
## THE EFFECT OF SODIUM HYDROXIDE PRE-TREATMENT ON THE DENSIFICATION PROPERTIES OF LOW-DENSITY Paraserianthes falcataria PLANTATION TIMBERS



# FACULTY OF TROPICAL FORESTRY UNIVERSITI MALAYSIA SABAH 2022

## THE EFFECT OF SODIUM HYDROXIDE PRE-TREATMENT ON THE DENSIFICATION PROPERTIES OF LOW-DENSITY Paraserianthes falcataria PLANTATION TIMBERS



FACULTY OF TROPICAL FORESTRY UNIVERSITI MALAYSIA SABAH 2022

#### **UNIVERSITI MALAYSIA SABAH**

**BORANG PENGESAHAN STATUS TESIS** 

JUDUL : THE EFFECT OF SODIUM HYDROXIDE PRE-TREATMENT ON THE

**DENSIFICATION PROPERTIES OF LOW-DENSITY** *Paraserianthes* 

falcataria PLANTATION TIMBERS

IJAZAH : SARJANA SAINS

BIDANG : PERHUTANAN

Saya **VINODINI A/P RAMAN**, Sesi **2019-2022**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan ( / ):



VinodiniRaman

PUSTAKAWAN KANAN
UNIVERSITI MALAYSIA SABAH

VINODINI A/P RAMAN MS1821049T

(Tandatangan Pustakawan)

Tarikh : 12 Mei 2022 (Assoc. Prof. Ts. Dr. Liew Kang Chiang)

Penyelia Utama

## **DECLARATION**

I hereby declare that the material in this thesis is my own except for citations, equations, summaries, and references, which have been duly acknowledged.

16 February 2022

VinodiniRaman
Vinodini A/P Raman
MS1821049T



## **CERTIFICATION**

NAME : VINODINI A/P RAMAN

MATRIC NO. : **MS1821049T** 

TITLE : THE EFFECT OF SODIUM HYDROXIDE PRE-

TREATMENT ON THE DENSIFICATION PROPERTIES

OF LOW-DENSITY Paraserianthes falcataria

**PLANTATION TIMBERS** 

DEGREE: : MASTER OF SCIENCE

FIELD : **FORESTRY** 

VIVA DATE: : 16 FEBRUARY 2022



Assoc. Prof. Ts. Dr. Liew Kang Chiang

#### **ACKNOWLEDGMENT**

First, I would love to take this opportunity to thank my beloved family, Mr Raman Ratanam, Mrs Jayanthey Krishnan, R. Vijay, R. Vijia Rani and R. Vimally, from the bottom of my heart for their unconditional support for me to complete my research and thesis writing. I also would love to express my gratitude to my uncle, Mr. K. Gunasegaran, for being such an inspiration to my siblings and I in pursuing higher education.

Besides that, I would like to thank my wonderful supervisor and colleagues, Assoc. Prof. Ts. Dr. Liew Kang Chiang, Charles Michael Albert, and Tan Yu Feng, who are very generous in sharing their knowledges and helped in overcoming the problems that I faced during the process of completing this thesis. Without their helps and willingness to spend their valuable time, I won't be able to manage to complete this project.

Furthermore, I also would love to thank my friends for their motivation to overcome my stress and moral supports during my ups and downs in completing my final year project. Without their motivations, I will not be able to overcome my stresses and weakness.

Finally, I would like to express my gratitude and thanks to our awesome laboratory assistants, En. Azli Sulid, En. Mohammad Rizan Gulam Hussein and En. Abdul Airin Termin, for their guides, knowledge, and time.

As a conclusion, I hope this study can be used as a reference for future study.

UNIVERSITI MALAYSIA SABAH

Vinodini A/P Raman 16 February 2022

#### **ABSTRACT**

Wood densification was done by compressing the wood using hot-press machine, with temperature and pressure. By densification, low-density wood can reach higher density after the cell walls were collapsed under condition. Densification can be done by chemical treatment and compression to achieve the maximum density by fully compacting the microstructures. Low-density timber species can be used as an alternative to hardwood species. The higher mechanical properties of densified wood products allow their use in diverse and advanced applications. This study was designed to evaluate the morphological, physical, mechanical, and dimension stability properties of untreated (D0) and treated (D3, D6, D9) densified Paraserianthes falcataria glulam. Besides that, this study was aimed to investigate the effects of different alkaline concentrations and the relationship between cell lumen areas with morphological, physical, mechanical, and dimension stability properties of untreated (D0) and treated (D3, D6, D9) densified P. falcataria glulam. Three different concentrations of NaOH (3%, D3; 6%, D6; 9%, D9) were used for alkaline pretreatment with 0% NaOH as control and prepared according to soda pulping method. The untreated and treated laminas were compressed at 105°C temperature and 6 MPa pressure for 30 minutes with 8 mm metal stopper, followed by cooling phase for 10 minutes without releasing the plate. After conditioning, laminas were planned and laminated into 3 layers using Polyvinyl acetate (PVAc) as adhesive, before trimmed into desirable sizes. ASTM, JAS, BS and TAPPI were used generally for lignin content determination, static bending, compressive strength, hardness, compressive strength, contact angles, delamination, block shear, moisture content, thickness swelling and water absorption, while Scanning Electron Microscopy and Chromaticity Reader 10 were used to determine cell lumen areas and chromaticity values. Some results obtained shows improvement after alkaline pre-treatment and densification, such as in total differences of chromaticity values (35.7%), Modulus of Elasticity and Modulus of Rupture of edgewise (31% and 20%), Modulus of Elasticity of flatwise (4.5%), compression perpendicular to the grain (10%), hardness of tangential and radial (21.3% and 18.1%), delamination (7.2%), thickness swelling and water absorption (2.1% and 3%), moisture content for lamina and glulam (1.3% and 8.8%), respectively, density profile for lamina and glulam (24.6% and 9.1%), contact angles using water and PVAc (43.3% and 5.3%), compared to the control. While, other tests show declining results after alkaline pre-treatment and densification, such as reduction of lignin content (55%), Modulus of Rupture of flatwise (25.4%), compression parallel to the grain (22.2%), hardness of longitudinal (13.4%), block shear (10.6%) and density (27.6). In general, the range of Pearson's coefficient correlations for these studies were in the level of correlation of moderate positive linear and moderate negative linear. In conclusion, this study can be sum up that some properties showed up to 35% improvements after being treated and densified, while a few shows decline and no improvement. This result would be influenced by the natural characteristics of *P. falcataria*, NaOH or densification. As there were many studies had been done to overcome the disadvantageous characters in woods as to improve its quality, value adding and maximize the utilization of the materials, probably more research should have been done for low-density plantation timber.

#### **ABSTRAK**

## RAWATAN ALKALI PADA SIFAT PEMADATAN KAYU PELADANGAN Paraserianthes falcataria BERKETUMPATAN RENDAH

Pemadatan kayu dilakukan dengan memampatkan kayu menggunakan mesin tekan panas, dengan suhu dan tekanan. Dengan pemadatan, kayu berketumpatan rendah dapat mencapai kepadatan yang lebih tinggi setelah dinding sel dimampatkan semaksimumnya. Pemadatan dapat dilakukan dengan rawatan kimia dan pemampatan untuk mencapai ketumpatan maksimum dengan memadatkan struktur mikro sepenuhnya. Kajian ini dirancang untuk menilai sifat morpologi, fizikal, mekanikal dan kestabilan dimensi Paraserianthes falcataria berlapis yang dirawat (D3, D6, D9) dan tidak dirawat (D0). Selain itu, kajian ini bertujuan untuk mengetahui kesan kepekatan alkali yang berbeza dan untuk mengkaji hubungan antara kawasan lumen sel dengan sifat morpologi, fizikal, mekanikal dan kestabilan dimensi P. falcataria berlapis yang tidak dirawat (D0) dan dirawat (D3, D6, D9). Tiga kepekatan NaOH yang berbeza (3%, D3; 6%, D6; 9%, D9) digunakan untuk pra-rawatan alkali dengan 0% NaOH sebagai panduan. Kepekatan pra-rawatan alkali disediakan menggunakan kaedah pulpa soda. Kayu yang dirawat dimampatkan menggunakan mesin pemampat pada suhu 105°C dan tekanan 6 MPa selama 30 minit dengan penyekat logam 8 mm sebagai ketebalan akhir yang disasarkan, diikuti dengan fasa penyejukan selama 10 minit tanpa melepaskan plat. Selepas pengkondisian, permukaan kayu dihaluskan sebelum proses laminasi. Lapisan P. falcataria dilakukan menggunakan Polyvinyl acetate (PVAc) sebagai pelekat dan dibiarkan selama 24 jam. Kayu dip<mark>otong me</mark>ngikut dimensi yang ditetapkan pada piawaian setiap ujian. Piawaian ASTM, JAS, BS dan TAPPI digunakan untuk menentukan kandungan lignin, lenturan statik, kekuatan mampatan, kekerasan, sudut sentuhan, ricih blok, kandungan lembapan, pembengkakan ketebalan dan penyerapan air. Beberapa hasil yang diperoleh menunjukkan peningkatan selepas pra-rawatan dan pemadatan alkali, seperti jumlah perbezaan nilai kromatik (35.7%), MOE dan MOR edgewise (31% dan 20%), MOE flatwise (4.5%), mampatan tegak lurus terhadap butir (10%), kekerasan tangen dan radial (21.3% dan 18.1%), pencabutan (7.2%), pembengkakan ketebalan dan penyerapan air (2.1% dan 3%), kandungan lembapan untuk kayu lamina dan berlapis (1.3% dan 8.8%), masing-masing, profil ketumpatan untuk kayu lamina dan berlapis (24.6% dan 9.1%), sudut hubungan menggunakan air dan PVAc (43.3% dan 5.3%), dibandingkan dengan panduan (D0). Sementara, uiian lain menunjukkan hasil yang merosot setelah pra-rawatan dan pemadatan alkali, seperti pengurangan kandungan lignin (55%), MOR flatwise (25.4%), pemampatan selari (22.2%), kekerasan membujur (13.4%), ricih blok (10.6%) dan ketumpatan (27.6%). Secara umum, julat korelasi pekali Pearson untuk kajian ini berada pada tahap korelasi linear positif dan negatif sederhana. Kesimpulannya, kajian ini telah merumuskan bahawa beberapa data menunjukkan peningkatan sehingga 35% setelah dirawat dan dimampatkan. Manakala beberapa data yang lain menunjukkan penurunan dan tiada perubahan. Hasil ini akan dipengaruhi oleh ciri semula jadi P. falcataria, NaOH atau pemadatan. Oleh kerana terdapat banyak kajian yang dilakukan untuk mengatasi karakter buruk di dalam hutan untuk meningkatkan kualitinya, menambah nilai dan memaksimalkan penggunaan bahan, mungkin lebih banyak penelitian harus dilakukan untuk kayu perladangan berkepadatan rendah.

## **LIST OF CONTENTS**

|                                               | Page          |
|-----------------------------------------------|---------------|
| TITLE                                         | i             |
| DECLARATION                                   | ii            |
| CERTIFICATION                                 | iii           |
| ACKNOWLEDGEMENT                               | iv            |
| ABSTRACT                                      | V             |
| ABSTRAK                                       | vi            |
| LIST OF CONTENTS                              | vii           |
| LIST OF TABLES                                | х             |
| LIST OF FIGURES                               | xi            |
| LIST OF ABBREVIATIONS                         | xix           |
| LIST OF SYMBOLS                               | XX            |
| CHAPTER 1: INTRODUCTION  1.1 Background study | xxi 1 1       |
| 1.2 Turkis collecti                           |               |
| 1.3 Objectives                                | ILAYSIA SABAH |
| CHAPTER 2: LITERATURE REVIEW                  | 7             |
| 2.1 Alkaline pretreatment                     | 7             |
| 2.1.1 Sodium pretreatment                     | 9             |
| 2.2 Wood densification                        | 12            |
| 2.3 Low-density timber                        | 15            |
| 2.3.1 Paraserianthes falcataria               | 15            |
| CHAPTER 3: MATERIALS AND METHODS              | 18            |
| 3.1 Raw materials                             | 18            |
| 3.2 Alkaline pre-treatment phase              | 21            |
| 3.3 Densification phase                       | 23            |

| 3.4  | Lamination phase                                                        | 24 |
|------|-------------------------------------------------------------------------|----|
| 3.5  | Morphological property of treated densified Paraserianthes              | 26 |
|      | falcataria lamina                                                       |    |
| 3.6  | Lignin content of treated densified Paraserianthes falcataria           | 27 |
|      | lamina and its relationship with cell lumen area                        |    |
| 3.7  | Physical properties and its relationship with cell lumen area           | 32 |
|      | for treated densified <i>Paraserianthes falcataria</i> lamina           |    |
|      | 3.7.1 Moisture content                                                  | 33 |
|      | 3.7.2 Density and density profile                                       | 34 |
|      | 3.7.3 Contact angle test                                                | 35 |
|      | 3.7.4 Chromaticity value determination                                  | 36 |
| 3.8  | Mechanical properties and its relationship with cell lumen              | 37 |
|      | area for treated densified Paraserianthes falcataria glulam             |    |
|      | 3.8.1 Static bending                                                    | 38 |
|      | 3.8.2 Compressive strength                                              | 40 |
|      | 3.8.3 Hardness                                                          | 41 |
| E    | 3.8.4 Block shear                                                       | 42 |
| 3.9  | Dimension stability property and its relationship with cell lumen       | 43 |
| V    | area for treated densified <i>Paraserianthes falcataria</i> glulam      |    |
|      | 3.9.1 Delamination UNIVERSITI MALAYSIA SABAI                            | 43 |
|      | 3.9.2 Thickness swelling and water absorption                           | 44 |
| 3.10 | O Statistical Analysis                                                  | 46 |
| CH/  | APTER 4: RESULTS AND DISCUSSION                                         | 47 |
|      | Data Analysis for untreated and treated densified <i>Paraserianthes</i> | 47 |
|      | falcataria lamina and glulam                                            |    |
| 4.2  | Morphological property of treated densified <i>Paraserianthes</i>       | 52 |
|      | falcataria lamina                                                       |    |
| 4.3  | Lignin content of treated densified <i>Paraserianthes falcataria</i>    | 55 |
|      | lamina and its relationship with cell lumen area                        |    |
| 4.4  | Physical properties and its relationship with cell lumen area for       | 59 |
|      | treated densified <i>Paraserianthes falcataria</i> lamina               |    |
|      | 4.4.1 Moisture content                                                  | 59 |
|      | 4.4.2 Density and density profile                                       | 65 |

| 4.4.3 Contact angle                                                     | 74  |
|-------------------------------------------------------------------------|-----|
| 4.4.4 Chromaticity value determination                                  | 84  |
| 4.5 Mechanical properties and its relationship with cell lumen area     | 88  |
| for treated densified Paraserianthes falcataria glulam                  |     |
| 4.5.1 Static bending                                                    | 88  |
| 4.5.2 Compressive strength                                              | 99  |
| 4.5.3 Hardness                                                          | 106 |
| 4.5.4 Block shear                                                       | 116 |
| 4.6 Dimension stability properties and its relationship with cell lumen | 120 |
| area for treated densified Paraserianthes falcataria glulam             |     |
| 4.6.1 Delamination                                                      | 120 |
| 4.6.2 Thickness swelling and water absorption                           | 124 |
| CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS                              | 130 |
| 5.1 Conclusions                                                         | 130 |
| 5.2 Recommendations                                                     | 132 |
| REFERENCES                                                              | 133 |
| APPENDICES                                                              | 144 |
| UNIVERSITI MALAYSIA SABA                                                | λH  |

## **LIST OF TABLES**

|           |   |                                                                                                                                                                                                                                                           | Page |
|-----------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1 | : | Mechanical properties of undensified and densified wood from previous studies based on Satayo <i>et al.</i> (2019)                                                                                                                                        | 14   |
| Table 2.2 | : | Taxonomy <i>of Paraserianthes falcataria</i> based on Krisnawati <i>et al.</i> (2011)                                                                                                                                                                     | 17   |
| Table 3.1 | : | Parameters represent percentage of NaOH used                                                                                                                                                                                                              | 21   |
| Table 3.2 | : | Range of Correlation Coefficient Values and the Corresponding Levels of Correlation based on Meghanathan (2016)                                                                                                                                           | 46   |
| Table 4.1 | : | The comparison and analysis with mean and standard deviation of untreated and treated densified <i>Paraseriantes falcataria</i> glulam with different concentrations of NaOH                                                                              | 48   |
| Table 4.2 | B | The correlation coefficient (r-values) and significant values (p-values) between cell lumen areas with mechanical and physical properties of untreated and treated densified <i>Paraseriantes falcataria</i> glulam with different concentrations of NaOH | 50   |
| Table 4.3 | : | Types of wood failure after bending test with reference to ASTM D143, (i): edgewise bending; (ii)(iii) flatwise bending                                                                                                                                   | 99   |

## **LIST OF FIGURES**

|             |     |                                                                                                                                                                                       | Page |
|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.1  | :   | Graphic illustration for wood treatment and wood densification procedures                                                                                                             | 10   |
| Figure 2.2  | :   | Comparison between densified wood (a) without treatment); (b) densified wood with treatment                                                                                           | 13   |
| Figure 3.1  | :   | Experimental design                                                                                                                                                                   | 19   |
| Figure 3.2  | :   | Experimental flowchart                                                                                                                                                                | 20   |
| Figure 3.3  | :   | Lamina compressed using hot-press machine (diagram)                                                                                                                                   | 23   |
| Figure 3.4  | :   | Thickness reduction about 60%                                                                                                                                                         | 24   |
| Figure 3.5  | :   | Illustration of the process of lamination phase                                                                                                                                       | 24   |
| Figure 3.6  |     | Glue application                                                                                                                                                                      | 25   |
| Figure 3.7  | H.J | Pressure applied with clamp                                                                                                                                                           | 25   |
| Figure 3.8  | : " | Test piece scanning using SEM                                                                                                                                                         | 26   |
| Figure 3.9  | -   | Processed image using ImageJ                                                                                                                                                          | 27   |
| Figure 3.10 |     | Illustration of the lignin content                                                                                                                                                    | 27   |
| Figure 3.11 |     | The wood was grinded and sieved using 32 mesh, and placed in a mason jar                                                                                                              | 29   |
| Figure 3.12 | :   | Extraction apparatus and air-dried thimbles with extractive-free powder                                                                                                               | 29   |
| Figure 3.13 | :   | Lignin content, (a) Air-dried extractive-free powder prepared for MC determine; (b) Extractive-free powder mixed with H <sub>2</sub> SO <sub>4</sub> for lignin content determination | 30   |
| Figure 3.14 | :   | The solution was boiled using hotplate for 4 hours and cooled to settle the insoluble lignin                                                                                          | 31   |

| Figure 3.15  | :    | The crucible was filtered, washed, and checked for presence of H <sub>2</sub> SO <sub>4</sub> using yellow litmus paper, (a) | 31 |
|--------------|------|------------------------------------------------------------------------------------------------------------------------------|----|
|              |      | reddish litmus paper before washing with hot water                                                                           |    |
|              |      | indicating pH acidic; (b) yellowish litmus paper after                                                                       |    |
| Figure 2.16  |      | washing with hot water indicating pH neutral                                                                                 | 22 |
| Figure 3.16  | :    | Drying of lignin, (a) Cooled in desiccator after 24                                                                          | 32 |
|              |      | hours oven-drying; (b) The oven-dried lignin ready                                                                           |    |
| E 2 17       |      | for weighing                                                                                                                 | 22 |
| Figure 3.17  | :    | Test pieces oven-drying phase                                                                                                | 33 |
| Figure 3.18  | :    | Density profile machine by X-ray densitometry DAX                                                                            | 34 |
|              |      | 5000                                                                                                                         |    |
| Figure 3.19  | :    | The arrangement in the chamberof densitometer                                                                                | 34 |
| Figure 3.20  | :    | Preparation to conduct contact angle experiments                                                                             | 36 |
| Figure 3.21  | The. | Angle of droplet measured using ImageJ                                                                                       | 36 |
| Figure 3.22  |      | Chromaticity values determination, (a) CR-10                                                                                 | 37 |
|              |      | Tristimulus Colorimeter; (b) Surface of untreated                                                                            |    |
|              |      | and treated Paraserianthes falcataria laminas                                                                                |    |
| Figure 3.23  | 1    | Crosshead used for (a) edgewise bending; (b)                                                                                 | 39 |
|              | FR   | flatwise bending DOITHMAN AVOID CARAL                                                                                        |    |
| Figure 3.24  | Dec. | Plate bearing head used for compression test                                                                                 | 40 |
| Figure 3.25  | :    | Ball bearing indentation on glulam in progress                                                                               | 41 |
| Figure 3.26: | :    | Load application with adjustable seat to provide                                                                             | 42 |
|              |      | uniform distribution of load                                                                                                 |    |
| Figure 3.27  | :    | Glulam soaking in water                                                                                                      | 43 |
| Figure 3.28  | :    | Glulam kept in desiccator                                                                                                    | 43 |
| Figure 3.29  | :    | The glue-line of the glulam was measured using                                                                               | 44 |
|              |      | 0.05 mm thickness gauge                                                                                                      |    |
| Figure 3.30  | :    | Thickness swelling, (a) measurement before                                                                                   | 45 |
| J            |      | soaking; (b) measurement after soaking                                                                                       |    |
| Figure 4.1   | :    | The mean values and standard deviations of cell                                                                              | 53 |
| 900          | -    | lumens areas of untreated (D0) and treated (D3, D6,                                                                          |    |
|              |      | D9) densified <i>P. falcataria</i> laminas on different                                                                      |    |
|              |      | ,                                                                                                                            |    |
|              |      | concentrations of NaOH                                                                                                       |    |

| Figure 4.2  | :     | Thickness of (a) D0 - 0% NaOH (untreated and          | 54 |
|-------------|-------|-------------------------------------------------------|----|
|             |       | undensified), (b) D0 - 0% NaOH (untreated and         |    |
|             |       | densified), (c) D3 - 3% NaOH (treated and             |    |
|             |       | densified), (d) D6 - 6% NaOH (treated and             |    |
|             |       | densified), (d) D9 - 9% NaOH (treated and             |    |
|             |       | densified) laminas.                                   |    |
| Figure 4.3  | :     | Scanning electron micrographs for transverse          | 54 |
|             |       | sections of (a) D0 - 0% NaOH (untreated), (b) D3 -    |    |
|             |       | 3% NaOH (treated), (c) D6 - 6% NaOH (treated),        |    |
|             |       | (d) D9- 9% NaOH (treated) laminas.                    |    |
|             |       | Magnification :1000 X                                 |    |
| Figure 4.4  | :     | The mean values and standard deviations of lignin     | 56 |
|             |       | contents in untreated (D0) and treated (D3, D6, D9)   |    |
|             |       | densified <i>Paraserianthes falcataria</i> laminas on |    |
| 1           | Tres. | different concentrations of NaOH                      |    |
| Figure 4.5  |       | FTIR Transmittance versus Wavenumbers for             | 57 |
|             |       | untreated (D0) and treated (D3, D6, D9) P.            |    |
|             |       | falcataria laminas                                    |    |
| Figure 4.6  | 3     | Coefficient correlation between lignin content and    | 58 |
| A B         | J.    | cell lumen areas of untreated and treated densified   |    |
|             |       | P. falcataria laminas                                 |    |
| Figure 4.7  | :     | The mean values and standard deviations of            | 60 |
|             |       | moisture content properties for lamina and glulam     |    |
|             |       | of untreated (D0) and treated (D3, D6, D9) densified  |    |
|             |       | Paraserianthes falcataria at different concentrations |    |
|             |       | of NaOH                                               |    |
| Figure 4.8  | :     | Coefficient correlation between moisture content      | 62 |
|             |       | properties and cell lumen areas of untreated and      |    |
|             |       | treated densified <i>P. falcataria</i> laminas        |    |
| Figure 4.9  | :     | Coefficient correlation between moisture content      | 63 |
|             |       | properties and cell lumen areas of untreated and      |    |
|             |       | treated densified P. falcataria glulam                |    |
| Figure 4.10 | :     | Moisture content of D3 (treated) of P. falcataria     | 64 |
|             |       | lamina after densification                            |    |

| Figure 4.11 | :   | Recovery in thickness after exposure to moisture for       | 64 |
|-------------|-----|------------------------------------------------------------|----|
|             |     | D9 glulam test piece                                       |    |
| Figure 4.12 | :   | Observation of density for 7 days on untreated (D0)        | 65 |
|             |     | and treated (D3, D6, D9) densified Paraserianthes          |    |
|             |     | falcataria lamina at different concentrations of NaOH      |    |
| Figure 4.13 | :   | Coefficient correlation between density and cell           | 68 |
|             |     | lumen areas of untreated and treated densified P.          |    |
|             |     | falcataria lamina                                          |    |
| Figure 4.14 | :   | The mean values of density profile properties for          | 69 |
|             |     | lamina test piece of untreated (D0) and treated (D3,       |    |
|             |     | D6, D9) densified <i>Paraserianthes falcataria</i> laminas |    |
|             |     | at different concentrations of NaOH                        |    |
| Figure 4.15 | :   | Coefficient correlation between density profile and        | 70 |
|             |     | cell lumen areas of untreated and treated densified        |    |
|             | TO. | P. falcataria lamina                                       |    |
| Figure 4.16 |     | The mean values of density profile properties of           | 71 |
|             |     | untreated (D0) and treated (D3, D6, D9) densified          |    |
|             |     | Paraserianthes falcataria glulam at different              |    |
|             |     | concentrations of NaOH                                     |    |
| Figure 4.17 | 3   | Coefficient correlation between density profile and        | 73 |
|             |     | cell lumen areas of untreated and treated densified        |    |
|             |     | <i>P. falcataria</i> glulam                                |    |
| Figure 4.18 | :   | Position of glulam before testing                          | 74 |
| Figure 4.19 | :   | The mean values and standard deviations of contact         | 75 |
|             |     | angle using water of untreated (D0) and treated            |    |
|             |     | (D3, D6, D9) densified <i>Paraserianthes falcataria</i>    |    |
|             |     | lamina at different concentrations of NaOH                 |    |
| Figure 4.20 | :   | Coefficient correlation between contact angle using        | 77 |
|             |     | water and cell lumen areas of untreated and treated        |    |
|             |     | densified <i>P. falcataria</i> lamina                      |    |
| Figure 4.21 | :   | The mean values and standard deviations of contact         | 78 |
|             |     | angle using PVAc of untreated (D0) and treated             |    |
|             |     | (D3, D6, D9) densified <i>Paraserianthes falcataria</i>    |    |
|             |     | lamina at different concentrations of NaOH                 |    |

| Figure 4.22 | :      | Coefficient correlation between contact angle using         | 80 |
|-------------|--------|-------------------------------------------------------------|----|
|             |        | PVAc and cell lumen areas of untreated and treated          |    |
|             |        | densified <i>P. falcataria</i> lamina                       |    |
| Figure 4.23 | :      | The comparison of contact angle of D0 (untreated)           | 82 |
|             |        | and D9 (treated) laminas using (a) water droplet;           |    |
|             |        | (b) PVAc droplet                                            |    |
| Figure 4.24 | :      | The mean values and standard deviations of total            | 85 |
|             |        | chromaticity values differences ( $\Delta E$ ) of untreated |    |
|             |        | (D0) and treated (D3, D6, D9) densified                     |    |
|             |        | Paraserianthes falcataria lamina with different             |    |
|             |        | concentrations of NaOH                                      |    |
| Figure 4.25 | :      | Coefficient correlation between chromaticity values         | 86 |
|             |        | and cell lumen areas of untreated and treated               |    |
|             |        | densified <i>P. falcataria</i> lamina                       |    |
| Figure 4.26 | Tires. | Chromatic differences on surface of untreated (D0)          | 87 |
|             |        | and treated (D3, D6, D9) densified P. falcataria            |    |
|             |        | lamina                                                      |    |
| Figure 4.27 | 1      | The mean values and standard deviations of                  | 90 |
|             |        | Modulus of Elasticity (MOE) of edgewise bending             |    |
| AB I        | J.     | and flatwise bending properties of untreated (D0)           |    |
|             |        | and treated (D3, D6, D9) densified <i>Paraserianthes</i>    |    |
|             |        | falcataria glulam at different concentrations of NaOH       |    |
| Figure 4.28 | :      | Coefficient correlation between MOE of edgewise             | 91 |
|             |        | and cell lumen areas of untreated and treated               |    |
|             |        | densified <i>P. falcataria</i> glulam                       |    |
| Figure 4.29 | :      | Coefficient correlation between MOE of flatwise and         | 92 |
|             |        | cell lumen areas of untreated and treated densified         |    |
|             |        | <i>P. falcataria</i> glulam                                 |    |
| Figure 4.30 | :      | The mean values and standard deviations of                  | 93 |
|             |        | Modulus of Rupture of edgewise bending and                  |    |
|             |        | flatwise bending properties of untreated (D0) and           |    |
|             |        | treated (D3, D6, D9) densified <i>Paraserianthes</i>        |    |
|             |        | falcataria glulam at different concentrations of NaOH       |    |
| Figure 4.31 | :      | Coefficient correlation between MOR of edgewise             | 95 |

|             |      | and cell lumen areas of untreated and treated         |     |
|-------------|------|-------------------------------------------------------|-----|
|             |      | densified <i>P. falcataria</i> glulam                 |     |
| Figure 4.32 | :    | Coefficient correlation between MOR of flatwise and   | 96  |
|             |      | cell lumen areas of untreated and treated densified   |     |
|             |      | <i>P. falcataria</i> glulam                           |     |
| Figure 4.33 | :    | Edgewise bending in progress with load applied on     | 97  |
|             |      | the top of the glulam test piece                      |     |
| Figure 4.34 | :    | Flatwise bending with load applied on the top of the  | 98  |
|             |      | glulam test piece                                     |     |
| Figure 4.35 | :    | The mean values and standard deviations of            | 100 |
|             |      | compression parallel to the grain and perpendicular   |     |
|             |      | to the grain properties of untreated (D0) and treated |     |
|             |      | (D3, D6, D9) densified Paraserianthes falcataria      |     |
|             |      | glulam at different concentrations of NaOH            |     |
| Figure 4.36 | Tio. | Coefficient correlation between compression parallel  | 102 |
| A32-        |      | to the grain and cell lumen areas of untreated and    |     |
|             |      | treated densified <i>P. falcataria</i> glulam         |     |
| Figure 4.37 |      | Coefficient correlation between compression           | 103 |
| RIVE OF     |      | perpendicular to the grain and cell lumen areas of    |     |
| JA B        | N    | untreated and treated densified P. falcataria glulam  |     |
| Figure 4.38 | :    | Compression parallel to grain                         | 104 |
| Figure 4.39 | :    | Horizontal fracture on glulam test piece after        | 105 |
|             |      | compression parallel to grain test, (a) D0- 0% NaOH   |     |
|             |      | (b) D3-3% NaOH (c) D6-6% NaOH (d) D9-9% NaOH          |     |
| Figure 4.40 | :    | Load direction during compression perpendicular to    | 105 |
|             |      | grain test for D0 glulam test piece                   |     |
| Figure 4.41 | :    | Fracture on glulam test piece after compression       | 106 |
|             |      | perpendicular to grain test, (a) D0- 0% NaOH (b)      |     |
|             |      | D3-3% NaOH (c) D6-6% NaOH (d) D9-9% NaOH              |     |
| Figure 4.42 | :    | The mean values and standard deviations of            | 108 |
|             |      | hardness properties from tangential, radial, and      |     |
|             |      | longitudinal directions of untreated (D0) and treated |     |
|             |      | (D3, D6, D9) densified Paraserianthes falcataria      |     |
|             |      | glulam at different concentrations of NaOH            |     |

| Figure 4.43 | :     | <b>J</b>                                                                                       | 111 |
|-------------|-------|------------------------------------------------------------------------------------------------|-----|
|             |       | properties and cell lumen areas of untreated and treated densified <i>P. falcataria</i> glulam |     |
| Figure 4.44 | :     |                                                                                                | 112 |
|             |       | properties and cell lumen areas of untreated and                                               |     |
|             |       | treated densified P. falcataria glulam                                                         |     |
| Figure 4.45 | :     | Coefficient correlation between longitudinal                                                   | 113 |
|             |       | hardness properties and cell lumen areas of                                                    |     |
|             |       | untreated and treated densified P. falcataria glulam                                           |     |
| Figure 4.46 | :     | Load direction and placement of ball bearing on                                                | 114 |
|             |       | glulam test piece for tangential hardness test                                                 |     |
| Figure 4.47 | :     | Load direction and placement of ball bearing on                                                | 114 |
|             |       | glulam test piece for longitudinal hardness test                                               |     |
| Figure 4.48 | :     | Load direction and placement of ball bearing on                                                | 115 |
| 187         | Tres. | glulam test piece for radial hardness test                                                     |     |
| Figure 4.49 | T.    | Failure on glulam test piece caused by ball bearing                                            | 115 |
|             |       | indentation (a) wood split at side view, (b) failed at                                         |     |
| 2           |       | glue-line                                                                                      |     |
| Figure 4.50 |       | The mean values and standard deviations of block                                               | 116 |
| A B         | 3     | shear properties of untreated (D0) and treated                                                 |     |
|             |       | (D3, D6, D9) densified Paraserianthes falcataria                                               |     |
|             |       | glulam at different concentrations of NaOH                                                     |     |
| Figure 4.51 | :     | Coefficient correlation between block shear                                                    | 118 |
|             |       | properties and cell lumen areas of untreated and                                               |     |
|             |       | treated densified P. falcataria glulam                                                         |     |
| Figure 4.52 | :     | Failure on Block shear properties; (a)(c) failure fully                                        | 119 |
|             |       | occurred in wood, (b) failure on glue-line                                                     |     |
| Figure 4.53 | :     | Failures occurred in; (a) D0 glulam test piece, (b) D3                                         | 119 |
|             |       | glulam test piece, (c) D9 glulam test piece                                                    |     |
| Figure 4.54 | :     | The mean values and standard deviations of                                                     | 121 |
|             |       | delamination properties of untreated (D0) and                                                  |     |
|             |       | treated (D3, D6, D9) densified <i>Paraserianthes</i>                                           |     |
|             |       | falcataria glulam with different concentrations of                                             |     |
|             |       | NaOH                                                                                           |     |

| Figure 4.55 | :   | Coefficient correlation between delamination           | 123 |
|-------------|-----|--------------------------------------------------------|-----|
|             |     | properties and cell lumen areas of untreated and       |     |
|             |     | treated densified P. falcataria glulam                 |     |
| Figure 4.56 | :   | The failure on glue-line between PVAc and lamina in    | 124 |
|             |     | glulam                                                 |     |
| Figure 4.57 | :   | The mean values and standard deviations of             | 125 |
|             |     | dimensional stability properties in thickness swelling |     |
|             |     | and water absorption of untreated (D0) and treated     |     |
|             |     | (D3, D6, D9) densified Paraserianthes falcataria       |     |
|             |     | glulam at different concentrations of NaOH             |     |
| Figure 4.58 | :   | Glulam test pieces after soaking in water for 24       | 127 |
|             |     | hours for different concentrations of NaOH             |     |
| Figure 4.59 | :   | Thickness dimension of glulam test piece increased     | 127 |
|             |     | in ratio about 1:2.5                                   |     |
| Figure 4.60 | je. | Coefficient correlation between thickness swelling     | 128 |
|             |     | properties and cell lumen areas of untreated and       |     |
| AY E        |     | treated densified P. falcataria glulam                 |     |
| Figure 4.61 | 7   | Coefficient correlation between water absorption       | 129 |
|             |     | properties and cell lumen areas of untreated and       |     |
| ABA         | 3   | treated densified P. falcataria glulam SIA SABAL       |     |

## **LIST OF ABBREVIATIONS**

NaOH - Sodium hydroxide

GAA - Acetic acid

**ASTM** - American Society for Testing and Materials

**JAS** - Japanese Agricultural Standard

**BS** - British Standard

**EN** - European Standard

**D0** - 0% NaOH

**D3** - 3% NaOH

**D6** - 6% NaOH

**D9** - 9% NaOH

**MOE** - Edgewise Modulus of Elasticity

**MOR** - Edgewise Modulus of Rupture

TS - Thickness swelling

**WA** - Water absorption

MC - Moisture content

SEM - Scanning electron microscopy

FTIR - Fourier transform infrared spectroscopy

**PVAc** - Polyvinyl acetate

**UTM** - Universal testing machine

**LSD** - Least Significant Difference

Sec - Second

## **LIST OF SYMBOLS**

N/mm<sup>2</sup> - Newtons per millimetre squared

N - Newtons% - Percentage

**kg/m³** - Kilogram per meter cubic

• - Degree

**°C** - Degree celcius

**cm**<sup>-1</sup> - Reciprocal centimeter

**mm³** - Cubic millimeter

**MPa** - MegaPascal

**g/m<sup>2</sup>** - Grams per square metre

P - Load

I

L - Length of specimen or span between 2 supports

**d** - Deflection

- Moment of Inertia

Thickness after soaked in water

Thickness before soaked in water

W<sub>1</sub> - Weight of glulam after soaked in water

Weight of glulam before soaked in water

**W**<sub>AD</sub> - Width of glulam on air-dry

**W**<sub>OD</sub> - Width of glulam after oven-dried

## **LIST OF APPENDICES**

|            |                                              | Page |
|------------|----------------------------------------------|------|
| Appendix A | Calculation of Glue Spread of Lamination     | 144  |
| Appendix B | Picture-To-Picture on How to Run Coefficient | 145  |
|            | Correlation using SPSS                       |      |



#### **CHAPTER 1**

### INTRODUCTION

#### 1.1 Background Study

Wood densification is one of the effective methods in enhancing the mechanical properties of wood, as wood is viable constructional material. In addition, wood with high porosity has a pyramid arrangement, which causes density and strength to deteriorate. After the cell walls have crumbled under condition, low-density wood can be densified to achieve a greater density. In order to maximize the value of density of woods, it was possible to undergone both chemical treatment, such as alkaline pre-treatment or klason pre-treatment, and wood densification.

As stated by Gindl *et al.* (2004) and Pelit *et al.* (2014), improvement of wood properties had obtained, for instance, hardness, by filling or by the combination of filling and compression of solid woods. On the authority of Lin *et al.* (2017), woods refer to imperishable and perishable composites based on cellulose fibre. Woods are made of cellulose, hemicellulose, and lignin. During wood densification, the woods' porous composition will be pressured and influence the characteristics of wood includes mechanical, and physical properties.