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ABSTRACT 

 

 

Fed-batch fermentation process has always been a challenge for optimisation 
because it is highly non-linear and complex. Deep reinforcement learning is a self-
learning algorithm through trial and error and experience, without any prior 
knowledge. This research aimed to determine the optimal feeding strategy for fed-
batch baker’s yeast fermentation process using the deep reinforcement learning 
algorithm in maximising the final production of yeast, while minimising the undesired 
ethanol formation. The kinetic and dynamic behaviour of the fed-batch baker’s yeast 
fermentation was simulated and modelled using MATLAB, with no experimental work 
carried out. The proposed deep reinforcement learning algorithm, which integrates 
an artificial neural network with traditional reinforcement learning, was formulated 
based on the optimisation objective by manipulating only the substrate feeding rate. 
The performance of the proposed algorithm was compared with a pre-determined 
exponential feeding profile and a genetic algorithm. Results for the nominal condition 
show that the proposed algorithm produced final yeast concentration 33.42 g/l and 
6.02 g/l higher than the exponential feeding and genetic algorithm, respectively. At 
the same time, the total ethanol formation is 0.19 g/l and 0.03 g/l lower than the 
exponential feeding and genetic algorithm, respectively. In other cases of different 
initial yeast and substrate concentrations, the proposed algorithm in general 
outperforms the exponential feeding profile while produces comparable results to the 
genetic algorithm. When dealing with model mismatch (±15% parameter variation 
in critical growth and maximum glucose uptake rate) and process disturbance (±20% 
deviation in substrate feeding concentration), the proposed algorithm was able to 
handle the changes with a minor effect on the yeast yield up to 13.78% and 2.52%, 
respectively, across all different initial condition cases. In conclusion, a deep 
reinforcement learning algorithm was successfully developed for the substrate 
feeding rate optimisation in the fed-batch baker’s yeast fermentation process. The 
proposed algorithm improves the productivity of yeast while limiting ethanol 
formation and shows satisfactory performance in dealing with model mismatch and 
process disturbance.
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ABSTRAK 

 

OPTIMISATION OF FED-BATCH FERMENTATION PROCESS USING DEEP 
REINFORCEMENT LEARNING 

 

Proses penapaian secara kumpulan makan sentiasa menjadi cabaran untuk 
pengoptimuman oleh sebab ketidaklineariti dan kerumitannya yang tinggi. 
Pembelajaran peneguhan mendalam ialah algoritma pembelajaran kendiri melalui 
percubaan dan kesilapan dan pengalaman tanpa sebarang pengetahuan terdahulu. 
Penyelidikan ini bertujuan untuk menentukan strategi pemakanan yang optimum 
bagi proses penapaian yis secara kumpulan makan dengan menggunakan algoritma 
pembelajaran peneguhan mendalam dalam memaksimumkan pengeluaran akhir yis 
sambil meminimumkan pembentukan etanol yang tidak diingini. Tingkah laku kinetik 
dan dinamik penapaian yis secara kumpulan makan telah disimulasikan dan 
dimodulkan menggunakan MATLAB, tanpa kerja eksperimen dijalankan. Algotitma 
pembelajaran peneguhan mendalam yang dicadangkan, yang mengintegrasikan 
rangkaian saraf tiruan dengan pembelajaran peneguhan tradisional, telah 
dirumuskan berdasarkan objektif pengoptimuman dengan hanya memanipulasi kadar 
pemakanan substrat. Prestasi algorithma yang dicadangkan telah dibandingkan 
dengan profil pemakanan secara eksponen dan algoritma genetik. Keputusan untuk 
keadaan nominal menunjukkan bahawa algoritma yang dicadangkan menghasilkan 
kepekatan yis akhir masing-masing dengan 33.42 g/l dan 6.02 g/l lebih tinggi 
daripada pemakanan secara eksponen dan algoritma genetik. Pada masa yang sama, 
jumlah pembentukan etanol masing-masing adalah 0.19 g/l dan 0.03 g/l lebih rendah 
daripada pemakanan secara eksponen dan algoritma genetik. Dalam kes lain 
kepekatan yis dan substrat awal yang berbeza, algoritma yang dicadangkan secara 
umum mengatasi profil pemakanan secara eksponen sambil menghasilkan keputusan 
yang setanding dengan algoritma genetik. Apabila menangani ketidakpadanan model 
(±15% variasi parameter dalam pertumbuhan kritikal dan kadar pengambilan 
glukosa maksimum) dan gangguan proses (±20% sisihan dalam kepekatan 
pemakanan substrat), algoritma yang dicadangkan dapat mengendalikan perubahan 
dengan kesan kecil pada penghasilan yis sehingga 13.78% dan 2.52%, masing-
masing, merentas semua kes keadaan awal yang berbeza. Kesimpulannya, algoritma 
pembelajaran peneguhan mendalam telah berjaya direkakan untuk pengoptimuman 
kadar penyusuan substrat dalam process penapaian yis secara kumpulan. Algoritma 
pembelajaran peneguhan mendalam yang dicadangkan meingkatkan penghasilan yis 
sambil mengehadkan hasil etanol dan menunjukkan prestasi yang memuaskan dalam 
menangani ketidakpadanan model dan gangguan proses.
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1  Background Study 

 

Fermentation is a metabolic process carried out by microorganisms in the presence 

of carbon source, for their survival and growth while producing value-added products 

at the same time. Fermentation processes are widely applied in food processing 

industries to preserve food and improve the taste, flavour and texture. There are also 

applied in the manufacture of bioenergy, industrial chemicals and pharmaceutical 

products (Tullio, 2022). The biotechnology market worldwide was worth $369.62 

billion in 2016 and is projected to reach $727.1 billion by 2025 (Ade et al., 2018). In 

comparison with conventional chemical processes, bioprocesses able to produce 

valuable products with less energy consumption and less negative environmental 

impacts (Cheng et al., 2018; Queiroz et al., 2022). Bioprocesses typically operate 

under milder condition (e.g., lower temperature and atmospheric pressure) 

compared to conventional chemical processes, which reduces the energy 

requirement for heating, cooling, and maintaining high pressure. Besides, the by-

products (or wastes) generated from bioprocesses are biodegradable and 

environmentally friendly. Conventional chemical processes, in contrast, produce 

persistent wastes that require extensive treatment. In addition, chemical synthesis 

typically involves multiple steps, whereas bioprocesses can obtain a complex 

compound formation in a single step. As a result, operation cost for chemical 

processes increases for equipment, energy and waste treatment. 

 

Microorganisms are highly sensitive to the environmental conditions such as 

temperature, nutrient availability, pH and oxygen capacity. These factors influence 

the metabolic pathways and behaviour of microorganisms. A drawback of 

bioprocesses is that even a slight change in the broth environment can trigger 
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different metabolism mechanisms, resulting in the formation of multiple products. 

The presence of these multiple products can affect the quality and quantity of the 

desired product. Therefore, it is crucial to optimise and control bioprocess, in favour 

of the formation of the desired products. Hence, the goal of bioprocess optimisation 

in the industry is generally to maximise the productivity of targeted products while 

minimising any possible yield of undesired products in the most economical way. 

 

Industrial fermentation processes are typically carried out in one of the 

following modes: batch, fed-batch or continuous mode (Yang & Sha, 2019). Table 

1.1 below shows the advantage and disadvantage of these three different operation 

modes. Batch fermentation operates in a partially closed system where there is no 

feeding and discharge, and products are only removed at the end of the process. In 

batch operation, oxygen and pH solutions are allowed to regulate in the batch 

bioreactor, where oxygen concentration, pH and temperature are normally the 

observed parameters for production and quality improvement. Batch operation is 

relatively straightforward with minimal contamination risk. However, it has low 

product yields and requires long downtime for cleaning, sterilization, and preparation 

for new processing batches. In continuous fermentation process, the feeding and 

discharge occur at the same rate to maintain constant culture volume. Turbidostat 

and chemostat are the two primary control methods for continuous fermentation. 

Turbidostat regulates the inflow and outflow rate to control the turbidity in the 

bioreactor and to maintain constant cell density. Chemostat maintains the feeding 

and discharge rate at a constant level by adjusting a single limiting nutrient in the 

feeding medium to control the cell growth rate. In fed-batch operation, the substrate 

feeding input can be varied and regulated to control the reaction rate in the 

bioreactor with no output is discharged during the fermentation process. This 

becomes the advantage of fed-batch over the batch and continuous operation modes, 

as fed batch can overcome substrate inhibition on cell growth, improve productivity 

and control unwanted by-product formation (Yang & Sha, 2019). Therefore, the fed-

batch mode of operation is still preferred by many biomanufacturing industries 

(Lindskog, 2018).  
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Table 1.1: The Advantage and Disadvantage of Different Operation Mode 

Operation 
mode 

Advantage Disadvantage 

Batch Simple operation, low 
contamination risk 

Low product yields, long 
downtime for new batch 

Fed-batch Higher product yield, avoid 
substrate inhibition effect, 

control by-product formation 

Feeding regulation may be 
complicated, genetic instability 

Continuous High product yield, reduce 
downtime, avoid inhibition effect 

Complex downstream 
processing, high contamination 

risk, genetic instability 

 

However, the determination of optimal feeding profile for fed-batch 

bioprocess remains a challenging issue due to the high non-linearity and complexity 

of biological mechanism. As a result, the process optimisation of fed-batch bioprocess 

has drawn attention from many researchers. Many strategies have been studied such 

as pre-determined profile, model predictive control, fuzzy logic, artificial neural 

network and evolutionary algorithm. Reinforcement learning is a class of machine 

learning to solve problem and achieve goal through self-exploration and self-learning 

from experience without any guidance and training data. With the integration of 

artificial neural network (deep learning) as the function approximator, so called deep 

reinforcement learning, it has recently garnered interest in the control field. This is 

because deep learning can increase the computational efficiency of reinforcement 

learning in continuous and high dimensional problems. This type of machine learning 

has significant success in computer games, board games, traffic control, smart grids 

and robotics. Recently, it has been studied for its application in the chemical 

industries (Nian et al., 2020). Fermentation process is a continuous process with 

infinite number of possible state variable values. Hence, in this work, reinforcement 

learning algorithm augmented with neural network is proposed to study its capability 

and potential for optimising the substrate feeding profile of fed-batch fermentation 

process. 
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1.2  Problem Statement 

 

The high non-linearity and complexity of fermentation process (Zhang & Liu, 2019) 

is caused by the non-linear growth behaviour of microorganisms which is very 

sensitive to the culture environment. Plus, the metabolism mechanism of 

microorganisms is very complicated. A slight change in environment can cause 

different metabolic pathways. Substrate concentration is one of the important factors 

that influence the growth and metabolic process of microorganisms. Excessive 

substrate can lead to other undesired by-products formation which inhibit cell growth. 

Also, the multi-products formed will contaminate the broth and increase the post-

processing cost. Therefore, the control and optimisation of the substrate feeding rate 

in fed-batch bioreactor is important to maximise the desired product yield while 

minimising by-product formation at the same time. These are the common 

requirements in various bioindustries. 

 

In the search for the optimal substrate feeding profile, exponential feeding is 

one of the commonly used pre-determined profiles in the industry (Teworte et al., 

2022) because of its simplicity and ease of implementation. However, it lacks the 

ability to predict and overcome unexpected disturbances during production  

(Bolmanis et al., 2023). Previous strategies have mostly focused on controlling and 

maintaining the process at a given set point, with limited studies on determining the 

optimal feeding profile. Given the abilities of deep reinforcement learning in self-

learning through trial and error and experience without any prior knowledge, 

improvement computational efficiency and eliminate the need for human operators 

to monitor the process, it is of interest this research to investigate its capability in 

fed-batch fermentation process optimisation. 

 

 


