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.-lhstract-Evolutionary Algo•·ithm (EA) is commonly used to 
gcnenltc optimat A•·tificial Intelligence (AI) cont•·ollc,., It is a 
technique used to enhance the performance of gcncn1tcd 
controller. L\ enables the system to evolve, to adapt and learn to 
give a better output. The implementation of EA into 2)) game is 
not something new. Researchers used gaming platfo•·ms to test 
thci1· own ideology or p•·oposed algodthrns. In this paper, a finite 
state machine which suitable to be used fo1· Infinite i\lario Bros 
game is proposed. The Genetic Algo•·ithm (GA) is used along 
wi.th th~ \\\'\\\\Osed finite state mathine to evolve an AI agent that 
is tapahle to pass some levels of the game. The exper-imentation 
results showed that the finite state machine e,·olvcd with GA is 
able to neatc a competitin~ game hot that can pass through at 
least 3 levels of diffc1·ent game maps. The generated .-\I controller 
can guarantee to au:omplish the tasks for some levels. 

Ke_J'Word\·-component; .4rt~ficial Intelligence ("II); Finite Stale 
Machine (FSM); Genetic A/goritltm (G .. 4),· h~finite Mario Bros; 
Evo/utio/l{fiJ' Algorithms ( E4s) 

l. INTRODUCTION 

The games play in Super Mario l3ros consists of moving 
the player-controlled character --Mario". through two­
din"lensional levels. which arc viewed sideways II ]12][3 ]. 
Mario can move forward, back\vard. cluck. _jump, optional!) 
"go faster". "shoot fireballs'' and all of these actions are 
depending on which state Mario is in. Gravity l'eature acts on 
Mario. making it necessary to jump over holes to get past them. 
.Mario can be in one of the three states: --small state" (at the 
beginning or a game). "big state'' (can crush some objects by 
jumping into them fl·om bekn-v). and "lire state .. (can shoot 
fireballs). The main goal of each level is to get to the end of the 
level. which m~ans tr~:we;::rsing it lJ·om len tn right. 1\uxiliary 
goals include collecting as many as possible or the coins that 
are scattered around the level, clearing the level as fast as 
possible. and collecting the highest score. \vhich in part 
depends on nu1r1ber uf collected coins and killed enemies. 
When a human player plays the game. the view side is only 
small part or the current level l'rom the side. with the screen 
centered on Mario. Still. this view is not easy for human player 
to predict the next appropriate step because sometimes human 
player is hard to adjust the movement of Mario and difticult to 
catch up the correct timing because of nervous or some other 
reasons. 

This is the difference between human players and .A! agent 
because the controller can visualize well by percept the 
surrounding environment and receive di ITerent inputs fl·om 
sensors and able to perform perfect movement by using 

computation. One of the good reasons to use Evolutionary 
Algorithms (FAs) to play the game is to test the Artificial 
lntclligent (AI) agent whether the pt\-,posed !earning algorithms 
and function representation that used arc capable of. A related 
reason is that researchers like to compare the performance and 
effectiveness of di tfercnt learning algorithms and function 
representations. There are a large number of A I algorithms 
~~,·ailable. but their relative effectiveness differs widely. Some 
researchers prool'ed their algorithm worked well in some 
games. However, every game requires different skills to play. 
and poses dillcrcnt learning challenge. lienee, these reasons 
have motivated researchers to <.1pply different algorithms in 
di ITerent game genres. 

The application ol' F/\s into gaming is not something nt\\ 
[4ll5Jl61. Typically. LAs attempts to replicate. in soth\·at-e, 
portions ol' the biological phenomenon or evolution. EA is just 
evolution in code by start with a population of chromosomes. 
usc natural selection to choose the best ones, mate. produce 
olf<>pring. have mutation in offspring, use natural selection to 
choose the best children, rinse and repeat. Eventually, an Al 
agent will be e,·olved out and it is able to seek out the most 
appropriate strategies in order to achieve the task according to 
the environment alter getting the experience of· the previous 
cases. The performance of the /\1 agent atler applies the E/\ 
and the !'unction representation is anticipated. 

Since the emergence of· the Mario series game. there arc 
many competitions that let the programmers to participate to 
develop an agent that gets as far as possible or proceeds as 
many level as possible. In the game. the AI Mario acts based 
on the environment and to proceed out output in order to 
respond to the environment. The research starts to implement 
to the main p1'otagonisi. .Mario b)' applying Ei\ tech1iiques in 
hopes that it can creates some forms of intelligence in the AI 
Mario. A number of researches have been clone and some or 
the researchers implemented different technique to the Mario. 
like evolving it to be a better and smart boL or even just cutting 
short of the process in evolved the Mario by using E/\ 
techniques. There is a Mario A I competition rtlJClG from the 
internet that needs the participators to create an /\! for the 
Mario game. Due to literatures review [7][8J[9][ I 0][ I I], there 
is still no research has been conducted using finite state 
machine hybridized with Genetic Algorithm to evolve the 
required Mario .A!. l-Ienee, this motives us to create an AI agent 
that uses FSM and CJ/\. 

The rest of the paper is structured as follow: Section ll 
provides some discussion on the lntinite Mario Bros plattorm, 
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while Section I I I covers the methodology approaches used, 
Section IV provides Experimental Setup. T'hen .. Section V 
di~cusses on Results and Discussion. Lastly Conclusion is 
included in Section VI. 

1!. INFINITE MARIO BROS 

The game engine used in this research is named as Infinite 
Mario Bros 1121. It is slightly clillers compared to Nintendo's 
classic platform game Super Mario ·Bros. Infinite Mario Bros 
was made by Markus Persson for a Super Mario themed _java 
programming contest [ 12]. The game engine has been 
moditi.ed to random generate level which means each time the 
game is started. the level is randomly generated by traversing 
a fixed \Vidth and adding features (such as biocks. gaps and 
enemies) according to certain heuristics. The main goal of 
each level is to get to the end of the level by traversing from 
the left most to the right most (or course. cannot hit by the 
enemies during traversing). The auxiliary goal include collect 
as many as possible coins that are scattered around the level 
(collected 100 coins Mario will be rewarded one extra lire). 
clearing the level as fast as possible (there is time limit for 
each lc\ cl). The gaps and moving enemies are the main 
challenges ur Mario. If fv1ario f~1lls down into the gnp. he loses 
a life immediately. If' he touches an enemy. he geLs hurts. 
l·lurts mean the Mario will shill to the lower state. if he is in 
·'1ire state··. he will shill to '"big state" and if he gets hurts 
again he will reduce to ·'small state" and if he gets hurts 
during '"small state" then he will loses a life. Mario can jump, 
however. if he jumps and landed nn the enemies above. the 
outcome is dependent on the enemy: ( l) most enemies (e.g. 
goombas) die !'rom this treatment. (2) others (e.g. piranha 
plants) are not vulnerable to this and proceed to hurt Mario. 
(3) finally. turtles withdraw into their shells irjumped on, and 
these shells can then be picked up by Mario and thrown at 
other enemies to kill them. The cannon shell will be dropped 
to the land if Mario landed above it. however Mario also can 
choose dodge by press down to avoided by hit by the cannon 
shell. The items such as coins. mushroom and llmver are 
hidden inside the block and only appearing when Mario jumps 
at these blocks from bell)\v. 

The main different between Super Mario Bros and Infinite 
Mario Bros is the difficulty of' the levtl. /\s Llist..:ussed 
previous. each level is randomized before the game start. 
Hence. there is impossible to create simple /\I that can pass all 
levels. In our work. we prel'ixed in early and used only one of 
the maps to test our proposed AI. Therefore. there is no 
comparison against a wide variety or Mario playing 
algorithms will be discussed. We aimed only to investigate the 
feasibility of the proposed combination of FSM and GA 
approach Lo the problem. 

Ill. ALGORITHM APPROACHES 

As previously discussed. a combination of FSM and 
conventional GA approaches are used. Hence. the follovving 
section provides brief discussion of these two approaches. 

A. Finite .','tate Machine (F'S'M) 

In a state machine. there are states that are associated with 
some kind of actions or behaviors. and agent will occupied this 
state and perl'orm the same action or behavior. Each state is 
connected together by transition. The transitions arc some 
trigger or conditions that need to be met in order f'or the agent 
to change to di fterent states. In game /\L it is called the finite 
st3Le diagran1 that constituent a nun1ber or state and directed 
transition between them. Typically. there are two types or 
FSM; (I) deterministic FSM and (2) non-deterministic FSM. 
The original simple finite state diagram is the deterministic 
FSfvl. The state transition can be predicted if input and current 
state is given. In non-deterministic 1:SM. the transition cannot 
be predicted. Means that the transition f'rom current stale to 
another state cannot be known until inputs arc received. 

The implementation of FSM in game design is v.' 
C<:HlltTwn in gaming industry. In the game, the Character AI 
be modeled as a sequence of mental states. The World events 
can force a change in state. For example. the games Thief 3 
applying stack FSM in its game design. Stack allows AI to 
move back and f'orth between states and Leads to more realistic 
behavior without increasing FSrvt complexity. For more 
advanced FSM like the Fuzzy State Machines have the features 
of degrees of truth allow multiple FSI'vfs to contribute to 
character actions. This type of FSM is use in create a game /\1 
that collectively cooperate together to achieved single goal 
such as sports game like F!FA Football game or any real-time 
strat.c~v \\ar ~amc like Red Alert and General arc using this 
FSM•:iuring the design or the game AI 1131. In other res;arch. 
Chang eta! (14] have successfully proofed that FSM work \.veil 
in Unreal Tournament (U) First Person Shooting (F'PS) game. 
The researchers combined FSM with Evolutionary 
Programming to generate AI bot that can light in a customized 
map. Non-deterministic finite state machine is chosen and used 
in this project. Non-deterministic J·inite state machine has more 
than one trace ror each input string hence the state transition 
cannot be predicted. When at the state that has more than one 
trace. a transition \\·ill be chosen randomly by.the machine. 1 .... 
1 shows the proposed FSM for this research used. 
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Fig. I shows the designed structure lor the four states or 
FS M. At tl rst a! I the transitions and states arc set and rcscm bl c 
to'.;\ tradition FSM. The lour states are as follow: 

• Run State - A I agent wi II move forvvard or go to the 
right hand side of the game. 

• Run Jump State - AI agent will move forvvard and 
jump over in any necessary condition. 

• Run Speed State - !\I agent perform move forward 
and go raster. 

• Run .lump Speed State- AI Mario will perform move 
forward. jump and run faster actions in once. 

To change the current state to a eli lferent state in the FSM. a 
trigger has to be made. and that is \vhen the transition takes 
place. There arc a total 16 lines of transitions in the FSf'vl that 
connected the states. The inputs of the transition are as follow. 

• Seen an enemy 

• Seen an obstacle 

• Seen nothing 

• Seen enemy & seen hole 

• Seen enemy & seen obstacle 

• Seen hole & seen obstacle 

The input mention above will be place into the respective 
transition line, when an input triggers the state transition will 
happens. The states are represents with nurnbers ti·oiTI 0 to 3 as 
a rcpresentatinn in the codes. 

The generated Mario AI agent needs to think as l~1st as 
possible within 40 milliseconds before next action takes place. 
Since fvlario can pcrll.mn one of the four states given. and do 
many these things on combination, the /\1 agent has more than 
a handful or possible moves that it can choose to do at any one 
time. It \Vilis call the !'unction reside in the representation and 
that particular associated action that presents in the function 
will be trigger. For the AI agent to switch between states. 
triggering a transition is required. The pseudo code given 
below shows a simple trigger action. 

Switch (State): 

case 0: //RunState(): 

i r (seen nothing) 

state= 0: 

else if (seen enemy) 

state= I:. 

else if (seen enemy II seen obstacle): 

state= 2: 

else if(seen enemy II seen hole); 

state= 3; 

break; 

Pseudo code given above shows how to change state fl·om 
RUN State to others state. Initially, current state is in the RUN 
state. I r the agent receives input 0, that means an enemy found, 
the system wi II trigger the transition to change state to "I" 
\vhich means RUN JUMP state. If there is no enemy seen, the 
agent will continue on with the current state. All 16 transitions 
were not previously defined early. The transition represents the 
controller chromoson1e. Hence, it will be evolved by the 
Genetic Algorithm. 

H Genetic Algorithm (GA) 

CJenetic Algorithms \Vere developed by Prof. John llolland 
and his students at the University of Michigan during the 1960s 
and 1970s [ 15]. It is a model of machine learning which 
derives its behavior rrom a metaphor or the processes ol" 
evolution in nature. The crossover and mutation are the most 
important part of the genetic algorithm. The performance is 
influenced mainly by these t\VO operators. Processes loosely 
based on natural selection. crossover. and mutation arc 
repeatedly applied to a population of binary strings which 
represent potential solutions. Over time. the number of above­
average indi,·idual·s increases. and highly-tit building blocks 
are cumbined from several fit individuals to find good 
solutions w the problem at hand. Outline of the GA used is 
described below. 

• I Startl Generate random population oi' n 
chromosomes (suitable solutions for the problem) 

• [Fitness] Evaluate the lltness l(x) of each 
chromosome x in the population 

• [New population] Create a new population by 
repeating following steps until the new population is 
complete 

• [Selection] Select two parent chromosomes tl·om a 
population according to their litness (the better 11tncss. the 
bigger chance to be selected) 

• [Crossover! With a crossover probability cross over 
the parents to form a ne\v offspring (children). If no 
crossover was pcr!cwmed. offspring is an exact copy or 
parents. 

• I Mutation I With a mutation probability mutate new 
offspring at each locus (position in chromosome) . 

• [Accepting] Place new offspring in a new population 

• [Replace] Use ne\v generated population for a further 
run of algorithm 

• [Test] If the end condition is satisJiecl or at least one 
individual has the desired lltness and enough generation 
have passed, terminate. and return the be~t solution in 
current population 

• [Loop] Clo to step 2 

The termination conditions are: 

• Caming time reach 0. 

• Mario loses all lives. 
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• Mario reached end of the level. 

• Generation reached 500 . 
~ 

·rypically. the trans1t1on of the FSM has been previously 
prefixed in a common. Nevertheless, for this project. the 
transition of the FSM has been chosen to be evolved instead of 
hard code the transition criteria. l-Ienee, CiA acts as an 
ad_justment system to figure out \vhich transition could be best 
suit the state. The individual chromosome is represented by 16 
integers which are depended to the follm·ving rules. 

• 
• 
• 
• 
• 

Seen an enemy== 0 

Seen an obstacle == l 

Seen nothing == 2 

Seen" an encm} & huie == 3 

Seen an enemy & obstacle== r] 

• Seen a hole & obstacle== 5 

Each or the genotypes is associated with a tranSitiOn line 
that will react based on the received inputs. Typically. 
l!niform Crossover and Uniform Mutation h<we been utilized 
during the optimi1.ntion processes. 

lv'. EXPERIMENTAL SETUP AND FITNESS !·'tiNCTION 

The crossover rates used arc in between 60%. 70%. 80% 
and 90%. The mutation rate used is I 0%). There are a total or 
10 individuals involved. L~ach run is limited t()r 500 generation 
only. Each or the generated optimal solution is tested I 0 times 
h.x an average score. 

A simple fitness function is used to evaluate each or the 
individual. The 1itncss function is represented as below. 

Fitness ,__, distanceJ>assedPhys* sm·.distance 

·rhis means the longer the AI agent move !'orwmcL the 
higher the titness value it obtained. I·Jence. this simple Jitness 
f'unction represents simple Mario /\1 behavior. It is nt)L 
necessary for Mario/\! to either kill any enemy or collect any 
coin as mark/point is not accumulated during game plays. 
Hmvever. time is one of the invisible important fenture even it 
is not included in the titness function. Mario AI still has to 
move quietly to reach the goal otherwise. that particular 
individual \Viii be considered as J·~ti led child if the time reach 
1.ero berore it reached the goal. 

V. RESULTS AND DISCUSSIONS 

The experimentation results obtained can be simplified as 
tabulated in Table I below. 

TABLE I. EXPERif\·1ENT•\TION RESULTS OUT!\ I NED AlTER I 0 RUNS 

Mt1tation Average Min Max Average 
Rates Success Rate Generation Generation Scores 
0.6 70% 47 353 2785 
07 60% 55 :110 2215 
08 80% 27 

1-------·---·--·-
4 7 7 ~---~:.1.2_ ____ 

0.9 60% 17 89 3214 

Table l clear shows, the controllers evolved lor crossover 
80% generated highly promising result. It reached average 
score or 3619 whilst the actual maximum score is 4096. 
Minimum generation used is 27 and maximum generation 
reached 477. Overall, highest successful rate is 80%. the 
controllers evolved vvith 80% crossover rate. Minimum 
generation involved is 17, the controllers evolved with 90% 
crossover rate. Minimum average score is 2215. the controllers 
evolved with 70% crossover rate. Fig. 2. 3. 4. and 5 below 
show l<.1ur graphs generated rrom random selected individuals. 
respectively from four different rates of crossover 
ex peri mentation. 

Fitness score over GcncrJtion 
Fitness Score 

Generation 

-Figure 2. Fitness score generated !'rom 60% crossover rate 

Fig. 2 shows litness over generation for individual 
generated f'rom 60% crossover rate. Fig. 2 shows. the Mario AI 
had been successfully evolved for the required behavior during 
generation 4 7. The fitness score was sudden increased during 
generation 40. Then. it increased again during generation 46 
and reached optimal litncss score during generation 47. This 
shows the MDrio /\1 learned how to pass a level. 

Fitness seor.: over Generation 
Fitness Score 

• :: .. 11 

:,,1,.! 

Generation 

Figure 3. Fitness score generated from 70% crossover rate 

Fig. 3 shows the fitness scored slightly increased during 
generation 41. Then. it increased again during generations 44 
and 46. However. there were sudden drops on generations 45 
and 47. Nevertheless, the solutions maintained atler generation 
48 and it increased again and reached maximum fitness during 
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generation 55. The sudden drop problem has been overcome 
with elitism inclusion during the optimization processes. 

' 

Fitness score over Generation 
Fitness Score 
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Generation 

f"igurc 4. 1-itncss score generated !'mm flO% crossover r<lte 

Fig. 4 shows there is a sudden hig jump during generation 
\6 \o \~. 'However, the litnes~ score decreased again to 1700 
after generation 19. Then. there is a sudden jump again during 
generation 27 and optimal solution round during that particular 
generation. 

Fitness score over Generation 
1-itncss Score 

Generation 

Figure 5. Fitness score generated ll·om 90cYo crossover rate 

Flg. 5 sho\vs the solutions were maintained no change until 
generation 12. There is a sudden increase or litness during 
generation 13. Then, the titness score drop again during 
generation 14. But it increase again during generation 17 to 
reach optitiwl solution score. 

Typically. there were two simple experiments conducted 
for the generated optimal solutions. The first test had been 
conducted purposely to veri l"y the eJ'fectiveness and enicienc:.v· 
;Jf the generated controllers in different level of the Mario 
game. The experimentation results shmved that the generated 
Mario A I v.:as unable to perform well in eli fferent level. It 
happened due to the changes of the environment. There is a big 
gap for the difficulty or the level. Then, the experiment had 

been conducted to test the feasibility of the algorithm and 
method used in this study. 'fhc experimentation results found 
that the algorithms can be hybridized and used to evolve Mario 
!\I in different level. However, only independent Mario AI 
could be generated to pass every eli ITerent level. 

VI. CONCLUSION 

We have successfully developed simple AI controller 
which capable to play the lntinite Mario Bros. The generated 
controllers perl(mned well and optimal solutions could be 
generated with X0<0> crossover rate used. Hence. this proofs that 
the proposed linite state machines can be combined with 
Cienetic Algorithm to generate promising controller. 
Nevertheless. there arc still rooms to be improved as the 
controller has limited its capability to work and perform well in 
certain environment/level. 
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