CONCEPTUAL RECONSTRUCTION OF ENERGY CONCEPTS USING THE MODEL OF EDUCATIONAL RECONSTRUCTION IN THE GERMAN *DIDAKTIK* TRADITION

FACULTY OF PSYCHOLOGY AND EDUCATION UNIVERSITI MALAYSIA SABAH 2022

CONCEPTUAL RECONSTRUCTION OF ENERGY CONCEPTS USING THE MODEL OF EDUCATIONAL RECONSTRUCTION IN THE GERMAN *DIDAKTIK* TRADITION

AZLINAH BINTI ISPAL

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF PSYCHOLOGY AND EDUCATION UNIVERSITI MALAYSIA SABAH 2022

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : CONCEPTUAL RECONSTRUCTION OF ENERGY CONCEPTS USING THE MODEL OF EDUCATIONAL RECONSTRUCTION IN THE GERMAN DIDAKTIK TRADITION

IJAZAH : DOKTOR FALSAFAH PENDIDIKAN

BIDANG : PENDIDIKAN SAINS

Saya **AZLINAH BINTI ISPAL**, Sesi **2016-2022**, mengaku membenarkan tesis doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

AZLINAH BINTI ISPAL DP1611017T

Disahkan Oleh,

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

Tarikh : 23 MEI 2022

(Prof. Madya Dr. Mohd. Zaki bin Ishak) Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, except equations, summaries and references, which have been duly acknowledged.

25 January 2022

CERTIFICATION

- NAME : AZLINAH BINTI ISPAL
- MATRIC NO. : **DP1611017T**
- TITLE : CONCEPTUAL RECONSTRUCTION OF ENERGY CONCEPTS USING THE MODEL OF EDUCATIONAL RECONSTRUCTION IN THE GERMAN *DIDAKTIK* TRADITION
- DEGREE : DOCTOR OF PHILOSOPY IN EDUCATION
- FIELD : SCIENCE EDUCATION
- VIVA DATE : 25 JANUARY 2022

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. All praise and thanks to Allah for His blessings and for His power. This thesis would not have been possible without the support and assistance of many people.

I would like to extend my highest appreciation to my PhD supervisor, Assoc. Prof. Dr. Hj. Mohd Zaki bin Ishak, for his constant encouragement, insightful advice, and unwavering commitment to my success. As a result of his inspiration, I learned about the *Didaktik* ethos. My thinking has been impacted by his long and detailed exposition of philosophical knowledge, especially in the constructivism worldview. Now I am so proud to be a constructivist researcher and to say that I am.

Also, Prof. Dr. Knut Neumann, the late Emeritus Prof. Dr. Peter Fensham, Prof. Dr. Marisa Michelini, Prof. Dr. Claudia Haagen-Schützenhöfer, and Dr. Marta Kuhnová are among the scholars who helped me in person understand the German *Didaktik* tradition, which was initially quite strange and elusive to me. It is an honour for me to join your field of expertise.

Furthermore, thanks to the students who volunteered their time to help with the study. My parents, Hj. Ispal bin Hj. Bakal and Hjh. Mariah binti Hj. Abdul Muluk, with their untiring prayers and fearless sacrifices, made me who I am today, as do my siblings, who have always believed in the value of education. Also, thanks to my friends who always trusted me and, not forgetting those who underestimated me, I finally accomplished it.

To my son, Azwar Azhari, this PhD journey is also a sacrifice for you. You have always been there for me with your encouragement and support, and I am deeply touched by all that you have done for me. This PhD is intended for you.

Azlinah binti Ispal 25 January 2022

ABSTRACT

This thesis sheds new light on how to prepare a physics lesson on energy concepts for upper secondary school students. Energy concepts are among the most important ideas in all of science. Similarly, the presence of energy as both a core concept and a cross-cutting concept will undoubtedly confuse students. This misunderstanding is caused by a number of identified factors, including differences in the definition of the word "energy" in the scientific world and in everyday conversation. Most textbook authors use complex terms that are commonly used by scientists but are difficult for students to understand. This problem is worsened when teachers are primarily dependent on the concepts restricted in the textbook and what is framed by the curriculum developer. Many teachers and physics educators believe that concepts for instruction must be "simpler" than the physics content itself in order for students to understand them after the "reduction" process from the original content structure. Unfortunately, this is also the reason why students struggle to understand energy concepts, particularly in physics. Thus, the researcher, who acted as a physics teacher in this study, has been investigating how students' everyday-oriented energy conceptions can be reconstructed into physics-oriented conceptions. To achieve the study's goal, the Model of Educational Reconstruction (MER) from the German Didaktik tradition was used as the framework of the research method. The research is based on Heidegger's philosophical hermeneutics, in which physics is viewed as a "language of thought." This inquiry's data is derived from semi-structured interviews, written responses, teaching experiments, student written self-reflection, and researcher self-reflexivity. While qualitative content analysis and systematic metaphor analysis are used to triangulate and interpret the text, according to the findings of the study; students' informal communication, culture, social media, and personal experiences influenced their language of thought, which profoundly shaped their understanding of the meaning of energy, which may or may not be correct. The most interesting finding was that most participants thought of potential energy as the "ability to do work," but scientists thought of it in a different way. Students' energy conceptions could be reconstructed and linked to scientific knowledge by interpreting their language of thought and meaning if they could only signify their conception as intelligible, plausible, and fruitful. This research on conceptual reconstruction of energy concepts contributes to the field of physics education knowledge, methodological issues, and has implications for the educational practises such as physics curriculum, instructional quality, assessment quality, and physics teacher quality. Thus, the MER from the German *Didaktik* tradition has the potential to be incorporated into our curriculum because this tradition emphasises the importance of conceptual clarification prior to beginning instruction, which has never been considered in our education.

ABSTRAK

PEMBENTUKAN SEMULA KONSEP TENAGA MENGUNAKAN MODEL PENDIDIKAN PEMBENTUKAN SEMULA DALAM TRADISI DIDAKTIK JERMAN

Tesis ini memberi penerangan baharu tentang cara persediaan pengajaran mata pelajaran fizik tentang konsep tenaga untuk pelajar sekolah menengah atas. Konsep tenaga adalah antara idea yang paling penting dalam semua bidang sains. Begitu juga, kehadiran tenaga sebagai konsep teras dan konsep merentas kurikulum sudah pasti akan mengelirukan pelajar. Salah faham ini disebabkan oleh beberapa faktor yang dikenal pasti, termasuk perbezaan definisi perkataan "tenaga" dalam dunia saintifik dan dalam perbualan seharian. Kebanyakan pengarang buku teks menggunakan istilah kompleks yang biasa digunakan oleh saintis tetapi sukar difahami oleh pelajar. Masalah ini bertambah buruk apabila guru bergantung terutamanya kepada konsep yang dihadkan dalam buku teks dan apa yang dirangka oleh pembangun kurikulum. Ramai guru dan pendidik fizik percaya bahawa konsep untuk pengajaran mestilah "lebih ringkas" daripada kandungan fizik itu sendiri agar pelajar memahaminya selepas proses "pengurangan" daripada struktur kandungan asal. Malangnya, ini juga sebab pelajar bergelut untuk memahami konsep tenaga, terutamanya dalam fizik. Oleh itu, penyelidik, yang bertindak sebagai guru fizik dalam kajian ini, telah menyiasat bagaimana konsep tenaga berorientasikan harian pelajar boleh dib<mark>ina semula</mark> menjadi konsep berorientasikan fizik. Untuk mencapai matlamat kajian, Model Pembinaan Semula Pendidikan (MER) daripada tradisi Didaktik Jerman digunakan sebagai kerangka kaedah penyelidikan. Penyelidikan ini berdasarkan hermeneutik falsafah Heidegger, di mana fizik dilihat sebagai "bahasa pemikiran." Data inkuiri ini diperoleh daripada temu bual separa berstruktur, respons bertulis, eksperimen pengajaran, refleksi kendiri bertulis pelajar, dan refleksi kendiri penyelidik. Manakala analisis kandungan kualitatif dan analisis metafora sistematik digunakan untuk melakukan triangulasi dan mentafsir teks, menurut dapatan kajian; komunikasi tidak formal, budaya, media sosial dan pengalaman peribadi pelajar mempengaruhi bahasa pemikiran mereka, yang membentuk pemahaman mereka tentang makna tenaga, yang mungkin betul atau tidak. Penemuan yang paling menarik ialah kebanyakan peserta menganggap tenaga keupayaan sebagai "keupayaan untuk melakukan kerja," tetapi saintis memikirkannya dengan cara yang berbeza. Konsepsi tenaga pelajar boleh dibina semula dan dikaitkan dengan pengetahuan saintifik dengan mentafsir bahasa pemikiran dan makna mereka jika mereka hanya boleh menandakan konsep mereka sebagai boleh difahami, munasabah dan bermanfaat. Penyelidikan mengenai pembinaan semula konsep konsep tenaga ini menyumbang kepada bidang pengetahuan pendidikan fizik, isu metodologi, dan mempunyai implikasi kepada amalan pendidikan seperti kurikulum fizik, kualiti pengajaran, kualiti penilaian dan kualiti guru fizik. Oleh itu, MER daripada tradisi Didaktik Jerman ini berpotensi untuk dimasukkan ke dalam kurikulum kerana tradisi ini menekankan kepentingan penjelasan konsep sebelum memulakan pengajaran, yang tidak pernah dipertimbangkan dalam pendidikan kita.

LIST OF CONTENTS

		Page
TITLE		i
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	OWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vi
LIST	OF CONTENTS	vii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xv
LIST	OF ABBREVIATION	xviii
LIST OF APPENDICES		
	UNIVERSITI MALAYSIA SABAH	
CHAP	TER 1: INTRODUCTION	1
1.0	Chapter Overview	1
1.1	The Context of the Study	1
1.2	Background of the Study	3
1.3	Problem Statement	6
1.4	Theoretical Framework	8
1.5	The Aim of the Study	9
1.6	Research Objectives and Research Questions	11
1.7	The Rationale for the Study	12
1.8	The Significance of the Study	13
1.9	The Empirical Limitation of the Study	14
1.10	Terms Definition	15
1.11	The Profile of the Researcher	17

1.12	The Structure of the Thesis	19
1.13	Chapter Summary	21

СНАР	CHAPTER 2: THEORETICAL UNDERPINNING		
2.0	Chant		22
2.0	•	er Overview	23
2.1		wo Traditions: German- <i>Didaktik</i> and Anglo-American	24
	Curric	ulum	
	2.1.1	Malaysian Curriculum Structure	24
	2.1.2	Malaysian Science Education Reform	27
	2.1.3	German- <i>Didaktik</i> Structure	31
	2.1.4	Curriculum and Didaktik Perspectives on Teaching	37
2.2	Teach	ing-Learning-Sequence	42
	2.2.1	Authentication of Teaching-Learning-Sequence	44
	2.2.2	Trends of Teaching-Learning-Sequence	45
Ē	2.2.3	Teaching-Learning-Sequence Adapted in the Study	52
2.3	Model Nodel	of Educational Reconstruction	53
L.	2.3.1	Overview of the Model	53
	2.3.2	Design of the Model VERSITI MALAYSIA SABAH	57
	2.3.3	The Recursive Process of Educational Reconstruction	59
2.4	Previo	us Study Related to the MER	60
	2.4.1	MER as A Powerful Framework for Various Subject Matter	62
	2.4.2	MER as A Framework for Teacher Professional Development	63
	2.4.3	MER as A Tangled Model of Education	64
	2.4.4	MER Implementation Across the Countries	66
2.5	Relate	d Theories to the Study	69
	2.5.1	Constructivist View of Learning	69
	2.5.2	Conceptual Change in Physics Education	71
	2.5.3	Metaphor Theory in Physics Instruction	74
2.6	Multip	le View on Physics Education	76
	2.6.1	Teaching and Learning as Reflective Practice	76
	2.6.2	Language in Physics	78
	2.6.3	The Problem of Meaning	79

	2.6.4	Student's Alternative Conception	80
2.7	Chapte	er Summary	82

CHAPTER 3: FACHDIDAKTIK OF ENERGY

83

3.0	Chapter Overview			
3.1	Learning Physics in a Real-World Context			
3.2	What	What Makes Energy Instruction So Difficult?		
3.3	Alterna	ative Conception on Energy Concept	87	
3.4	Metap	hors for Defining Energy	89	
	3.4.1	A Substance-like Metaphor	93	
	3.4.2	A Stimulant to Action	95	
	3.4.3	A Vertical Location	96	
3.5	Energy	y Concepts in the Malaysian Curriculum	97	
3.6	Chapte	er Summary	101	
CHAP	PTER 4:	RESEARCH METHODOLOGY	102	
	V.C.	UNIVERSITI MALAYSIA SABAH		
4.0	•	er Overview	102	
4.1	The N	ature of the Research Paradigm	102	
4.2	Resea	rch Paradigms	105	
	4.2.1	Positivism	107	
	4.2.2	Interpretivism	109	
	4.2.3	Critical Theory	110	
4.3	Match	ing Research Paradigm and Research Methods	112	
	4.3.1	Quantitative and Qualitative Research Methods	112	
4.4	Herme	eneutics and Phenomenology: An Exploration	116	
	4.4.1	Phenomenology: Edmund Husserl	117	
	4.4.2	Hermeneutics Phenomenology: Martin Heidegger	119	
4.5	The Pl	nilosophical Assumption of the Study	122	
	4.5.1	Phenomenology and Hermeneutics: A Philosophical Look at	124	
		the MER		

	4.5.2	Conceptual Framework of the Study	125
4.6	Qualita	ative Data Collection	129
	4.6.1	Document Analysis	131
	4.6.2	Semi-Structured Interviews	132
	4.6.3	Teaching Experiment	135
4.7	Analys	is of Qualitative Data	138
	4.7.1	Thematic Analysis vs. Qualitative Content Analysis	138
	4.7.2	Qualitative Content Analysis as a Data Analysis Method	146
		of the Study	
	4.7.3	Analysis of Metaphors	150
4.8	Trustv	vorthiness of the Qualitative Research	151
	4.8.1	Credibility	153
	4.8.2	Transferability	153
	4.8.3	Dependability	154
	4.8.4	Confirmability	155
	4.8.5	The Way for the Study to Achieve Trustworthiness	155
4.9	Consic	leration of Ethical Issues	157
4.10	Chapte	er Summary	159
	V.	UNIVERSITI MALAYSIA SABAH	
CHAP	TER 5:	PHYSICISTS' UNDERSTANDING OF ENERGY	160
5.0	Chapte	er Overview	160
5.1	The H	istory and The Nature of Energy	160
5.2	What I	Is Energy in Physicists' Eyes?	163
	5.2.1	Energy as a Crosscutting Concept	163

- 5.2.2 Energy as a Disciplinary Core Concept1645.2.3 The Five Big Ideas of Energy1675.3 Analysis of Physicists' Conception of Energy169
- 5.4 Chapter Summary 195

6.0 196 **Chapter Overview** 6.1 The Consistency of Students' Conceptualisations 197 6.2 Students' Conceptions 198 198 6.2.1 Energy Sources and Energy Forms 6.2.2 Transformation and Transfer of Energy 208 6.2.3 Energy Conservation and Energy Degradation 214 6.2.4 Students' Understanding of Energy Forms 219 6.3 Reanalysis of Students' Conception of Energy 230 6.4 Students' Conceptual Metaphor 239 239 6.4.1 A Quasi-Material Metaphor 240 6.4.2 Stimulant Metaphor 6.4.3 A Vertical Location Metaphor 241 6.5 243 Chapter Summary **CHAPTER 7: TEACHING EXPERIMENT** 244 7.0 **Chapter Overview** 244 UNIVERSITI MALAYSIA SABAH 7.1 Narrowing the Gap between Students' and Physicists' 244 Understanding 7.2 251 **Teaching Experiments** 7.2.1 Instructional Episode 1: Skateboard 251 7.2.2 Instructional Episode 2: Masses and Springs 261 7.2.3 Instructional Episode 3: Pendulum 271 7.2.4 Students' Self-Reflection 277 7.3 Students' Pathways of Learning 280 7.4 Chapter Summary 286

CHAPTER 6: STUDENTS' UNDERSTANDING OF ENERGY

196

CHAF	PTER 8:	DISCUSSIONS, CONTRIBUTION AND CONCLUSION	287
8.0	Chapt	er Overview	287
8.1	Summ	nary of Findings	287
	8.1.1	Energy Concepts Held by Physicists	290
	8.1.2	Energy Concepts Held by Students	292
	8.1.3	Teaching Experiment Balancing Two Conceptions	297
8.2	Contri	butions to the Body of Knowledge	300
	8.2.1	Discovered and Developed Ideas	300
	8.2.2	Complicated Terms Need Some Consideration	302
	8.2.3	Transforming Physics Content into Content for Instruction	305
	8.2.4	Conceptual Metaphor as A Unique Dialect	306
8.3	Contri	bution to the Methodological Ideas	306
8.4	Thus,	Is MER A Realistic Option in Malaysian Schooling?	308
8.5	Implic	ations of the Study	310
8.6	Limita	tion of the Study	312
8.7	Recon	nmendation for Future Research	314
8.8	The Fi	inal Thought: Finding What was Missing	315
K			
	V.T	UNIVERSITI MALAYSIA SABAH	
REFE	RENCE		316
APPENDICES			

LIST OF TABLES

		Page
Table 2.1:	Structure of Malaysian Curriculum	26
Table 2.2:	School Science Syllabuses in Malaysia (1960 to 1979)	27
Table 2.3:	Key Questions of Klafki's (1969) Didaktische Analyses	35
Table 2.4:	Didaktik and Curriculum Compared	41
Table 2.5:	Responsibilities for Curricular Content and Teaching using	
	Malaysian as an Example	42
Table 2.6:	Comparison of Four Approaches of Teaching-Learning-	
	Sequences	50
Table 3.1:	Some Common Alternative Conceptions of Energy	87
Table 3.2:	Definition and Examples of Models, Metaphors, and Analogy	91
Table 3.3:	Learning Objectives and Learning Outcomes of Energy	100
Table 4.1:	The Paradigm Assumptions of Positivist, Interpretive,	
2	and Critical Theory	106
Table 4.2:	Languages Associated with Major Research Paradigms	107
Table 4.3:	Paradigm, Methods and Tools	112
Table 4.4:	Characteristic of Quantitative and Qualitative Research	113
Table 4.5:	Comparison Between Two Traditions of Phenomenology	121
Table 4.6:	Techniques for Collecting and Analysing Data from the Study	130
Table 4.7:	Qualitative Content Analysis and Thematic Analysis Phase	145
Table 4.8:	Significant Coding Differences Among Three Content	
	Analysis Methodologies	149
Table 4.9:	Some Examples of Identifying Metaphors	151
Table 4.10:	Lincoln & Guba's Parallel Criteria for Qualitative Research	152
Table 5.1:	The Explanation of the Elementary Ideas of Energy Concept	166
Table 5.2:	Analysis Scientists' Conception of Energy	169
Table 6.1:	Analysis Students' Conception of Energy	230
Table 6.2:	Analysis of Misconception of Energy Held by Students from	
	the Previous Study	236
Table 6.3:	Frequency of Conceptual Metaphor	239

Table 6.4:	Metaphor to Conceptualise Energy Used by Students	243
Table 7.1:	The Confrontation of Two Understanding Concepts of	
	the Nature of Energy	245
Table 7.2:	The Confrontation of Two Understanding Concepts of	
	the Form of Energy	248
Table 7.3:	The Confrontation of Two Metaphorical Languages	250

LIST OF FIGURES

		Page
Figure 1.1:	Elements of the Theoretical Framework of the Study	9
Figure 1.2:	The Illustration of <i>Elementarization</i> Concept	10
Figure 1.3:	The Researcher Timeline Experience	18
Figure 2.1:	Chapter 2 Flow Idea	23
Figure 2.2:	Subject-Matter Didaktik as an Intersection of Didaktik	37
	and Subject Matter	
Figure 2.3:	Pedagogical Relation in the Didaktik Triad	40
Figure 2.4:	The Didaktik Relation in the Didaktik Triad	40
Figure 2.5:	Fundamental Interplay of Instruction Variables	54
Figure 2.6:	Model of Educational Reconstruction	56
Figure 2.7:	Steps Forward a Content structure for Instruction	56
Figure 2.8:	An Example for the Recursive of MER	60
Figure 2.9:	A Conceptualised MER Representative of the DBPA	65
Figure 2.10:	MER Across Non-German Countries	67
Figure 2.11:	Misconception Scheme ERSITI MALAYSIA SABAH	81
Figure 3.1:	Physics Education Reference Disciplines	84
Figure 4.1:	Interrelationship between Paradigm Assumptions and	105
	Research Methods	
Figure 4.2:	Research Design Derived from the Model of Educational	127
	Reconstruction	
Figure 4.3:	Actual MER of Energy Concepts Research Process	128
Figure 4.4:	Conceptual Framework of the Study	129
Figure 4.5:	Phase in Teaching Experiment	138
Figure 4.6:	A General Overview of the Comparison of Qualitative	140
	Content Analysis and Thematic Analysis	
Figure 5.1:	The Pyramid of Culture	162
Figure 5.2:	Contrasting Possibilities the Scientists' and the Students'	164
	View of Energy May Be Related	
Figure 5.3:	Elementary Idea of the Energy Concept	166

Figure 5.4:	The Nature of Energy Theme Code	184
Figure 5.5:	Energy Sources Theme Code	184
Figure 5.6:	Energy Form Theme Code	185
Figure 5.7:	Energy Transformation Theme Code	185
Figure 5.8:	Energy Transfer Theme Code	186
Figure 5.9:	Energy Conservation Theme Code	186
Figure 5.10:	Kinetic Energy (KE) Theme Code	187
Figure 5.11:	Gravitational Potential Energy (U_g) Theme Code	188
Figure 5.12:	Elastic Potential Energy (U_e) Theme Code	189
Figure 5.13:	Thermal Energy (Q) Theme Code	190
Figure 5.14:	Substance-like Metaphor Theme Code	192
Figure 5.15:	Stimulant to Action Metaphor Theme Code	193
Figure 5.16:	Vertical Location Metaphor Theme Code	194
Figure 6.1:	Sam: Energy Forms	198
Figure 6.2:	Musa: Oxygen Energy	199
Figure 6.3:	Ruby and Suria: Gravitational Energy	200
Figure 6. <mark>4:</mark>	Elsa: Push and Pull Energy	201
Figure 6.5:	Elsa: Pressure Energy	201
Figure 6.6:	Elsa: Absorbing Energy	201
Figure 6.7:	Elsa: Photosynthesis Energy ITI MALAYSIA SABAI-	202
Figure 6.8:	Sam: Electrical Charge	202
Figure 6.9:	Energy Concepts Held by Dan	205
Figure 6.10:	Energy Concepts Held by Syah	206
Figure 6.11:	Theme: Energy Forms and Energy Resource	207
Figure 6.12:	Venn Diagram Representing Energy Transfer by Noh	209
Figure 6.13:	Theme: Energy Transformation and Energy Transfer	213
Figure 6.14:	Noh's Idea: Energy Transferred Is Not 100% Efficient	215
Figure 6.15:	Theme: Energy Conservation and Energy Degradation	218
Figure 6.16:	Theme: Kinetic Energy (KE)	221
Figure 6.17:	Ruby: Potential Energy (Pulled)	224
Figure 6.18:	Suria: Potential Energy (Grow)	224
Figure 6.19:	Theme: Potential Energy (U)	226
Figure 6.20:	Theme: "Heat Energy"	229
Figure 7.1:	Skateboard	252

Figure 7.2:	Masses and Springs	262
Figure 7.3:	Pendulum	271
Figure 7.4:	Sample Answer for Question 1	278
Figure 7.5:	Sample Answer for Question 2	279
Figure 7.6:	Sample Answer for Question 3	280
Figure 7.7:	Learning Pathways of Teaching Experiment 1 (TE1)	281
Figure 7.8:	Learning Pathways of Teaching Experiment 2 (TE2)	282
Figure 7.9:	Learning Pathways of Teaching Experiment 3 (TE3)	283
Figure 7.10:	Learning Pathways of Teaching Experiment 4 (TE4)	284
Figure 7.11:	Learning Pathways of Teaching Experiment 5 (TE5)	285
Figure 8.1:	Form 3 Geography Textbook	293

LIST OF ABBREVIATION

CC-BY	-	Creative Common Attribution
CDC	-	Curriculum Development Centre
DAAD	-	German Academic Exchange Service
DBR	-	Design-based Research
DfE	-	Department for Education
DPBA	-	Double-Pan Balance Approach
ESERA	-	European Science Education Research Association
GIREP	-	International Research Group of Physics Teaching
HOTS	-	Higher Order Thinking Skills
IAI	-	Interview-about-Instances
IAE		Interview-about-Event
IB	-42	International Baccalaureate
IPN	2	Leibniz Institute for Science and Mathematics Education
KBSR	-//	New Primary School Curriculum
KBSM	-4	New Secondary School Curriculum
MBMMBI	-3	Uphold Malay Language and Strengthen English Language
КМК	_	Ständige Konferenz der Kultusminister der Länder
KSSR	-	Primary School Standard Curriculum
KSSM	-	Secondary School Standard Curriculum
MA	-	Metaphor Analysis
MEB	-	Malaysia Education Blueprint
MER	-	Model of Educational Reconstruction
MES	-	Malaysian Examination Syndicates
MINT	-	Mathematics, Informatics, Natural Sciences and Technology
ΜοΕ	-	Ministry of Education
MRSM	-	MARA Junior Science College
NGSS	-	Next Generation Science Standards
NRC	-	National Research Council
OECD	-	Organisation for Economic Cooperation and Development
PADU	-	Education Performance and Delivery Unit

PPSMI	_	English for Teaching Mathematics and Science
PhD	_	Philosophy Doctorate
PISA	_	Programme for International Student Assessment
PMR	_	Lower Secondary Assessment
PT3	_	Form 3 Assessment
QCA	_	Qualitative Content Analysis
SBA	_	School-Based Assessment
SPM	_	Malaysian Certificate of Education
SRP	_	Lower Certificate of Education
STEM	_	Science, Technology, Engineering and Mathematics
ТА	-	Thematic Analysis
TE	_	Teaching Experiment
TIMSS	_	Trends in Mathematics and Science Study
UNESCO	_	United Nations Educational, Scientific and Cultural
at t	T	Organisation
UK		United Kingdom
UMS	-	Universiti Malaysia Sabah
US	-1	United State
12		
No.	BAS	UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

		Page
Appendix A:	IPN Confirmation Letter	355
Appendix B:	DAAD Result Letter (2018)	356
Appendix C:	DAAD Result Letter (2017)	358
Appendix D:	Conversation in Pictures	359
Appendix E:	Interview Protocol (Written Response)	361
Appendix F:	Interview Protocol (Oral)	363
Appendix G:	PhET Registration	368
Appendix H:	PhET License	369
Appendix I:	Teaching Experiment Protocol (Skateboard)	371
Appendix J:	Teaching Experiment Protocol (Masses and Springs)	372
Appendix K:	Teaching Experiment Protocol (Pendulum)	374
Appendix L:	Students' Self-reflection	376
Appendix M:	Sample of Analyses	378
Appendi <mark>x N</mark> :	Application Letter	387
Appendix O:	Permission Letter	388
Appendix P:	Letter to Parents/Guardian	389
Appendix Q:	Consent Form (Example)	390
Appendix R:	Publications Related to The Thesis	391

CHAPTER 1

INTRODUCTION

1.0 Chapter Overview

This chapter serves as an introduction to the thesis. It begins with the context of the study, followed by a summary of the study's background and extends through the problem statement, theoretical framework, and study's aim, which includes research objectives and research questions. The study's rationale and significance are discussed at length. Following that, the study's empirical limitations and the definition of terms are discussed before proceeding to the researcher's profile. The researcher's profile, which includes my self-reflective expressions, is essential in the context of the study presented in this thesis. This chapter also talks about the structure of the thesis and wraps up the introduction chapter with a summary.

1.1 The Context of the Study

The context of the study informs the reader about the what, why, how, who, where, and possibly when of the study, among other things. Following that, the reader will have a more in-depth understanding of the background of the study in the following section. This shows that the nature of the study, which is linked to my background as the person who did the study, the research objectives/questions, the research method, the results, and the contribution, which includes the study's implication, is very important. This research focuses on specific information about students' ideas and ways of thinking. This is consistent with a new trend in the framework for developing, implementing, and evaluating teaching and learning environments in physics education, which explores teaching and learning at the micro-level (a single topic) rather than the macro-level (a year or more of teaching and learning) (Kariotoglou & Tselfes, 2000). Much of the literature indicates that physics education research is initially less concerned with producing content-specific instructional knowledge (Duit & Treagust, 1998), despite the fact that this method leads to the identification of the "missing level" and understanding of what happens in physics classrooms in terms of content-specific interactions between teaching and learning processes.

According to Fensham (2001), the complexity of physics content should be treated in the same way that it is treated in the content of instruction. In physics education research, the Model of Educational Reconstruction (MER) is the best way to bridge the gap between physics content issues and teaching-learning issues (Duit *et al.*, 2012). MER was discovered in Germany and is based on a constructivist epistemological foundation (Duit & Treagust, 1998, 2003; Kattmann *et al.*, 1996). This epistemological point of view is concerned with the interpretation of scientific knowledge as well as the conceptual understanding of students' points of view. Focusing on either the physics content or the students helps to avoid one-sidedness.

Fensham (2001) noted how the German education tradition of *Didaktik* can improve instruction by focusing on students' learning needs and abilities. This tradition views learning as students developing their own knowledge based on what they have already learned. Students' pre-knowledge and beliefs are not viewed as obstacles to learning, but rather as starting points for bringing them to the physics knowledge they must acquire (Driver & Easley, 1978). On the other hand, physics content is regarded as a physicist's creation (Abd-El-Khalick & Lederman, 1998), and usually physics knowledge in the scientific fields is not always in a form that qualifies it for presence in a school curriculum. Scientists, on the other hand, build their knowledge in a very different way from how young people build their knowledge in school.