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ABSTRACT 
 
 
This study emphasizes the fabrication of glass containing bimetallic TiO2 and Au 

nanoparticles (NPs) which potentially exerts the self-cleaning effect. A series of glass 

with a composition of (70−x−y)TeO2–20ZnO–9Na2O–1Er2O3–(x)TiO2–(y)Au where x 

= 0, 0.3 mol% and y = 0, 0.03, 0.05, 0.10, 0.15, 0.20 mol% were fabricated by 

employing the melt-quenching technique. Another series of glass samples without 

erbium content were fabricated with a composition of (70−x−y)TeO2–20ZnO–

9Na2O–(x)TiO2–(y)Au where x = 0, 0.3 mol% and y = 0, 0.03, 0.05, 0.10, 0.15, 0.20 

mol% by using the melt-quenching technique to investigate the plasmon peak for 

TiO2 and Au NPs. Various characterizations were performed to investigate the optical, 

structural, and wettability features of glass with the addition of varying 

concentrations of bimetallic TiO2 and Au NPs. X-ray diffraction spectra affirm the 

amorphous nature of glass with the appearance of a broad peak located at 25°−35°. 

High-resolution transmission electron microscopy images reveal the formation of 

lattice fringes with a value of 3.6 Å and 2.3 Å representing the TiO2 and Au NPs, 

respectively. Atomic force microscopy illustrates enhancement in surface roughness 

of glass ranging from 4.86 nm to 8.70 nm with the incorporation of higher 

concentrations of NPs. Ultraviolet-visible spectra show the emergence of plasmon 

bands in the range of 550 – 560 nm and 595 ‒ 624 nm due to the contribution of Ti 

and Au atoms. The formation of thin film water on the glass surface from the anti-

fogging testing, reduction in the dust deposition rate of the glass sample, and 

decrement in the water contact angle value of glass samples indicate the hydrophilic 

nature of glass. Degradation of methylene blue affirms the photocatalytic activity of 

the glass containing varying concentrations of TiO2 and Au NPs. The favorable 

features of the current glass composition contribute to the self-cleaning application.  
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ABSTRAK 
 
 

KACA DENGAN SIFAT PEMBERSIHAN SENDIRI SERTA SIFAT ANTI-KABUS 
DENGAN PENGLIBATAN ZARAH NANO DWILOGAM 

 
 

Kajian ini melaporkan penggabungan zarah nano dwilogam TiO2-Au dalam 

meningkatkan ciri-ciri kaca dengan sifat pembersihan kendiri. Satu sistem kaca 

dengan komposisi (70−x−y)TeO2–20ZnO–9Na2O–1Er2O3–(x)TiO2–(y)Au di mana x = 

0, 0.3 mol% dan y = 0, 0.03, 0.05, 0.10, 0.15, 0.20 mol% telah disediakan melalui 

kaedah perlindapan leburan. Satu siri kaca yang lain dengan komposisi 

(70−x−y)TeO2–20ZnO–9Na2O–(x)TiO2–(y)Au di mana x = 0, 0.3 mol% dan y = 0, 

0.03, 0.05, 0.10, 0.15, 0.20 mol% telah disediakan menggunakan kaedah 

perlindapan leburan untuk mengkaji puncak plasmon zarahnano TiO2 dan Au. 

Pelbagai pencirian telah dilakukan bagi mengkaji ciri optik, struktur dan 

kebolehbasahan kaca setelah penambahan kepekatan yang berlainan bagi nano 

dwilogam TiO2 dan Au. Spektra XRD mengesahkan sifat amorfus sampel kaca dengan 

kemunculan bonggol pada 25°−35°. Imej TEM mengesahkan kehadiran zarah nano 

TiO2 dengan kekisi 3.6 Å manakala Au mempunya kekisi 2.3 Å. Imej AFM 

mengesahkan peningkatan kekasaran permukaan sampel kaca dari 4.86 nm kepada 

8.70 nm apabila kandungan zarahnano meningkat. Spektra UV-Vis sampel kaca 

menunjukkan jalur plasmon lemah yang dikesan pada julat 550 – 560 nm dan 595 – 

624 nm disebabkan oleh kesan sumbangan daripada atom Ti dan juga atom Au. 

Sampel kaca menunjukkan sifat hidrofilik berdasarkan pembentukan air yang dilihat 

seperti filem nipis pada permukaan kaca hasil daripada ujian pengabusan, 

pengurangan kadar pemendapan debu terhadap sampel kaca dan penurunan nilai 

sudut sentuh air. Penurunan metilena biru mengesahkan aktiviti fotokatalitik kaca 

mengandungi pelbagai kepekatan zarah nano TiO2 dan Au. Hasil dalam kajian ini 

menunjukkan bahawa komposisi bagi sistem kaca terkini dapat menyumbangkan 

dalam aplikasi kaca dengan sifat pembersihan kendiri. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

Nowadays, the widespread use of glass in daily life can no longer be denied. 

Stimulated by the rapid development and increase in population, glass manufacturing 

emerged as one of the main elements in construction and industry. Glass fabrication 

was introduced as a craft in around 3500 B.C. across the world by sailors that 

originated from Egypt and Eastern Mesopotamia, and it was in the late nineteenth 

century that the glassmaking was industrialized (Surekha & Sundararajan, 2015). 

Generally, glass is defined as an amorphous solid that does not possess a complete 

long range of periodic atomic structure and exhibits behavior for a glass 

transformation  (Shelby, 2005). In other words, glass is known as any material such 

as inorganic material that is formed by any technique that gives a transformation 

towards the glass with certain characteristics either transparent, translucent, hard, 

or impenetrable towards natural elements.  Glass is classified according to their 

specific needs and applications. In the year 1950, large curtain walls in offices were 

typically made of glass. The engineering of glass is vital to producing final products 

that exhibit different structural, optical, thermal, and chemical properties (Shelby, 

2005). 

 

Tellurite glass is one of the types of glass that has been emerging as an 

interesting smart material in non-crystalline solids research. This type of glass is 

known as the most stable oxide and has opened a whole new photonics world to the 

interest of researchers such as optical amplifiers, lasers utilizing tellurite-based glass 

gain media, solar energy harvesting, biomedical applications, optical sensing, and 

diverse applications (El-Mallawany et al., 2008). The selection of materials in glass is 

vital to producing glass with desired properties. In the present study, the composition 

of glass was selected due to the beneficial features of the ternary glass system as 



 

2 
 

reported by previous researchers (de Clermont-Gallerande et al., 2021; Al-Buriahi et 

al., 2022).  Erbium oxide (Er2O3) as a rare earth dopant is a trivalent erbium ion that 

can enhance the photocatalytic activity of NPs through interfacial charge transfer and 

effective prevention of electron-hole pairs (Salama et al., 2017). However, the 

concentration of rare earth should be kept low to prevent adverse effects on the 

glass system (Ferodolin et al., 2022). Yusof et al. (2017) demonstrated tellurite-based 

glass containing 1 mol% of Er2O3 and varying concentration of TiO2 NPs that exhibits 

self-cleaning features. It has been known that pure TeO2 exhibits the highest 

nonlinear optical features among TeO2-based glasses. However, the disadvantage of 

low glass-forming ability limits the practical application. Alternative methods can be 

employed to improve the glass-forming ability of TeO2 glasses by incorporating 

modifier oxides such as ZnO and Na2O (Al-Buriahi et al., 2022). 

 

The incorporation of modifiers such as ZnO and Na2O into the tellurite-based 

glass forms a heavy metal glass composition with enhanced structural, optical, 

thermal, and chemical properties (Dousti et al., 2015). In the present study, ZnO was 

used as a modifier as it can alter the composition of the host glass and generate 

unique physical, and good chemical stability and high photostability of glass (Lou, 

1991; Novatski et al., 2019). Generally, ZnO is employed in the manufacturing field 

such as photocatalysts where it actively attacks microorganisms and facilitates 

photocatalysis reactions (Mirzaei & Darroudi, 2017). Meanwhile, Na2O is a 

prerequisite because it can control the formation of the crystalline stages and lead to 

the generation of non-bridging oxygen and bridging oxygen (Kuo, 2014). In addition, 

the incorporation of Na2O in the glass matrix lowers the melting temperature and 

improves the mechanical strength of glass (Udayashankar et al., 2014). 

 

The discovery of the photocatalytic properties of TiO2 stimulates the 

deposition of TiO2 thin films on the glass surface for diverse applications including 

self-cleaning glasses (Hosseini et al., 2022). The deposition of TiO2 thin films on the 

glass surface elevates the conventional glass features to exhibit unique properties 

such as anti-fog, anti-bacterial, and anti-pollution (Zhao et al., 2015). It has been 

acknowledged that TiO2 possesses photocatalytic degradation under various 

illumination conditions. However, transparent photocatalytic TiO2 thin films exhibit a 

poor response to visible light that impedes their application under direct sunlight. 
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These drawbacks limit the potential application of TiO2 thin films in the self-cleaning 

application (Uddin et al., 2008). Therefore, researchers come out with alternatives 

to combine TiO2 with noble metals to solve the arising issue. Gold or aurum (Au) NPs 

is a noble metal. In a bulk form, Au NPs are extremely unreactive. In contrast, small 

clusters of Au NPs are catalytically active (Eustis & El-Sayed, 2006). Nowadays, the 

synthesis and in-depth investigation of the properties of noble metal NPs become 

prominent in different fields. Various researchers reported a significant enhancement 

in the photocatalytic activity of Au-modified samples that is beneficial for self-cleaning 

applications. In another study, the interaction between bimetallic TiO2–Au NPs as 

membrane enhances the photocatalytic degradation that is advantageous for 

removing antibiotics and bacteria from water (Li et al., 2019).  

 

Of late, bimetallic NPs have attracted attention among researchers. Bimetallic 

NPs consist of two different metal components which have more advantages 

compared to monometallic NPs, especially in the scientific and technology field. The 

structure of bimetallic NPs can be produced by the integration of two metals and can 

be placed in a random alloy, in which the alloy with the intermetallic mixture in the 

form of the cluster and the core-shell structures (Paszkiewicz et al., 2016). The glass 

application in the construction industry is diverse according to the elements that build 

up the glass. Recently, self-cleaning glass (SCG) has attracted more attention among 

researchers due to the emergence of unique superhydrophobic and superhydrophilic 

surfaces. The integration of glass as one of the elements in the building construction 

offers many advantages, particularly enhancing the efficiency of building energy such 

as reducing glare, preventing heat absorption, and having resistance to Ultraviolet 

(UV) light. However, the glass surface needs to be frequently cleaned and sometimes 

the cleaning and maintenance process can be very challenging (Fatemeh, 2016). In 

most fabrication techniques, SCG is usually coated with titanium oxide due to its 

multifunctional properties such as anti-abrasive, anti-pollution, and anti-reflective 

(Surekha & Sundararajan, 2015). However, not much work is reported for the direct 

embedment of the titanium oxide into the glass matrix to produce SCG. Therefore, 

this study emphasizes the direct embedment of bimetallic TiO2 NPs and Au NPs into 

the glass matrix. In addition, further characterization is performed to evaluate the 

effect of TiO2 NPs with varying Au NPs content on the self-cleaning properties of 

glass.  
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1.2 Problem Statement 

 

Nowadays, glass is widely used in buildings and construction fields due to its many 

advantages and aesthetic value. Though, several arising issues need to be handled 

such as the requirement of dedicated manpower resources to keep the glass surfaces 

clean as this glass needs constant cleaning for maintenance activity. In addition, 

cleaning tasks were mostly done manually using cleaning agents, cloths, and wipers. 

These tasks are laborious, dangerous, and time-consuming, especially when cleaning 

in areas of certain heights (Bauchner et al., 2020). Thus, a new type of glass that 

utilized the unique features of metallic NPs to modify the glass surface had been 

invented known as self-cleaning glass (Surekha & Sundararajan, 2015). There were 

numerous studies on this new type of glass, for example, Yusof et al. (2018) reported 

that tellurite can be used as host glass with the incorporation of TiO2 NPs to create 

the self-cleaning effect in the glass. Meanwhile, Salama et al. (2007) observed that 

the combination of Er3+ ions and TiO2 NPs in tellurite glass improves the 

photocatalytic activity by controlling the incoming photon.  

 

Aliofkhzraei (2014) conducted research regarding glass coated with SiO2 to 

achieve a hydrophobic surface. However, weak adhesion between NPs and substrates 

decreases the lifespan of the coating since NPs detach easily from substrates (Syafiq 

et al., 2019). In another study, silicate-based glass containing bimetallic Ag and TiO2 

NPs was reported to possess a hydrophobic surface that leads to self-cleaning 

characteristics (Nazhirah et al., 2021). However, not much work is reported for the 

direct embedment of the NPs into the glass matrix to produce self-cleaning glass. In 

addition, controlling the shape and size of bimetallic NPs for beneficial features of 

self-cleaning in glass is challenging due to possible adverse effects such as 

agglomeration of NPs and crystallization of glass (Idris & Roy, 2023). Therefore, 

careful controlling and tuning of the concentration of metallic NPs are crucial to 

prevent the emergence of adverse effects in the glass system.  

 

 

  


