
Total	258,581	1,268,248	319,676	1,617,663	425,650	2,038,402	404,287	1,821,220	470,620	1,765,714

 Table 1.2: Production of brackishwater/marine aquaculture by State, 2008 to 2012

Source: Fisheries Department, Malaysia, 2012

	2008		2009		2010		2011		2012	
State	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
	(tonnes)	(RM million)	(tonnes)	(RM million)	(tonnes)	(RM million)	(tonnes)	(RM million)	(tonnes)	(RM million)
Perlis	254	1,072	531	1,765	151	511	67	246	153	548
Kedah	869	8,003	6,221	20,453	3,801	20,133	3,154	10,396	3,973	13,419
Pulau Pinang	6,849	6,654	4,817	12,854	6,264	17,661	5,337	17,278	4,994	17,000
Perak	13,889	121,578	51,701	224,381	70,319	329,205	53,618	288,129	92,264	558,629
Selangor	8,629	65,568	15,251	70,150	14,867	65,385	14,365	63,522	14,857	69,946
Negeri Sembilan	431	29,853	12,082	50.787	8 ,8 82	41,777	7,187	41,308	6,983	38,627
Melaka	96	<mark>21,9</mark> 22	28,605	90,119	13,810	45,588	7,248	23,622	7,966	27,637
Johor	10,816	55,382	-12,783	42,772	14,196	47,558	10,628	38,934	10,511	42,131
Pahang	<mark>5,842</mark>	52,737	7,413	74,814	9,361	78,048	9,341	102,965	8,779	104,080
Terengganu	133	22,568	3,644	20,932	3,561	22,920	3,101	22,006	4,219	30,979
Kelantan	80	3,124	2,162	9,295	2,365	11,061	1,695	8,449	2,033	10,326
Sarawak	3,380	26,238	2,560	27,837	2,929	22,060	2,396	18,374	3,054	31,003
Sabah	5,852	57,099	4,859	58,144	4,871	58,429	4,081	48,921	3.971	47,614
Total	57,118	471,798	152,631	704,303	155,399	760,335	122,219	684,149	163,757	992,386

 Table 1.3: Production of freshwater aquaculture by State, 2008 to 2012

Source: Fisheries Department, Malaysia, 2012