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ABSTRACT 

 

Glycogen Synthase Kinase-3 (GSK-3) is a multitasking enzyme involved in various 
processes cell. It is expressed in two isoforms in mammalian cells; GSK-3α and GSK-
3β. Dysregulation of GSK-3 is a causal factor of diseases such as cancer and 
diabetes. In drug discovery, GSK-3β is usually being targeted as its activity is more 
understood compared with GSK-3α. Small molecule originated from nature is 
regarded as the best inhibitor for GSK-3β that be used for treatment due to their 
novel structural features and potent activity. Actinomycetes are recognized as 
prolific producers of active compounds, including potent GSK-3β inhibitor such as 
staurosporine and manzamine A. External factors such as nutrient availability and 
pH may influence the production of secondary metabolites by actinomycetes. GSK-
3β inhibitors were previously identified in Streptomyces sp. isolated from primary 
rainforests of Sabah. Due to unexplored potential of actinomycetes from Sabah 
rainforests, the possibility of finding more inhibitors from actinomycetes of Sabah is 
promising. In this study, 640 strains of actinomycetes were isolated from 156 soil 
sample of different forest types in Sabah. Kruskal-Wallis analysis revealed that a 
large number of isolated strains from secondary forest in which significantly related 
to the soil pH. Slightly acidic soils were found to yield more strains compared with 
alkaline soils. Based on the preliminary screening using a yeast-based assay of 505 
strains, 14 positive strains were identified. Three strains (FA013, FH025 and 
H11809) were chosen to be partitioned using LLE. Of the three, H11809 was chosen 
to be further fractionated using column chromatography due to consistent and 
potential inhibitory activity. Fractionation of H11809 chloroform extract yielded two 
active fractions; F4 and F8, in which F8 showed no toxic activity against yeast. 
Further analysis of F8 using FTIR revealed that carbonyl ester as the major 
functional group. It was supported by GCMS in which carbonyl ester is the 
functional group of major compound; dibutyl phthalates (SI >90 %). Carbonyl 
group was reported to facilitate the binding of numerous inhibitors with GSK-3β. 
Minor compound; cyclo-leu-pro (SI >80 %), was also chosen to be further studied 
due to the presence of carbonyl group as well (carbonyl amide). Identification was 
supported by spiking using commercially-purchased pure compounds. Both 
compounds were shown to inhibit the activity of GSK-3β based on a yeast-based 
and kinase assays. Michaelis-Menten and Lineweaver-Burke plots showed that 
dibutyl phthalates inhibited GSK-3β with mixed inhibition and cyclo-leu-pro 
uncompetitive inhibition. IC50 values of dibutyl phthalates indicated active (IC50 =3.1 
μM) inhibitory activity against GSK-3β while cyclo-leu-pro exhibited moderate 
inhibition (IC50 =12.94 μM). In conclusion, GSK-3β inhibitors were successfully 
identified from actinomycetes strain H11809, and may serve as a good lead to be 
further developed since non-ATP competitive inhibitors are the main interests in 
drug discovery.  
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ABSTRAK 
 

 
PERENCAT GLIKOGEN SINTASE KINASE-3β (GSK-3β) DARIPADA AKTINOMISET 

TANAH HUTAN HUJAN SABAH: PENYARINGAN, PENULENAN DAN 
PENGENALPASTIAN 

 

Glikogen sintase kinase-3 (GSK-3β) merupakan enzim pelbagai fungsi yang terlibat 
dalam banyak proses sel. Ia diekspresikan dalam dua isoforms di dalam sel 
mamalia; GSK-3α and GSK-3β. Gangguan pada regulasi GSK-3 merupakan punca 
kepada kanser dan diabetes. Dalam proses penemuan ubat-ubatan, GSK-3β sering 
disasarkan kerana aktivitinya lebih difahami berbanding GSK-3α. Molekul kecil 
daripada sumber semulajadi dianggap sebagai perencat yang baik kerana sturktur 
kimianya yang unik dan aktiviti yang kuat. Aktinomiset merupkan pengeluar 
sebatian kimia yang banyak, termasuklah perencat GSK-3β seperti staurosporine 
dan manzamine A. faktor luaran seperti nutrisi dan pH boleh mempengaruhi 
metabolit sekunder yng dihasilkan oleh aktinomiset. Sebelum ini, perencat GSK-3β 
telah dikenal pasti daripada Streptomyces sp. yang  diisolasi daripada hutan hujan 
primer Sabah.  Memandangkan aktinomiset di hutan hujan Sabah kurang dikaji, 
kemungkinan untuk menjumpai lebih banyak perencat adalah tinggi. Dalam kajian 
ini, 640 strain aktinomiset telah diisolasi daripada 156 tanah daripada pelbagai jenis 
hutan di Sabah. Analisa Kruskal-Wallis menunjukkan bahawa, bilangan strain yang 
kebanyakannya diisolasi daripada hutan sekunder dipengaruhi oleh pH tanah. Tanah 
yang sedikit berasid didapati menghasilakn lebih banyak strain berbanding tanah 
alkali. Saringan awal terhadap 505 strain menggunakan esei berasaskan yis, dan 14 
strain aktif telah dikenal pasti. Tiga strain (FA013, FH025 dan H11809) telah dipilih 
untuk pemisahan menggunakan teknik LLE. H11809 telah dipilih daripada tiga strain 
untuk proses fraksinasi menggunakan kromatografi turus kerana aktiviti perencat 
yang konsistent dan berpotensi. Fraksinasi ekstrak kloroform H11809 menghasilkan 
dua fraksi aktif; F4 dan F8, dimana F8 tidak menunjukkan aktiviti toksik kepada 
yeast. Analisa selanjutnya keatas F8 menggunakan FTIR menunjukkan bahawa 
karbonil ester merupakan kumpulan berfungsi utama. Ianya disokong melalui GCMS 
dimana karbonil ester adalah kumpulan berfungsi dibutil phthalate (SI >90 %). 
Kumupulan karbonil dilaporkan membantu perlekatan pelbagai perencat kepada 
GSK-3β. Sebation minor (cyclo-leu-pro (SI >80 %)) juga dipilih untuk kajian 
selanjutnya kerana kewujudan kumpulan karbonil (karbonil amid). Pengenalpastian 
disokong dengan spiking menggunakan sebatian komersial tulen yang dibeli. Kedua-
dua sebatian merencat aktiviti GSK-3β berdasarkan esei berasaskan yis dan kinase. 
Plot Michaelis-Menten and Lineweaver-Burke menunjukkan dibutil phthalate 
merencat GSK-3β dengan rencatan campuran dan cyclo-leu-pro rencatan tidak 
kompetitif. Nilai IC50 dibutil phthalate (IC50 =3.1 μM) menujukkan rencatan aktif 
terhadap GSK-3β, manakala cylco-leu-pro mempunyai rencatan sederhana (IC50 

=12.94 μM). Kesimpulannya, perencat GSK-3β telah berjaya dikenal pasti daripada 
strain aktinomiset H11809, dan berpotensi untuk menjadi calon ubatan yang baik 
untuk dikembangkan kerana perencat yang tidak bersaing dengan ATP adalah 
sasaran utama dalam penemuan ubat-ubatan.
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction  

Actinomycetes are gram positive bacteria commonly found in soil and sediment. 

They are regarded as the most promising source for new drugs due to their ability 

to produce active compounds with unique structural features and various biological 

activities (Takahashi and Omura, 2003; Toume et al., 2014). For example, 

antimicrobial agents (streptomycin and erythromycin) (Schatz et al., 2005; Shangavi 

et al., 2014), anticancer agents (nonactin, tetracenomycin D, resistomycin and 1-

hydroxy-1-norresistomycin) (Kock et al., 2005; Jeong et al., 2006) and antiparasitic 

agents (phenzamine 12 and Trioxacarcins) (Maskey et al., 2004; Dashti et al., 2014). 

Actinomycetes also gained interests to search for small molecule inhibitor targeting 

kinase proteins; especially glycogen synthase kinase-3 (GSK-3) (Ojo et al., 2011).  

 

GSK-3 is a serine/threonine kinase discovered in the 80’s as a key regulator 

of glucose metabolism. It is expressed as two isoforms in human; GSK-3α and GSK-

3β (97 % of similarities) which only differ on the length of their N-terminal 

(Woodgett, 1990). Extensive studies revealed that, GSK-3 involved in numerous 

signaling pathways and processes in human such as Wnt and Akt signalling, cell 

differentiation and cell survival (Jope and Johnson, 2004; Klann et al., 2004; Grimes 

and Jope, 2011). Due to its diverse role in cells, its dysregulation may cause 

diseases such as cancer, neurodegenerative disease and diabetes; often due to 

overexpression of GSK-3β (Elder-Finkelman et al., 1999; Cohen and Goedert, 2004; 

Baylin and Ohm, 2006). Thus, molecule that can inhibit the activity of this enzyme is 

regarded as a potential curative way (Elder-Finkelman and Martinez, 2011). The 

example of GSK-3β inhibitor which is clinically in used is lithium to treat 

neurodegenerative disease (Sun et al., 2002). However, lithium is lack in specificity 

which raised concern that it might lead to other diseases such as cancer since it will 




