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ABSTRACT 
 

Antarctica, with its unique geography and extreme climate, serves as the primary 
habitat for bacteria. Among these microorganisms, Antarctic subglacial species 
have developed the ability to endure high pressure and severe cold conditions. 
Research has shown that molecular chaperones play a crucial role in preventing 
protein degradation and facilitating protein refolding under heat stress. 
Specifically, small heat shock like-proteins (sHSPs) have been found to interact 
with partially unfolded proteins prone to aggregation, thereby reducing cellular 
damage. The exceptional functionality of psychrophilic sHSPs at low temperatures 
presents an opportunity to explore the relationship between protein structure, 
stability, flexibility, and dynamic conformation. This study aims to investigate the 
role of sHSPs derived from Glaciozyma antartica and examine the connection 
between their molecular structure and heat adaptation. Out of the four sHSP 
genes identified in G. antarctica, two namely GasHSP07-010 and GasHSP12-338, 
were amplified and cloned using E. coli BL21(DE3). The proteins encoded by these 
genes were expressed at 37°C overnight and subsequently purified using 
immobilized metal chelate affinity chromatography (IMAC). The purified proteins 
underwent both a citrate synthase assay and a thermotolerance assay. 
Furthermore, comparative modeling of these genes was performed using 
CHIMERA, aligning them against the Homo sapiens (2YRT) and 
Schizosaccharomyces pombe (3W1Z) strains. The quality of the modeled 
structures was evaluated using the Ramachandran plot, errat, and verify3D. 
Results from the in vitro thermotolerance assay demonstrated that GasHSP07-010 
and GasHSP12-338 protected E. coli cells from lethal temperatures of 55°C for up 
to 30 and 60 minutes, respectively. An aggregation assay using citrate synthase 
(CS) further revealed the chaperone activity of both sHSPs, as they effectively 
protected CS from complete aggregation. The sHSP:CS at a ratio of 2:1 was found 
to be more effective than the 1:1 ratio for both G. antarctica sHSP proteins. The 
2:1 ratio might have functioned better than the 1:1 ratio because sHSP requires a 
specific ratio of protein concentration and non-native protein to generate stable 
and effective complexes. Additionally, real-time PCR analysis showed that 
gashsp12-338 expression increased by 1.38-fold under high heat stress and 2.33-
fold under cold stress compared to the control temperature of 12°C. As a result of 
exposure to the fatal temperature of 20°C, both gashsp07-010 and gashsp12-338 
expression levels were downregulated. Interestingly, at 30°C, both gashsp07-010 
and gashsp12-338 levels were upregulated 2-fold compared to the expression at 
20°C. It was possible that at 30°C, the presence of non-native proteins such as 
aggregates at a certain level triggered the expression of both sHSP. These findings 
reflect the diverse function of sHSP in G. antarctica that may play different roles in 
thermal adaptation. Comparative modeling of G. antarctica sHSP structures 
uncovered noteworthy alterations in the amino acid composition. In the tertiary 
structure of GasHSP07-010, an amino acid transition from non-charge to polar 
resulted in reduced interactions and increased stability. Conversely, GasHSP12-338 
exhibited an amino acid change to a non-polar form, leading to diminished amino 
acid interactions and enhanced structural stability. These modifications loosen the 
strong ionic interactions and create a flexible connection which allows 
conformation change in the protein structures similar to the cold-adapted proteins 
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in hypersaline conditions which play an important role in protein solubility and 
flexibility to increase the speed of enzymatic bindings and reactions. These 
structural adaptations likely contribute to the flexibility and stability required for 
the functional activity of these proteins at low temperatures and their ability to 
protect other proteins during heat stress. The findings of this study shed light on 
the thermal protection mechanisms employed by sHSPs and offer valuable insights 
into their functionality. 
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ABSTRAK 

PENCIRIAN STRUCKTUR DAN FUNGSI PROTEIN KEJUT HABA 
KECIL DARIPADA Glaciozyma antarctica PI12 SEBAGAI TINDAK 

BALAS TERHADAP TEKANAN HABA 
 
 

Antartika,mempunyai geografinya yang unik dan iklim yang melampau, merupakan 
habitat utama untuk banyak bakteria. Antara mikroorganisma ini, spesies subglasial 
Antartika telah berupaya untuk mengawal tekanan tinggi dan keadaan sejuk 
lampau. Hasil penyelidikan telah menunjukkan bahawa protein pengiring 
memainkan peranan penting dalam mencegah degradasi protein dan memudahkan 
lipatan semula protein di bawah tekanan haba. Khususnya, protein seperti protein 
kejut haba kecil (sHSP) telah didapati berinteraksi dengan protein yang sebahagian 
permukaannya terdedah kepada agritasi, dengan itu mengurangkan kerosakan 
selular. Kefungsian luar biasa sHSP psikrofilik pada suhu rendah memberikan 
peluang kepada penyelidik untuk meneroka hubungan antara struktur protein, 
kestabilan, fleksibiliti dan konformasi dinamik. Kajian ini bertujuan untuk menyiasat 
peranan sHSP yang diperoleh daripada Glaciozyma antartica dan mengkaji 
hubungan antara struktur molekul dan penyesuaian haba. Daripada empat gen 
sHSP yang dikenal pasti di G. antarctica, dua iaitu GasHSP07-010 dan GasHSP12-
338, telah diklon menggunakan E. coli BL21(DE3). Protein yang dikodkan oleh gen 
ini dihasilkan pada 37 °C selama semalaman dan kemudiannya ditulenkan 
menggunakan kromatografi afiniti kelat logam tidak bergerak (IMAC). Protein yang 
telah ditulenkan menjalani kedua-dua ujian sintase sitrat dan ujian termotoleransi. 
Tambahan pula, pemodelan perbandingan gen ini dilakukan menggunakan 
CHIMERA, menyelaraskannya dengan strain Homo sapiens (2YRT) dan 
Schizosaccharomyces pombe (3W1Z). Kualiti struktur yang dimodelkan telah dinilai 
menggunakan plot Ramachandran, errat, dan verify3D. Keputusan daripada ujian 
termotoleransi in vitro menunjukkan bahawa GasHSP07-010 dan GasHSP12-338 
melindungi sel E. coli daripada suhu maut 55°C sehingga 30 dan 60 minit, masing-
masing. Ujian pengagregatan menggunakan sintase sitrat (CS) seterusnya 
mendedahkan aktiviti protein pengiring untuk kedua-dua sHSP, kerana mereka 
melindungi CS secara berkesan daripada pengagregatan lengkap. sHSP:CS pada 
nisbah 2:1 didapati lebih berkesan daripada nisbah 1:1 untuk kedua-dua protein G. 
antarctica sHSP. Nisbah 2:1 mungkin berfungsi lebih baik daripada nisbah 1:1 
kerana sHSP memerlukan nisbah khusus kepekatan protein dan protein bukan asli 
untuk menjana kompleks yang stabil dan berkesan. Di samping itu, analisis PCR 
masa nyata menunjukkan bahawa ekspresi gashsp12-338 meningkat sebanyak 
1.38 kali ganda di bawah tekanan haba tinggi dan 2.33 kali ganda di bawah 
tekanan sejuk berbanding dengan suhu kawalan 12°C. Hasil daripada pendedahan 
kepada suhu tinggi 20 °C, kedua-dua tahap ekspresi gashsp07-010 dan gashsp12-
338 telah dikurangkan. Menariknya, pada 30 °C, kedua-dua tahap gashsp07-010 
dan gashsp12-338 telah dikawal 2 kali ganda berbanding dengan ungkapan pada 
20 °C. Ada kemungkinan bahawa pada 30 °C, kehadiran protein bukan asli seperti 
agregat pada tahap tertentu mencetuskan ekspresi kedua-dua sHSP. Penemuan ini 
mencerminkan kepelbagaian fungsi sHSP di G. antarctica yang mungkin memainkan 
peranan berbeza dalam penyesuaian terma. Permodelan perbandingan struktur G. 
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antarctica sHSP menemui perubahan penting dalam komposisi asid amino. Dalam 
struktur tertier GasHSP07-010, peralihan asid amino daripada tidak bercas kepada 
kutub mengakibatkan interaksi berkurangan dan peningkatan kestabilan. 
Sebaliknya, GasHSP12-338 mempamerkan perubahan asid amino kepada bentuk 
bukan kutub, yang membawa kepada pengurangan interaksi asid amino dan 
kestabilan struktur yang dipertingkatkan. Pengubahsuaian ini melonggarkan 
interaksi ionik yang kuat dan mewujudkan sambungan yang fleksibel yang 
membolehkan perubahan konformasi dalam struktur protein yang serupa dengan 
protein yang disesuaikan dengan sejuk dalam keadaan hipersalin yang memainkan 
peranan penting dalam keterlarutan protein dan fleksibiliti untuk meningkatkan 
kelajuan pengikatan dan tindak balas enzimatik. Penyesuaian struktur ini 
berkemungkinan menyumbang kepada fleksibiliti dan kestabilan yang diperlukan 
untuk aktiviti fungsi protein ini pada suhu rendah dan keupayaannya untuk 
melindungi protein lain semasa tekanan haba. Penemuan kajian ini memberi 
penerangan tentang mekanisme perlindungan haba yang digunakan oleh sHSP dan 
menawarkan pandangan berharga ke dalam fungsinya. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

Antarctica is the world's southernmost continent and the fifth-largest landmass on 

the planet. Its landmass is nearly covered by a large ice sheet (Buzzini et al., 

2017).  Additionally, it's home to the world's highest mountain ranges, driest 

deserts, fiercest winds, and coldest temperatures (Lize, 2021; Satyanarayana & 

Kunze, 2009).  Life on the Antarctic continent depends on the supply of water, 

which is a freezing, barren desert. More than a thousand distinct species of 

organisms have been identified in the terrestrial environment, however, 

microorganisms make up the vast majority (Lize, 2021; Satyanarayana & Kunze, 

2009).  Several species have been examined for their capacity to cope with the 

extremes of heat and cold seen in the Antarctic. The development of Antarctic 

organisms has been influenced by several geological and climatic factors (Boo et 

al., 2013). Due to the low temperatures, living creatures face several difficulties. 

Formation of RNA and DNA secondary structure, increase of DNA super-cooling, 

and decrease in membrane fluid are some of the challenges they may encounter 

(Jung et al., 2010). Numerous Antarctic organisms have developed a variety of 

adaptations that enable them to thrive and reproduce in frigid conditions. 

Psychrophiles are the group of extremophiles that can survive in extremely 

cold conditions, such as the oceans and the polar regions. The majority of the 

species include bacteria, archaea, algae, yeast, plants, and animals, whereas the 

largest psychrophiles are the polar fish that thrive beneath the icecap. In terms of 

diversity, biomass, and dispersion, psychrophiles are the most commonly seen 

microorganisms (Parvizpour et al., 2021). For cold adaptation, a range of structural 

and functional modifications are required. Low (or even subzero) temperatures 
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have a range of effects on psychophilic yeast, including slowed growth rates, 

changed protein structures, decreased membrane fluidity, increased medium 

viscosity, and reduced nutrient availability. As a result, they evolved a multitude of 

adaptation methods, including subcellular, molecular, and metabolic alterations, as 

well as the synthesis of protective proteins, in response to temperature stress 

(Buzzini et al., 2012).  

Molecular chaperones are categorised into families based on their molecular 

mass, evolutionary history, and unique features (Haslbeck & Vierling, 2015; 

Kriehuber et al., 2010; Walter & Buchner, 2002). A member of the stress protein 

family with one of the most diverse structures and functions is the small heat shock 

protein (sHSP) (Franck et al., 2004). Due to their ability to selectively bind to 

unfolded proteins in vitro and inhibit aggregation, the sHSP are classified as 

molecular chaperones  (Walter & Buchner, 2002).  The sHSP are defined by the 

presence of a conserved α-crystallin domain that presents in all three domains of 

life (Laksanalamai & Robb, 2004; Nakamoto & Vígh, 2007). The sHSP are also 

linked to a wide range of illnesses, including Alzheimer's and cancer (Haslbeck & 

Vierling, 2015). In comparison to prokaryotic and unicellular eukaryotic creatures, 

the sHSP gene is more ubiquitous in multicellular eukaryotic organisms (Kriehuber 

et al., 2010).  

Numerous sHSP members are often detected in the same cell 

compartments, indicating that they have numerous functions (Nakamoto & Vígh, 

2007). The sHSP synthesis may have been boosted by the damaged proteins since 

they had lost their capacity to function and build up in the cell (Walter & Buchner, 

2002).  Members of this family have core domains known as α-crystallin domains, 

which are present in all sHSP (Kriehuber et al., 2010; Nakamoto & Vígh, 2007).  

There are a broad variety of roles in which sHsp may be involved, such as the 

cellular defences against high temperatures, as well as the ability to bind many 

distinct cellular substrates (Nakamoto & Vígh, 2007). Many cold-adapted bacteria 

have been shown to have sHSP downregulation at low temperatures (Martínez-Paz 

et al., 2014). The cold-induced downregulation of sHSP implies that these folding 

aids are mostly created at temperatures that are temporarily higher than normal 

(Feller, 2013).  
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The small HSP (sHSP) from the psychrophilic yeast Glaciozyma antarctica 

(GA) was first examined by Yusof et al., 2016.  G. antarctica, a psychrophilic yeast 

was isolated from sea ice at the Casey Research Station in Antarctica. G. antarctica 

thrives in environments with temperatures no higher than 12°C. Temperature 

extremes of up to 20°C and more restrict G. antarctica’s growth  (Alias et al., 2014; 

Boo et al., 2013; Koh & Wong, 2017; Koh et al., 2019; Turkiewicz et al., 2004). In 

this study, G. antarctica was chosen as the subject of study for several reasons. 

Firstly, the availability of genome data allowed us to perform a thorough 

investigation of its sHSP. Second, this yeast can be readily grown and maintained in 

laboratory conditions. Moreover, a study on an sHSP of G. antarctica revealed some 

significant findings on its protein structure and adaptation strategies in extreme 

temperatures (Yusof et al., 2016). Hence, there is a need to study other sHSP in G. 

antarctica to determine the pattern of adaptation strategies acquired by this 

extreme organism.  

To date, there are 9 sHSP genes in G. antarctica with one that has been 

characterised in Yusof et al. 2016. Other organisms such as yeast have 2 genes, 12 

in Drosophila melanogaster, 16 in Caenorhabditis elegans, 19 in Arabidopsis 

thaliana and 10 genes in humans (Kappé et al., 2003). The genome of G. antarctica 

(http://www. genomemalaysia.gov.my/glaciozyma_antarctica/) contains 7857 

genes, with at least 10% being novel or exhibiting no detectable sequence 

similarity to known folds. Out of 7 uncharacterised sHSP, two sHSP were able to be 

fully amplified without any mutations from G. antarctica total RNA. Therefore, 

intrigued by the adaptation strategies acquired by sHSP in G. antarctica, this study 

focuses on two sHSP that we are able to be PCR amplified namely GasHsp07-010 

and GasHsp12-338. Based on protein domain analysis, both proteins contained α-

crystalline domains that may play important roles in the prevention of protein 

aggregation during thermal stress. This suggests that these sHSP proteins may 

acquire function in the cold which reflects protein flexibility and stability. In this 

study, we characterized both G. antarctica sHSP in terms of their protein structures 

and functions. The outcome of this study is expected to contribute new findings 

and determine the pattern of thermal adaptation strategies acquired by G. 

antarctica. This important knowledge gathered from this study could be applied in 
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various applications such as nanobiotechnology, cryogenic storage for biological 

materials, proteomics, protein expression system and bioproduction. 

 

 

1.2    Research Questions 

 

1. Do the selected sHSP genes from G. antarctica function similarly to those found 

in other organisms when exposed to thermal stress? 

2. Does the selected sHSP from G. antarctica possess specific thermal adaptation 

strategies at the structural level? 

3. What is the relationship between the structures and functions of the selected 

sHSPs in G. antarctica and their role in thermal adaptation strategies? 

 

 

1.3    Research Aims 

 

The research aims to study the relationship between the function and structure of 

the selected sHSP proteins from the psychrophilic yeast, G. antarctica for further 

understanding of their protein adaptation strategies in thermal response. 

 

 

1.4    Research Objectives 

 

1. To investigate the response of the selected sHSP genes of G. antarctica PI12 to 

various thermal treatments. 

2. To analyse the structure of the G. antarctica sHSP proteins using comparative 

homology modelling. 

3. To explore the relationship between the structural attributes of the selected 

sHSP proteins in G. antarctica and their role in cellular protection in response to 

thermal stress. 

 

 

 


