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ABSTRACT

There are several drawbacks remain to be resolved for the application of solar dryer
in fish drying, such include low solar intensity, uniformity of heat distribution, and
inadequate air circulation. In this present study, a mixed mode type solar dryer
namely, Integrated Solar Dryer (INSOLER) was presented and the performance
under pseudo natural convection was studied through Computational Fluid Dynamics
(CFD) simulation under inlet mass flow rate of 0.012 kg/s and solar irradiance of
438.58 W/m?. In this solar dryer, enhancement was proposed on the design of solar
heat collector, air distribution system, and chimney, which governs the temperature,
uniformity, and air circulation, respectively, to address the limitation mentioned. The
main purpose of this research is to address the gaps in the design of these
components and identify the improvements in term of heat transfer and fluid flow
characteristics. The first objective of this work aimed to determine the performance
of baffle-type solar heat collector (B-SHC) with different baffle arrangement, namely
longitudinal SHC (L-SHC) and transversal SHC (T-SHC). It was found that L-SHC
offers higher outlet temperature, collector efficiency, and thermo-hydraulic
performance factor (THPF) of 59.43 °C, 46.2% and 2.1, respectively, indicating flow
resistant presence in the air passage of longitudinal arrangement does not outweigh
the enhancement of heat transfer in the collector. To ensure uniform heat distribution
across the drying house, air distribution system with different perforation direction —
upward and downward, was proposed. The latter configuration was proposed to
address potential faulty operation caused by moisture accumulation and to ensure
maximum heat transfer enhancement in the solar dryer. As expected, this
perforation demonstrated more uniform temperature profile with p-value greater
than 0.01 across different tray level and exhibits superior performance with heat
transfer enhancement factor of 1.09. Followed by, three different chimney placement
— exterior chimney, interior chimney, and interior chimney with perforation, were
evaluated in term of the temperature distribution and the velocity profile attained
across the drying house. Interior chimney was proposed to prevent continuous
outflow of air which ultimately promotes heat accumulation in the dryer. Interior
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chimney with perforation demonstrated highest temperature with a value of 67 °C
and the velocity profile obtained implied extended air residence time in the solar
dryer due to the presence of greater air resistance. Lastly, INSOLER developed with
the combination of these improvements offers drying temperature range suitable for
the drying of fish (maximum temperature = 66 °C), uniform temperature profile
across different tray level (p-value>0.01), and air circulation that promote heat
accumulation in the drying area, which compensated the limitations of solar dryer
mentioned earlier. For optimization purpose, the performance of INSOLER under
different mass flow rate and solar irradiance was also studied. It was revealed that
there is a difficulty in compromising between attaining allowable temperature range
and better uniformity. With these findings obtained, this research could serve as a
baseline study for the implementation of solar heat collector, air distribution, and
chimney design covered in this work as a continuous effort for solar dryer

enhancement to achieve sustainable development in food processing industry.
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ABSTRAK

REKA BENTUK DAN PENILATIAN PRESTASI PENGERING SOLAR UNTUK
PRODUK-PRODUK IKAN DAN LAUTAN MELALUIS SIMULASIT
COMPUTATIONAL FLUID DYNAMICS

Terdapat beberapa kelemahan yang masih perlu diatasi bagi menggunakan sistem
pengering suria untuk pengeringan bahan makanan seperti tenaga haba yang tidak
mencukupi, pengagihan haba yang tidak homogen, dan peredaran udara yang
kurang memuaskan. Dalam kajian ini, pengering suria jenis ‘mixed-mode’ dinamakan
Integrated Solar Dryer (INSOLER) telah direka bentuk dan seterusnya diuji di bawah
pseudo natural convection (aliran jisim 0.012 kg/s, solar sinaran 438.58W/n¥)
menggunakan simulasi Computational Fluid Dynamics (CFD). Oleh itu, kajian ini
memberi fokus kepada manambah baik kecekapan sistem pengering suria dari segi
rekaan pengumpul suria (SHC), sistem peredaran haba dan cerobong. Dalam kajian
ini, SHC jenis baffle direka dengan konfigurasi aliran yang berbeza — longitudinal SHC
(L-SHC) dan transversal SHC (T-SHC), telah dicadangkan. Prestasi terma SHC telah
diramalkan dari segi ciri-ciri pemindahan haba dan aliran udara dalam pengumpul
tersebut melalui simulasi CFD. Didapati bahawa L-SHC mempunyai suhu, kecekapan
pengumpul dan thermo-hydraulic performance factor (THPF) yang lebih tinggi, iaitu
59.43°C, 46.20% dan 2.1. Ini menunjukkan kalis aliran dalam pengumpul tidak
melebihi peningkatan pemindahan haba yang tercapai. Bagi memastikan penyebaran
haba yang seragam, sistem pengedaran udara yang berlubang (perforation) telah
dicadangkan. Komponen ini telah menunjukkan profil suhu yang seragam dan
menunjukkan p-value lebih daripada 0.01 dan faktor peningkatan pemindahan haba
sebanyak 1.09. Cerobong dengan reka bentuk yang berbeza — cerobong external,
cerobong interior, dan cerobong interior berlubang, telah dinalai dari segi profil suhu
dan profil aliran udara merentasi sistem ini. Didapati bahawa cerobong interior
berlubang menunjukkan suhu tertinggi (67 °C) dan mempamerkan faedah tambahan
bawah keadaan with-load. Akhir sekalj, INSOLER dibangunkan dengan gabungan
penambahbaikan ini menawarkan julat suhu pengeringan yang sesuai untuk
pengeringan ikan (suhu maksimum = 66°C), profil suhu seragam (p-value>0.01),
dan peredaran udara yang menggalakkan pengumpulan haba di kawasan

pengeringan. Untuk tujuan pengoptimuman, prestasi INSOLER di bawah kadar aliran
Vi



Jisim dan sinaran suria yang berbeza turut dikaji. Telah diramalkan bahawa terdapat
kesukaran untuk berkompromi antara mencapal suhu yang dibenarkan untuk
pengeringan ikan dan keseragaman yang lebih baik. Dengan penemuan ini yang
diperolehi, penyelidikan ini boleh menjadi kajian asas untuk pelaksanaan pengumpul
haba suria, pengagihan udara dan reka bentuk cerobong yang dikaji dalam kerja ini
sebagai usaha untuk peningkatan pengering suria untuk mencapai pembangunan
dalam industri pemprosesan makanan. Kesimpulannya, kesukaran untuk
berkompromi antara mencapai julat suhu yang dibenarkan dan keseragaman yang
lebih baik boleh diatasi dengan mengawal selia kadar aliran jisim di salur masuk

pengering suria mengikut variasi sinaran suria sepanjang hari.
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PB, (c) Plane PC, (d) Plane PD, (e) Plane PE, and (f) Plane PF.

: Temperature profile across the drying tray of case 1.
: Temperature profile across the drying tray of case 2.
: Temperature profile across the drying tray of case 3.
: Computational model of INSOLER with different chimney

placement studied — (a) Case 1: Interior chimney with
perforation, (b) Case 2: Interior chimney, (c) Case 3: External

chimney.

: Comparison of predicted velocity at the chimney outlet for

different turbulence model with mathematical modelling.

: Pictorial view of Integrated Solar Dryer (INSOLER) — (a)

Solidworks engineering drawing, (b) Prototype in Universiti
Malaysia Sabah.

: Location of temperature measurement for INSOLER.

experimental validation: (a) On the plane of computational
model, (b) In the prototype

: Plot of experimental and CFD simulated drying air

temperature vs time.

: Velocity distribution for case 1 at: (a) Plane PA, (b) Plane PB,

(c) Plane PC, (d) Plane PD, (e) Plane PE, and (f) Plane PF.

: Velocity distribution for case 2 at: (a) Plane PA, (b) Plane PB,

(c) Plane PC, (d) Plane PD, (e) Plane PE, and (f) Plane PF.

: Velocity distribution for case 3 at: (a) Plane PA, (b) Plane PB,

(c) Plane PC, (d) Plane PD, (e) Plane PE, and (f) Plane PF.
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Figure 4.38

Figure 4.39

Figure 4.40

Figure 4.41

Figure 4.42
Figure 4.43
Figure 4.44
Figure 4.45
Figure 4.46

Figure 4.47

Figure 4.48

: Velocity vector in the middle region for (a) Case 1, (b) Case

2, (c) Case 3.

: Temperature distribution for case 1 at: (a) Plane PA, (b)

Plane PB, (c) Plane PC, (d) Plane PD, (e) Plane PE, and (f)
Plane PF.

: Temperature distribution for case 2 at: (a) Plane PA, (b)

Plane PB, (c) Plane PC, (d) Plane PD, (e) Plane PE, and (f)
Plane PF.

: Temperature distribution for case 3 at: (a) Plane PA, (b)

Plane PB, (c) Plane PC, (d) Plane PD, (e) Plane PE, and (f)
Plane PF.

: Temperature profile across the drying tray of case 1.
: Temperature profile across the drying tray of case 2.
: Temperature profile across the drying tray of case 3.
: Positions of temperature and velocity measurement.

: Effect of mass flow rate on temperature profile along the

height (H1 and H2) across the drying house.

: Effect of mass flow rate on temperature profile along the

length (L) across the drying house.

: Effect of solar irradiance on temperature profile along the

length (L1) across the drying house.
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LIST OF NOMENCLATURES

Solar heat collector

Cross-sectional area at chimney inlet
Cross-sectional area at chimney outlet
Cross-sectional area of chimney

Surface area of drying house floor
Cross-sectional of pipe

Ratio of cross-sectional area of outlet over inlet
Discharge coefficient

Specific heat capacity of air @ T,

Specific heat capacity of product

Specific heat capacity of water

Perforation diameter

Pipe diameter

Friction factor without perforated air distributor
Friction factor of smooth heat collector
Ambient relative humidity

Final enthalpy of drying

Latent heat capacity @ T,

Drying house height

Initial enthalpy of drying

Non-uniform coefficient

Drying house length

Pipe length

Mass flow rate of air required at each chimney
Air flow rate in each inlet

Mass flow of drying air required

Total quantity of air required

Mass flow rate of air required to remove
moisture

XXi

%

kJ/kg dry air
kJ/kg K

m

kJ/kg dry air
m

m

m3/s

kg/s

kg/h

kg/s

m3/s



Nug
Qloss,o

Qloss,SHC

Q:
Qu

TNc
Pair,c
Pd
Pd

Loading capacity per batch

Moisture to be removed

Final moisture content

Initial moisture content

Number of chimney

Number of air inlet

Nusselt number without perforated air
distributor

Nusselt number of smooth heat collector
Heat loss through drying house outlet
Heat loss in solar heat collector
Energy gained in drying house

Energy gained in solar heat collector
Ambient air temperature

Drying temperature

Temperature of floor surface
Temperature of air in drying house
Arithmetic average of temperature measured in
each point.

Sunshine hour

Velocity produced in chimney

Wind speed

Air velocity in each pipe

Humidity ratio of humid air

Drying house width
Humidity ratio of pure heated air

Collector efficiency
Density of air in chimney
Density of air @ T,
Density of air @ T,

XXii

kg
kg
%
%

hours

m/s

m/s

m/s

kg water/kg of
dry air

m

kg water/kg of
dry air

%

kg/m?3

Kg/m?3

kg/m?3



