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ABSTRACT 
 

Pattern recognition has emerged as a burgeoning field of study with increasing 

prominence in light of technological advancements, finding applications across 

various multidisciplinary domains. An essential part of pattern recognition is 

classification where it involves the categorization of labelled samples based on their 

data features. Fourier Transform Infrared (FTIR) spectroscopy, a well-established 

spectroscopic technique, have long been used to detect organic, polymeric, and even 

inorganic materials. This research endeavours to develop an accurate and optimal 

classification framework on FTIR spectra data using a combination of heap 

dimensionality reduction (DR) technique, polynomial features transformation and a 

heuristic stacking ensemble technique. The high-dimensionality nature of FTIR data 

poses a significant challenge for classification. To address this issue, DR techniques 

are used. However, no DR technique is superior to all others. Depending on the 

dataset used, one method may produce a better approximation of a dataset than the 

other techniques. In this study, the high-dimensional data undergo multiple existing 

DR techniques. The resulting transformed features are consolidated into a heap and 

subsequently undergo polynomial feature transformation. Then Partial Least Square 

(PLS-DA) method is applied to obtain the final transformed features. The transformed 

features are then utilized as input for the stacking ensemble (SE) model, selected 

through a heuristic SE procedure. Artificial data was employed for the initial two 

experiments, while the complete framework was tested on the six FTIR datasets for 

the third experiment to assess its applicability to real-world datasets. The 

experimental results on these six datasets revealed that the proposed framework was 

outperformed the other examined models. Notably, an average accuracy, sensitivity, 

and specificity of up to 99% was achieved for the D06 dataset. As a result, this 

framework holds potential not only for the classification of FTIR data but also for 

other high-dimensional data in general.  
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ABSTRAK 
 
PENGURANGAN DIMENSI HIMPUNAN TRANSFORMASI CIRI POLINOMIAL 

DAN TEKNIK PENYATUAN BERTINGKAT UNTUK PENGELASAN DATA 
SPEKTROMETRI 

Sejajar dengan kemajuan teknologi, pengecaman corak telah pesat berkembang 
sebagai satu  keperluan dan kepentingan dalam pelbagai bidang disiplin dan aplikasi. 
Pengecaman corak adalah pengelasan yang melibatkan pengkategorian sampel yang 
berlabel berdasarkan ciri-ciri data. Teknik spektroskopi Transformasi Fourier 
Inframerah (FTIR), merupakan satu teknik spektroskopi yang telah terbukti berkesan 
dan telah lama digunakan dalam mengesan bahan organik, polimer, dan juga bahan 
bukan organik. Kajian ini bertujuan untuk membangunkan satu rangka kerja 
pengelasan yang tepat dan optimum untuk data spektra FTIR dengan menggunakan 
teknik pengurangan dimensi timbunan, transformasi ciri polinomial dengan teknik 
penyatuan bertingkat bersifat heuristik. Data FTIR mempunyai dimensi yang tinggi 
dan telah menjadi satu cabaran dalam pengelasan dan dapat diselesaikan dengan 
menggunakan teknik pengurangan dimensi. Walau bagaimanapun, tiada teknik 
pengurangan dimensi yang lebih baik daripada yang lain kerana bergantung pada 
set data yang digunakan dan satu kaedah mungkin menghasilkan anggaran set data 
yang lebih baik daripada teknik lain. Dalam kajian ini, satu rangka yang optimum 
untuk mengelas data berdimensi tinggi terutamanya data FTIR telah didirikan 
menggunakan teknik pengurangan dimensi timbunan berserta dengan teknik 
penyatuan bertingkat bersifat heuristik. Data yang dikaji telah menjalani pelbagai 
teknik pengurangan dimensi sedia ada. Ciri yang diubah hasilnya digabungkan untuk 
membentuk satu timbunan ciri dan seterusnya diubah kepada ciri polinomial. Kaedah 
‘Partial Least Square-Discriminant Analysis (PLS-DA)’ seterusnya digunakan untuk 
mendapatkan ciri baru. Setelah mendapatkan ciri yang baru, ciri tersebut digunakan 
sebagai input pada teknik penyatuan bertingkat (SE), yang dipilih melalui prosedur 
penyatuan bertingkat bersifat heuristik. Data tiruan yang berdimensi tinggi telah 
digunakan untuk eksperimen pertama dan kedua, manakala untuk eksperimen 
ketiga, rangka kerja yang lengkap telah diuji pada enam set data FTIR untuk 
menentukan kebolehgunaan rangka kerja tersebut pada set data dunia nyata. Hasil 
analisis menunjukkan bahawa rangka kerja yang dicadangkan dapat mengatasi 
model lain dengan hasil tertinggi purata ketepatan, purata kepekaan dan purata 
kekhususan sehingga 99% terutamanya untuk dataset D06. Dengan ini, rangka kerja 
ini memiliki potensi bukan sahaja untuk pengelasan data FTIR, tetapi juga untuk data 
berdimensi tinggi secara umum.
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

Pattern recognition is an interdisciplinary field that involves detecting patterns and 

relationships in data using computer algorithms. It covers many areas of statistics, 

engineering, artificial intelligence, computer science, bioinformatics and computer 

vision. It is aimed to extract patterns as efficiently as possible depending on particular 

criteria and distinguish one class from the others. Usually, pattern recognition can be 

sorted according to the type of learning procedure, either supervised or 

unsupervised. Supervised pattern recognition is a model that classifies based on 

experimental data where the unknown samples may be assigned to a previously 

established sample class according to their pattern of measured features. On the 

other hand, unsupervised pattern recognition arranges data into clusters and then 

defines it since it lacks a predetermined sample class (Bishop, 2006). Other terms for 

supervised and unsupervised pattern recognition are classification and clustering, 

respectively. 

  

Pattern recognition is both the application of machine learning (ML) and 

statistical data analysis. ML is one of the subdisciplines of Artificial Intelligence (AI) 

and Computer Science. It uses data and algorithms to imitate humans' learning 

capabilities and eventually improves its accuracy without being programmed explicitly 

(Mitchell, 1997; Luxton, 2016). Statistical analysis is a scientific instrument that aids 

in data collection and analysis. Its purpose is to identify recurring patterns and trends 

and then turn them into useful information (Kerlinger & Lee, 2000; Ali & Bhaskar, 

2016). Simply said, statistical analysis is a technique for data analysis that helps draw 
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useful conclusions from unstructured and raw data. There are many kinds of data, 

one of them is spectra data. Due to spectra data  frequently comprising of the 

chemical information about the sample's composition, this kind of data, besides being 

intricate and multivariate, also has high dimensionality. Figure 1.1 shows an example 

of spectra data. 

 

 

Figure 1.1  : Example of Spectra data 

Source  : https://webbook.nist.gov/chemistry/special/spray-

combust/baseline-case/ftir/ 

 

Chemometrics is the subdiscipline in the chemical field that employs statistical 

and mathematical procedures. Its purpose is to design or select the best 

measurement methodologies and experiments to extract information from chemical 

systems (Otto, 2017). Spectroscopy is a tool in chemometrics and an example of the 

analytical procedure for obtaining high-dimensional spectra data. It entails creating, 

measuring and analysing spectra resulting from infrared radiation's interaction with 

matter. This approach is informative and widely utilised for quantitative and 

qualitative assessments (Nielsen, 2017). Spectroscopic techniques that are accessible 

today come with many different types and functionality. One of them, notably Fourier 

Transform Infrared (FTIR) spectroscopy, will be the main focus of this research. FTIR 

spectroscopy has the potential to become an essential routine analytical tool as FTIR 

analysis can be performed rapidly with minimum sample preparation and without the 

use of a reagent. 
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1.2 Problem Background 

 

Over the past few decades, technological advancements have made novel discoveries 

and inventions possible. High-dimensional datasets are datasets in which the number 

of features 𝑝 is larger than the number of observations 𝑁. Infrared spectrum data is 

an example of high-dimensional vectors that are made up of absorbance values 

corresponding to different wavenumbers. The characteristic variables of spectral data 

have become bigger as spectral detection technology become more advanced. 

 

 Applications for FTIR spectroscopy can be found in a wide range of disciplines. 

Two out of the many prominent fields that widely use FTIR spectroscopy are the 

identification of diseases in the medical profession and also the detection of food 

fraud – also known as economically motivated adulteration – in the food science and 

technology field. In the medical field, various studies have been conducted on a wide 

range of diseases, including neurodegenerative diseases. Neurons, cells of the 

nervous system, have a particular physiology that makes it possible for them to 

convey information effectively through an electrochemical process called signal 

transduction. The fundamental cause of neurodegenerative disorders is the 

progressive and irreversible loss of neuronal cells found in the tissues of the central 

and peripheral nervous system as well as brain tissue (Jellinger, 2010). This disease 

has a significant influence on a person's life and can even result in death. When 

dealing with living organisms specifically humans and animals, the FTIR spectra of 

the biological fluid (biofluids) such as blood, urine or sweat are the ones that are 

being compared. Typically, in the identification of diseases, the spectra data of the 

diseased samples will be compared with those of the healthy samples.  

 

Aside from biofluids, FTIR spectroscopy is frequently used to characterise the 

ingredients in food products by performing rapid, non-destructive tests on both 

natural and artificial materials. In the topic of food adulteration, food-based product 

manufacturers must balance managing rapid screening of raw materials and 

ingredients as well as protecting the safety and quality of their products (Cebi et al., 

2023). One way to ascertain it is by the use of FTIR spectroscopy. Essentially, the 

FTIR spectra of the tested ingredient are measured and compared to a collection of 

known good ingredients. 
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Several difficulties arise when displaying high-dimensional data or during the 

training of the ML models. The most common problem is known as the “Curse of 

Dimensionality” which explains the explosive nature of expanding dimensions of data 

and the upsurge in computer work necessary for processing and analysis. In other 

words, the "Curse of Dimensionality" is a phenomenon where the performance 

improves until the maximum number of features is achieved. When more features 

are added with the same sample size, the classifier's performance worsens (Duda et 

al., 1999). The Curse of Dimensionality is a phrase that was first used by Richard E. 

Bellman to illustrate how the addition of extra dimensions to the field of dynamic 

programming increased the volume of Euclidean space (Bellman, 1957). In theory, it 

is considered a blessing where increasing the dimensions might provide more 

information to the data, eventually boosting its quality (Donoho, 2000). In return, it 

is also a curse as it increases noise and redundancy during analysis. Thus, the 

common trend across these issues is that when dimensionality increases, the volume 

of space expands rapidly, that the accessible data becomes sparse. As a result, the 

amount of data required to produce a credible result frequently rises exponentially 

with dimensionality. When high dimensionality is combined with large sample 

numbers, concerns such as high computing cost and algorithmic instability arise 

(Jianqing et al., 2014; Genender-Feltheimer, 2018).  

 

 

Figure 1.2  : Curse of Dimensionality 

Source  : Bishop (2006) 

 

In ML, a trait or attribute that characterises an object is considered as 

its feature. Each feature represents a dimension, and a set of dimensions forms a 

data point (Zhu & Goldberg, 2009). In other words, the term "dimension" refers to 

the number of attributes or features that describe each data point or instance. It 
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represents the number of variables or measurements associated with each sample in 

a dataset. The dimensionality of data determines the number of axes required to 

represent and visualize the data effectively (Guyon & Elisseeff, 2003; Aggarwal, 

2015). As dimensionality increases, so does the number of characteristics required 

to describe the data. In the field of biomedical research, for example, age and gender 

might be utilised as factors to create some form of prognosis. A feature vector's 

dimensions are made up of these features. However, additional factors, such as 

patient history, blood composition and other related features can assist a doctor in 

assessing the prognosis more accurately. In this scenario, adding features 

theoretically expands the dimensions of the data. The number of data points required 

for any ML algorithm to function well increases exponentially as the dimensionality 

increases. This is because a larger amount of data points is required for each given 

combination of attributes for any ML model to be viable. Furthermore, traditional 

data classification strategies rely on recognising parts where objects form groups 

with similar attributes; however, with high-dimensional data, all objects look sparse 

and distinct in many respects, making standard data classification strategies 

inefficient (Altman & Krzywinski, 2018). 

 

Another hurdle that arises when dealing with high-dimensional data is 

preventing overfitting the training data (Clarke et al., 2008). It is crucial to build a 

classification model that is capable of generalisation. In machine learning, 

generalization refers to the ability of a trained model to perform accurately on unseen 

or new data that it has not encountered during the training phase. The model can 

capture and learn underlying patterns, trends, and relationships from the training 

data and apply that knowledge to make accurate predictions or classifications on 

previously unseen instances (Wang et al., 2021).  Generalization ensures that the 

model can perform well in real-world scenarios beyond the specific instances it was 

trained on. It is ideal that, in addition to having a good performance on the training 

set, such a model should do well on an independent testing set. However, when 

dealing with high-dimensional data, the low samples count usually causes the 

classification model to overfit the training data. This results in poor generalisation 

capability for the model (Pappu & Pardalos, 2014). Thus, the dimensionality reduction 

(DR) approach is a potential solution for the aforementioned problems as its main 

purpose is to reduce the data dimensions while retaining important information.  
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For the classification part, the classifier chosen mainly depends on the 

application domain to produce the best results. There are different kinds of 

classification problems. Binary classification or two-class classification is one of them. 

This sort of classification task occurs when only two distinct classes must be 

classified. Diseases against healthy, spam against non-spam and even strawberry 

against blueberry are examples of such classification. Linear Discriminant Analysis 

(LDA), Logistic Regression (LR), Support Vector Machine (SVM) and Decision Tree 

(DT) are some popular simple techniques that have been widely used, particularly 

for binary classification. Most classical algorithms have the advantages of being 

straightforward to apply, having speedy computational time, and performing 

accurately in a myriad of classification or regression applications. 

 

However, as research in the pattern recognition field expands, the limits of 

the approaches utilised for classification are increasingly being explored. As a result, 

it is evident that highly specialised and correctly configured classifiers are quite 

powerful compared to classical approaches. However, selecting the best classifier for 

a given problem and properly configuring it is not a simple task. Furthermore, there 

is no ideal solution for solving all proposed problems. The quality of the classification 

results will be heavily influenced by the quantity and quality of data samples utilised 

in the training phase, as well as the feature selection and parameter settings 

(Kuncheva and Whitaker, 2003). Although some classifiers produce successful 

solutions on their own, Dietterich's (2000) experimental evaluation demonstrates a 

decline in quality especially when there are either vast sets of patterns or a 

considerable number of missing data samples or irrelevant features within the 

dataset. Thus, the effectiveness of such classifiers to accurately classify the patterns 

are reduced when presented with a more complicated problem. 

 

Ensemble learning has been presented as a solution to the aforementioned 

problem to boost the advantages of simple algorithms while reducing 

their drawbacks. Ensemble learning, such as Bagging, Boosting, and Stacking 

approaches, is a reliable methodology for improving overall prediction performance. 

Theoretically, ensemble learning entails creating a series of learning algorithms, 

feeding each algorithm a set of data, and cleverly integrating the results to achieve 

high classification rates. In this regard, these computational approaches are 


