
~

~

Infinite Mario Bross AI using Genetic Algorithm

Ng Chee Hou, Niew Soon Hong, Chin Kim On, and Jason Teo
Evolutionary Computing Laboratory

School of Engineering and Information Technology
Universiti Malaysia Sabah, Jalan UMS. 88400. Kota Kinabalu, Sabah. Malaysia

1 i m Q!l~_b.i n r(!), u IJl s. ccl~TI.Y, jJ wt col (ill_l_m s. Q.C;IJ:!.J:D..Y

.-lhstract-Evolutionary Algo•·ithm (EA) is commonly used to
gcnenltc optimat A•·tificial Intelligence (AI) cont•·ollc,., It is a
technique used to enhance the performance of gcncn1tcd
controller. L\ enables the system to evolve, to adapt and learn to
give a better output. The implementation of EA into 2)) game is
not something new. Researchers used gaming platfo•·ms to test
thci1· own ideology or p•·oposed algodthrns. In this paper, a finite
state machine which suitable to be used fo1· Infinite i\lario Bros
game is proposed. The Genetic Algo•·ithm (GA) is used along
wi.th th~ \\\'\\\\Osed finite state mathine to evolve an AI agent that
is tapahle to pass some levels of the game. The exper-imentation
results showed that the finite state machine e,·olvcd with GA is
able to neatc a competitin~ game hot that can pass through at
least 3 levels of diffc1·ent game maps. The generated .-\I controller
can guarantee to au:omplish the tasks for some levels.

Ke_J'Word\·-component; .4rt~ficial Intelligence ("II); Finite Stale
Machine (FSM); Genetic A/goritltm (G .. 4),· h~finite Mario Bros;
Evo/utio/l{fiJ' Algorithms (E4s)

l. INTRODUCTION

The games play in Super Mario l3ros consists of moving
the player-controlled character --Mario". through two­
din"lensional levels. which arc viewed sideways II]12][3].
Mario can move forward, back\vard. cluck. _jump, optional!)
"go faster". "shoot fireballs'' and all of these actions are
depending on which state Mario is in. Gravity l'eature acts on
Mario. making it necessary to jump over holes to get past them.
.Mario can be in one of the three states: --small state" (at the
beginning or a game). "big state'' (can crush some objects by
jumping into them fl·om bekn-v). and "lire state .. (can shoot
fireballs). The main goal of each level is to get to the end of the
level. which m~ans tr~:we;::rsing it lJ·om len tn right. 1\uxiliary
goals include collecting as many as possible or the coins that
are scattered around the level, clearing the level as fast as
possible. and collecting the highest score. \vhich in part
depends on nu1r1ber uf collected coins and killed enemies.
When a human player plays the game. the view side is only
small part or the current level l'rom the side. with the screen
centered on Mario. Still. this view is not easy for human player
to predict the next appropriate step because sometimes human
player is hard to adjust the movement of Mario and difticult to
catch up the correct timing because of nervous or some other
reasons.

This is the difference between human players and .A! agent
because the controller can visualize well by percept the
surrounding environment and receive di ITerent inputs fl·om
sensors and able to perform perfect movement by using

computation. One of the good reasons to use Evolutionary
Algorithms (FAs) to play the game is to test the Artificial
lntclligent (AI) agent whether the pt\-,posed !earning algorithms
and function representation that used arc capable of. A related
reason is that researchers like to compare the performance and
effectiveness of di tfercnt learning algorithms and function
representations. There are a large number of A I algorithms
~~,·ailable. but their relative effectiveness differs widely. Some
researchers prool'ed their algorithm worked well in some
games. However, every game requires different skills to play.
and poses dillcrcnt learning challenge. lienee, these reasons
have motivated researchers to <.1pply different algorithms in
di ITerent game genres.

The application ol' F/\s into gaming is not something nt\\
[4ll5Jl61. Typically. LAs attempts to replicate. in soth\·at-e,
portions ol' the biological phenomenon or evolution. EA is just
evolution in code by start with a population of chromosomes.
usc natural selection to choose the best ones, mate. produce
olf<>pring. have mutation in offspring, use natural selection to
choose the best children, rinse and repeat. Eventually, an Al
agent will be e,·olved out and it is able to seek out the most
appropriate strategies in order to achieve the task according to
the environment alter getting the experience of· the previous
cases. The performance of the /\1 agent atler applies the E/\
and the !'unction representation is anticipated.

Since the emergence of· the Mario series game. there arc
many competitions that let the programmers to participate to
develop an agent that gets as far as possible or proceeds as
many level as possible. In the game. the AI Mario acts based
on the environment and to proceed out output in order to
respond to the environment. The research starts to implement
to the main p1'otagonisi. .Mario b)' applying Ei\ tech1iiques in
hopes that it can creates some forms of intelligence in the AI
Mario. A number of researches have been clone and some or
the researchers implemented different technique to the Mario.
like evolving it to be a better and smart boL or even just cutting
short of the process in evolved the Mario by using E/\
techniques. There is a Mario A I competition rtlJClG from the
internet that needs the participators to create an /\! for the
Mario game. Due to literatures review [7][8J[9][I 0][I I], there
is still no research has been conducted using finite state
machine hybridized with Genetic Algorithm to evolve the
required Mario .A!. l-Ienee, this motives us to create an AI agent
that uses FSM and CJ/\.

The rest of the paper is structured as follow: Section ll
provides some discussion on the lntinite Mario Bros plattorm,

·:><.
~·

)

)

while Section I I I covers the methodology approaches used,
Section IV provides Experimental Setup. T'hen .. Section V
di~cusses on Results and Discussion. Lastly Conclusion is
included in Section VI.

1!. INFINITE MARIO BROS

The game engine used in this research is named as Infinite
Mario Bros 1121. It is slightly clillers compared to Nintendo's
classic platform game Super Mario ·Bros. Infinite Mario Bros
was made by Markus Persson for a Super Mario themed _java
programming contest [12]. The game engine has been
moditi.ed to random generate level which means each time the
game is started. the level is randomly generated by traversing
a fixed \Vidth and adding features (such as biocks. gaps and
enemies) according to certain heuristics. The main goal of
each level is to get to the end of the level by traversing from
the left most to the right most (or course. cannot hit by the
enemies during traversing). The auxiliary goal include collect
as many as possible coins that are scattered around the level
(collected 100 coins Mario will be rewarded one extra lire).
clearing the level as fast as possible (there is time limit for
each lc\ cl). The gaps and moving enemies are the main
challenges ur Mario. If fv1ario f~1lls down into the gnp. he loses
a life immediately. If' he touches an enemy. he geLs hurts.
l·lurts mean the Mario will shill to the lower state. if he is in
·'1ire state··. he will shill to '"big state" and if he gets hurts
again he will reduce to ·'small state" and if he gets hurts
during '"small state" then he will loses a life. Mario can jump,
however. if he jumps and landed nn the enemies above. the
outcome is dependent on the enemy: (l) most enemies (e.g.
goombas) die !'rom this treatment. (2) others (e.g. piranha
plants) are not vulnerable to this and proceed to hurt Mario.
(3) finally. turtles withdraw into their shells irjumped on, and
these shells can then be picked up by Mario and thrown at
other enemies to kill them. The cannon shell will be dropped
to the land if Mario landed above it. however Mario also can
choose dodge by press down to avoided by hit by the cannon
shell. The items such as coins. mushroom and llmver are
hidden inside the block and only appearing when Mario jumps
at these blocks from bell)\v.

The main different between Super Mario Bros and Infinite
Mario Bros is the difficulty of' the levtl. /\s Llist..:ussed
previous. each level is randomized before the game start.
Hence. there is impossible to create simple /\I that can pass all
levels. In our work. we prel'ixed in early and used only one of
the maps to test our proposed AI. Therefore. there is no
comparison against a wide variety or Mario playing
algorithms will be discussed. We aimed only to investigate the
feasibility of the proposed combination of FSM and GA
approach Lo the problem.

Ill. ALGORITHM APPROACHES

As previously discussed. a combination of FSM and
conventional GA approaches are used. Hence. the follovving
section provides brief discussion of these two approaches.

A. Finite .','tate Machine (F'S'M)

In a state machine. there are states that are associated with
some kind of actions or behaviors. and agent will occupied this
state and perl'orm the same action or behavior. Each state is
connected together by transition. The transitions arc some
trigger or conditions that need to be met in order f'or the agent
to change to di fterent states. In game /\L it is called the finite
st3Le diagran1 that constituent a nun1ber or state and directed
transition between them. Typically. there are two types or
FSM; (I) deterministic FSM and (2) non-deterministic FSM.
The original simple finite state diagram is the deterministic
FSfvl. The state transition can be predicted if input and current
state is given. In non-deterministic 1:SM. the transition cannot
be predicted. Means that the transition f'rom current stale to
another state cannot be known until inputs arc received.

The implementation of FSM in game design is v.'
C<:HlltTwn in gaming industry. In the game, the Character AI
be modeled as a sequence of mental states. The World events
can force a change in state. For example. the games Thief 3
applying stack FSM in its game design. Stack allows AI to
move back and f'orth between states and Leads to more realistic
behavior without increasing FSrvt complexity. For more
advanced FSM like the Fuzzy State Machines have the features
of degrees of truth allow multiple FSI'vfs to contribute to
character actions. This type of FSM is use in create a game /\1
that collectively cooperate together to achieved single goal
such as sports game like F!FA Football game or any real-time
strat.c~v \\ar ~amc like Red Alert and General arc using this
FSM•:iuring the design or the game AI 1131. In other res;arch.
Chang eta! (14] have successfully proofed that FSM work \.veil
in Unreal Tournament (U) First Person Shooting (F'PS) game.
The researchers combined FSM with Evolutionary
Programming to generate AI bot that can light in a customized
map. Non-deterministic finite state machine is chosen and used
in this project. Non-deterministic J·inite state machine has more
than one trace ror each input string hence the state transition
cannot be predicted. When at the state that has more than one
trace. a transition \\·ill be chosen randomly by.the machine. 1
1 shows the proposed FSM for this research used.

RUN S.PEED

STt\1 E

Figur~ I.

. ~

i

· -~ RUN 8. JUfV1 & ...

SPEED S\ATE'

..... ,

f\UN- JUMP

; STATE.

Finite state machine designed for Infinite Mario Bros AI

-.. ~

j

:,

.)

•)

Fig. I shows the designed structure lor the four states or
FS M. At tl rst a! I the transitions and states arc set and rcscm bl c
to'.;\ tradition FSM. The lour states are as follow:

• Run State - A I agent wi II move forvvard or go to the
right hand side of the game.

• Run Jump State - AI agent will move forvvard and
jump over in any necessary condition.

• Run Speed State - !\I agent perform move forward
and go raster.

• Run .lump Speed State- AI Mario will perform move
forward. jump and run faster actions in once.

To change the current state to a eli lferent state in the FSM. a
trigger has to be made. and that is \vhen the transition takes
place. There arc a total 16 lines of transitions in the FSf'vl that
connected the states. The inputs of the transition are as follow.

• Seen an enemy

• Seen an obstacle

• Seen nothing

• Seen enemy & seen hole

• Seen enemy & seen obstacle

• Seen hole & seen obstacle

The input mention above will be place into the respective
transition line, when an input triggers the state transition will
happens. The states are represents with nurnbers ti·oiTI 0 to 3 as
a rcpresentatinn in the codes.

The generated Mario AI agent needs to think as l~1st as
possible within 40 milliseconds before next action takes place.
Since fvlario can pcrll.mn one of the four states given. and do
many these things on combination, the /\1 agent has more than
a handful or possible moves that it can choose to do at any one
time. It \Vilis call the !'unction reside in the representation and
that particular associated action that presents in the function
will be trigger. For the AI agent to switch between states.
triggering a transition is required. The pseudo code given
below shows a simple trigger action.

Switch (State):

case 0: //RunState():

i r (seen nothing)

state= 0:

else if (seen enemy)

state= I:.

else if (seen enemy II seen obstacle):

state= 2:

else if(seen enemy II seen hole);

state= 3;

break;

Pseudo code given above shows how to change state fl·om
RUN State to others state. Initially, current state is in the RUN
state. I r the agent receives input 0, that means an enemy found,
the system wi II trigger the transition to change state to "I"
\vhich means RUN JUMP state. If there is no enemy seen, the
agent will continue on with the current state. All 16 transitions
were not previously defined early. The transition represents the
controller chromoson1e. Hence, it will be evolved by the
Genetic Algorithm.

H Genetic Algorithm (GA)

CJenetic Algorithms \Vere developed by Prof. John llolland
and his students at the University of Michigan during the 1960s
and 1970s [15]. It is a model of machine learning which
derives its behavior rrom a metaphor or the processes ol"
evolution in nature. The crossover and mutation are the most
important part of the genetic algorithm. The performance is
influenced mainly by these t\VO operators. Processes loosely
based on natural selection. crossover. and mutation arc
repeatedly applied to a population of binary strings which
represent potential solutions. Over time. the number of above­
average indi,·idual·s increases. and highly-tit building blocks
are cumbined from several fit individuals to find good
solutions w the problem at hand. Outline of the GA used is
described below.

• I Startl Generate random population oi' n
chromosomes (suitable solutions for the problem)

• [Fitness] Evaluate the lltness l(x) of each
chromosome x in the population

• [New population] Create a new population by
repeating following steps until the new population is
complete

• [Selection] Select two parent chromosomes tl·om a
population according to their litness (the better 11tncss. the
bigger chance to be selected)

• [Crossover! With a crossover probability cross over
the parents to form a ne\v offspring (children). If no
crossover was pcr!cwmed. offspring is an exact copy or
parents.

• I Mutation I With a mutation probability mutate new
offspring at each locus (position in chromosome) .

• [Accepting] Place new offspring in a new population

• [Replace] Use ne\v generated population for a further
run of algorithm

• [Test] If the end condition is satisJiecl or at least one
individual has the desired lltness and enough generation
have passed, terminate. and return the be~t solution in
current population

• [Loop] Clo to step 2

The termination conditions are:

• Caming time reach 0.

• Mario loses all lives.

)

tj

• Mario reached end of the level.

• Generation reached 500 .
~

·rypically. the trans1t1on of the FSM has been previously
prefixed in a common. Nevertheless, for this project. the
transition of the FSM has been chosen to be evolved instead of
hard code the transition criteria. l-Ienee, CiA acts as an
ad_justment system to figure out \vhich transition could be best
suit the state. The individual chromosome is represented by 16
integers which are depended to the follm·ving rules.

•
•
•
•
•

Seen an enemy== 0

Seen an obstacle == l

Seen nothing == 2

Seen" an encm} & huie == 3

Seen an enemy & obstacle== r]

• Seen a hole & obstacle== 5

Each or the genotypes is associated with a tranSitiOn line
that will react based on the received inputs. Typically.
l!niform Crossover and Uniform Mutation h<we been utilized
during the optimi1.ntion processes.

lv'. EXPERIMENTAL SETUP AND FITNESS !·'tiNCTION

The crossover rates used arc in between 60%. 70%. 80%
and 90%. The mutation rate used is I 0%). There are a total or
10 individuals involved. L~ach run is limited t()r 500 generation
only. Each or the generated optimal solution is tested I 0 times
h.x an average score.

A simple fitness function is used to evaluate each or the
individual. The 1itncss function is represented as below.

Fitness ,__, distanceJ>assedPhys* sm·.distance

·rhis means the longer the AI agent move !'orwmcL the
higher the titness value it obtained. I·Jence. this simple Jitness
f'unction represents simple Mario /\1 behavior. It is nt)L
necessary for Mario/\! to either kill any enemy or collect any
coin as mark/point is not accumulated during game plays.
Hmvever. time is one of the invisible important fenture even it
is not included in the titness function. Mario AI still has to
move quietly to reach the goal otherwise. that particular
individual \Viii be considered as J·~ti led child if the time reach
1.ero berore it reached the goal.

V. RESULTS AND DISCUSSIONS

The experimentation results obtained can be simplified as
tabulated in Table I below.

TABLE I. EXPERif\·1ENT•\TION RESULTS OUT!\ I NED AlTER I 0 RUNS

Mt1tation Average Min Max Average
Rates Success Rate Generation Generation Scores
0.6 70% 47 353 2785
07 60% 55 :110 2215
08 80% 27

1-------·---·--·-
4 7 7 ~---~:.1.2_ ____

0.9 60% 17 89 3214

Table l clear shows, the controllers evolved lor crossover
80% generated highly promising result. It reached average
score or 3619 whilst the actual maximum score is 4096.
Minimum generation used is 27 and maximum generation
reached 477. Overall, highest successful rate is 80%. the
controllers evolved vvith 80% crossover rate. Minimum
generation involved is 17, the controllers evolved with 90%
crossover rate. Minimum average score is 2215. the controllers
evolved with 70% crossover rate. Fig. 2. 3. 4. and 5 below
show l<.1ur graphs generated rrom random selected individuals.
respectively from four different rates of crossover
ex peri mentation.

Fitness score over GcncrJtion
Fitness Score

Generation

-Figure 2. Fitness score generated !'rom 60% crossover rate

Fig. 2 shows litness over generation for individual
generated f'rom 60% crossover rate. Fig. 2 shows. the Mario AI
had been successfully evolved for the required behavior during
generation 4 7. The fitness score was sudden increased during
generation 40. Then. it increased again during generation 46
and reached optimal litncss score during generation 47. This
shows the MDrio /\1 learned how to pass a level.

Fitness seor.: over Generation
Fitness Score

• :: .. 11

:,,1,.!

Generation

Figure 3. Fitness score generated from 70% crossover rate

Fig. 3 shows the fitness scored slightly increased during
generation 41. Then. it increased again during generations 44
and 46. However. there were sudden drops on generations 45
and 47. Nevertheless, the solutions maintained atler generation
48 and it increased again and reached maximum fitness during

.)

._)

generation 55. The sudden drop problem has been overcome
with elitism inclusion during the optimization processes.

'

Fitness score over Generation
Fitness Score

~l S.JC:

,f;)-.):;

~· ~~ :,") >

::-u
•' ;·

Generation

f"igurc 4. 1-itncss score generated !'mm flO% crossover r<lte

Fig. 4 shows there is a sudden hig jump during generation
\6 \o \~. 'However, the litnes~ score decreased again to 1700
after generation 19. Then. there is a sudden jump again during
generation 27 and optimal solution round during that particular
generation.

Fitness score over Generation
1-itncss Score

Generation

Figure 5. Fitness score generated ll·om 90cYo crossover rate

Flg. 5 sho\vs the solutions were maintained no change until
generation 12. There is a sudden increase or litness during
generation 13. Then, the titness score drop again during
generation 14. But it increase again during generation 17 to
reach optitiwl solution score.

Typically. there were two simple experiments conducted
for the generated optimal solutions. The first test had been
conducted purposely to veri l"y the eJ'fectiveness and enicienc:.v·
;Jf the generated controllers in different level of the Mario
game. The experimentation results shmved that the generated
Mario A I v.:as unable to perform well in eli fferent level. It
happened due to the changes of the environment. There is a big
gap for the difficulty or the level. Then, the experiment had

been conducted to test the feasibility of the algorithm and
method used in this study. 'fhc experimentation results found
that the algorithms can be hybridized and used to evolve Mario
!\I in different level. However, only independent Mario AI
could be generated to pass every eli ITerent level.

VI. CONCLUSION

We have successfully developed simple AI controller
which capable to play the lntinite Mario Bros. The generated
controllers perl(mned well and optimal solutions could be
generated with X0<0> crossover rate used. Hence. this proofs that
the proposed linite state machines can be combined with
Cienetic Algorithm to generate promising controller.
Nevertheless. there arc still rooms to be improved as the
controller has limited its capability to work and perform well in
certain environment/level.

REFERENCES

)I J Fo:-;, Matt (2006) The Video Games Guide Bo:-;tree Ltd rp. 261-262

121 1-::llis. [);wid (2004). "A Brief History or Video Games". Orticial Price
Guide to Classic Video Games Random House. p. 9.

13) Julian Togelius. Sergey Karakovskiy. Jan Koutn·JI, and .J""urgcn
Schmidhuber Super Mario Evolution. 2009 IEEE Symposium on
Computational Intelligence and Games 156-161.

[4J T Schaul and J Schmidhuber. ··scalable neural net\vorks for board
games." in Proceedings of the lnternation~li Conference on Ar~ii"icial
Neural Networks (ICANN). 2008.

J5J C Bateman and R Boon, 21st Century Gamt' Design. Charles Rivc1
l'vkdia. 2005.

[6] G. N. Yannakakis and .1. Hallam, '·Towards optimizing entertainment in
computer games.'· Applied Artificial lntclligl~nce, vol21. pp. 933-971.
2007

[7) K. Compton ancl M. Mateas. "Procedural level design t(Jr platfi:mn
games .. ·· in Proceedings of the Artilicial Intelligence and Interactive
Digital Entcnainmentlnternational Conference (AI IDE). 2006.

fl\) C. Browne. ·'Automatic generation and evaluation or recombination
games,"' Ph.D disscJ·tation. Queensland University of Technology.
Brisbane, Australia. 2001\.

J9J .1. Marks and V Hom. ''Automatic. design or balanced board games." in
Proceedings or the /\rtit'icial Intelligence and Interactive Digital
Fntertainm~~nt lnkrnational Conlcrcncc (AI IDE). 2007. pp. 25-30.

f I OJ T W Malone. ''What mal\cs computer games l'un'1'" f1yte. vol 6. pp.
258-277. 1981.

[II J () N. Yannal\akis and .1. Hallam, ·'CiaJl11~ ancl Player Fe<~ture Selection
for Entcrtuinmcnt Capture." in Procecding3 of the IEEE SyJIIJ.lU::,iulll o11

Computational Intelligence and Games. I Iaw<~ii. US/\: IEEE. /\pril
2007, pp. 244-251.

[12] Markus Persson Infinite Mario Bros
http/1\\W\\.mojang.com/notch/mario/ 20 II.

[13] .!arret Raim Finite State Machine In Game. !"rom
www.cse.leh igh edu/-munoz/CS E497 /c lasses/FS fvl __ l n_ Games prt
2011.

(14] K.-T Chang, 1<.-0. Chin, and .1. Teo. "The Evolution ofGamebots for
3D First Person Shooter (FPS)," in press. The Si:-;th lntcmational
Confe1·ence on Bio-lnspired Comruting: Theories anu Applications,
2011

Jl5l AT. Eiben. and .IE. Smilh. Introduction to Evolutionary Computing
Sp1·inger. 2003.

