4

.

Infinite Mario Bross Al using Genetic Algorithm

Ng Chee Hou, Niew Soon Hong, Chin Kim On, and Jason Teo
Evolutionary Computing Laboratory
School of Engineering and Information Technology
Universiti Malaysia Sabah, Jalan UMS. 88400. Kota Kinabalu, Sabah. Malaysia
kimonchingums.cdu.my, jtwicoums.cdu.my

Abstract—Evolutionary Algorithm (EA) is commonly used to
generate optimal Artificial Intelligence (Al) controller, It is a
technigue used to enhance the performance of generated
controller. KA cnables the system to evoive, to adapt and learn to
give a better output. The implementation of EA into 2D game is
not something new. Researchers used gaming platforms to test
their own ideology or proposed algovithms. In this paper, a finite
state machine which suitable to be used for Infinite Mario Bros
game is proposed. The Genetic Algorithm (GA) is used ulong
with the proposed finite state machine to evolve an Al agent that
is capable to pass some levels of the game. The experimentation
results showed that the finite state machine evolved with GA is
able to create a competitive game bot that can pass through at
least 3 levels of different game maps. The generated Al controller
can guarantee to accomplish the tasks for some levels.

Keywords-component; Artificial Intelligence (41); Finite State
Machine (FSM); Genetic Algorithnt (GA); Infinite Mario Bros;
Evolutionary Algorithms (EAs)

L. INTRODUCTION

The games play in Super Mario Bros consists of moving
the player-controlled character ~Mario™. through two-
dimensional levels. which are viewed sideways [1]{2][3].
Mario can move forward, backward. duck. jump, optionally
“go faster™. “shoot fireballs™ and all of these actions are
depending on which state Mario is in. Gravity leature acts on
Mario, making it necessary to jump over holes to get past them.
Mario can be in one of the three states: ~small state™ (at the
beginning of a game). ~big state”™ (can crush some objects by

Jumping into them from bclow), and “fire state™ (can shoot

fireballs). The main goal of each level is to get to the end of the
level. which means traversing it from lefi to right. Auxiliary
goals include collecting as many as possible of the coins that
are scattered around the level, clearing the level as fast as
possible. and colleeting the highest score. which in part
depends on number of collected coins and killed enemies.
When a human plaver plays the game. the view side is only
small part of the current level from the side. with the screen
centered on Mario. Still, this view is not casy for human player
to predict the next appropriate step because sometimes human
player is hard to adjust the movement of Mario and difticult to
catch up the correct timing because of nervous or some other
reasons.

This is the difference between human players and Al agent
because the controller can visualize well by percept the
surrounding environment and receive different inputs from
sensors and able to perform perfect movement by using

computation. One of the good reasons to use Evolutionary
Algorithms (FAs) to play the game is to test the Artificial
Intelligent (Al) agent whether the proposed fearning algorithms
and function representation that used are capable of. A related
reason is that researchers like to compare the performance and
ctfectiveness of different learning algorithms and function
representations. There are a large number of Al algorithms
available but their relative effectiveness differs widely. Some
researchers proofed their algorithm worked well in some
games. However, every game requires different skills to play.
and posces ditferent learning challenge. Hence, these reasons
have motivated researchers to apply different algorithms in
different game genrces.

The application of EAs into gaming is not something new
[41[3][6]. T'vpically. EAs attempts to replicate. in software,
portions of the biological phenomenon of evolution. EA is just
evolution in code by start with a population of chromosomes.
use natural selection to choose the best ones, mate. produce
offspring. have mutation in offspring, use natural selection to
choose the best children, rinse and repeat. Lventually, an Al
agent will be evolved out and it is able to seek out the most
appropriale strategies in order to achicve the task according to
the environment after getting the experience of the previous
cases. The performance of the Al agent alter applies the EA
and the function representation is anticipated.

Since the emergence of the Mario series game. there are
many competitions that let the programmers (o participate to
develop an agent that gets as far as possible or proceeds as
many level as possible. In the game. the Al Mario acts based
on the environment and Lo proceed oul output in order (o
respond to the environment. The rescarch starts to implement
to the main protagonist. Mario by applying EA techniques in

hopes that it can creates some forms of intelligence in the Al

Mario. A number of researches have been done and some ol

the researchers implemented different technique o the Mario.
like evolving it o be a better and smart bot, or even just cutting
short of the process in evolved the Mario by using EA
techniques. There is a Mario Al competition @CIG from the
internet that needs the participators to create an Al for the
Mario game. Duc to litcratures review [7][8][9[10][11}, there
is stll no research has been conducted using finite state
machine hybridized with Genetic Algorithm to evolve the
required Mario Al. Hence, this motives us to create an Al agent
that uses FSM and GA.

The rest of the paper is structured as follow: Section I
provides some discussion on the Intinite Mario Bros platform,

while Section il covers the methodology approaches used.
Section IV provides Experimental Setup. Then. Section V
diycusses on Results and Discussion. Lastly Conclusion is
included in Section V1.

11, INFINITE MARIO BROS

The game engine used in this research is named as Infinite
Mario Bros [12]. It is slightly dilfers compared to Nintendo’s
classic platform game Super Mario Bros. Infinitc Mario Bros
was made by Markus Persson for a Super Mario themed java
programming contest [12]. The game cngine has been
moditied to random generate level which means cach time the
eame is started. the level is randomly gencerated by traversing
a fixed width and adding features (such as blocks. gaps and
enemies) according to certain heuristics. The main goal of
each level is to get to the end of the level by traversing from
the left most to the right most (of course. cannot hit by the
enemies during traversing). The auxiliary goal include collect
as many as possible coins that are scattered around the level
(collected 100 coins Mario will be rewarded one extra lile).
clearing the level as fast as possible (there is time limit for
sach level). The gaps and moving enemies are the main
challenges of Mario. If Mario falls down into the gap, he loses
a life immediately. 1 he touches an cnemy. he gets hurts.
Hurts mean the Mario will shift to the fower state. it he is in
“fire state™. he will shift to ~big state™ and if he gets hurts
again he will reduce to “small state™ and it he gets hurts
during “small state™ then he will foses a life. Mario can jump,
however. if he jumps and landed on the enemies above. the
outcome is dependent on the enemy: (1) most enemices (¢.g.
eoombas) die from this treatment. (2) others (e.g. piranha
plants) are not vulnerable to this and proceed to hurt Mario.
(3) finally. turtles withdraw into their shells if jumped on, and
these shells can then be picked up by Mario and thrown at
other enemies to kill them. The cannon shell will be dropped
to the land if Mario landed above it. however Mario also can
choose dodge by press down to avoided by hit by the cannon
shell. The items such as coins. mushroom and [lower are
hidden inside the block and onlyappearing when Mario jumps
at these blocks from below.

The main different between Super Mario Bros and Infinite
Mario Bros is the difficulty ol the level. As discussed
previous. each level is randomized belore the game start.
Hence. there is impossible to create simple Al that can pass all

levels. In our work. we prefixed in early and used only one of

the maps to test our proposed Al Theretore. there is no
comparison against a wide variely of Mario playing
algorithms will be discussed. We aimed only to investigate the
feasibility of the proposed combination of FSM and GA
approach Lo the problem.

Aa

1. ALGORITHM APPROACHES

As previously discussed. a combination of FSM and
conventional GA approaches are used. Hence. the following
section provides brief discussion of these two approaches.

A Finite State Machine (FSM)

In a state machine. there are states that are associated with
some kind of actions or behaviors, and agent will occupied this
state and perform the same action or behavior. Each state is
connected together by transition. The transitions are some
trigger or conditions that need to be met in order for the agent
to change to different states. In game Al, it is called the finite
state diagram that constituent a number of stale and directed
transition between them. Typically. there are two types ol
FSM; (1) deterministic FSM and (2) non-deterministic FSM.
The original simple finite state diagram is the deterministic
FSM. The state transition can be predicted if input and current
state is given. In non-deterministic I'SML the transition cannot
be predicted. Means that the transition from current state to
another state cannot be known until inputs are received.

The implementation of FSM in game design is vg

common in gaming industry. In the game. the Character Al

be modeled as a sequence of mental states. The World events
can foree a change in state. IFor example. the games Thict 3
applying stack FSMin its game design. Stack allows Al o
move back and forth between states and Leads to more realistic
behavior without increasing FSM complexity. For more
advanced FSM like the Fuzzy State Machines have the features
of degrees of truth allow multiple FSM's to contribute to
character actions. This type of FSM is use in create a game Al
that collectively cooperate together to achiceved single goal
such as sports game like FIFA Football game or any real-time
strategy war game like Red Alert and General are using this
FSM"during the design ol the game Al [13]. [n other research.
Chang et al [14] have successfully proofed that FSM work well
in Unreal Tournament (U) First Person Shooting (FPS) game.
The researchers combined FSM with Evolutionary
Programming Lo gencerate Al bot that can tight in a customized
map. Non-deterministic finite state machine is chosen and used
in this project. Non-deterministic finite state machine has more
than one trace lor each input string hence the state transition
cannot be predicted. When at the state that has more than one
trace. a transition will be chosen randomly by the machine. l‘
1 shows the proposed FSM for this research used.

l ‘.RUN;HJMR Cong
ol .STA.T? :

S RUNEIUME s
SPEED STATE'

Figure 1. Finite state machine designed for Infinite Mario Bros Al

o,

Fig. | shows the designed structure for the four states ol

IFSM. At first all the transitions and states are set and resemble
tova tradition FSM. The four states are as follow:

. Run State - Al agent will move Forward or go to the
right hand side of the game.

. Run Jump State - Al agent will move torward and
jump over in any necessary condition.

. Run Speed State - Al agent perform move forward
and go faster.

. Run Jump Speced State - Al Mario will perform move
forward. jump and run faster actions in once.

To change the current state Lo a different state in the FSM. a
trigger has to be made. and that is when the transition takes
place. There are a total 16 lines of transitions in the FSM that
connected the states. The inputs of the transition are as follow.

. Seen an enemy

. Seen an obstacle

. Scen nothing

. Seen enemy & scen hole

. Scen enemy & scen obstacle
. Seen hole & seen obstacle

The input mention above will be place into the respective
transition line, when an input triggers the state transition will
happens. The states are represents with numbers from 0 to 3 as
a representation in the codes.

The generated Mario Al agent needs to think as fast as
possible within 40 milliscconds betore next action takes place.
Since Mario can perform one of the four states given. and do
many these things on combination, the Al agent has more than
a handful of possible moves that it can choose to do at any one
time. It wills call the function reside in the representation and
that particular associated action that presents in the lunction
will be trigger. For the Al agent to switch between states.
triggering a transition is required. The pseudo code given
below shows a simple trigger action.

Switch (State):
case (: //RunState():
if (seen nothing)
state = 0;
else if (seen encmy)
state = |
else if (seen enemy || seen obstacle):
state = 2:

else if (seen enemy || seen hole);

state = 3;

break;

Pseudo code given dbove shows how Lo change state from
RUN State to others state. Initially, current state is in the RUN
state. Il the agent receives input 0, that means an enemy found,
the system will trigger the transition to change state to 17
which means RUN JUMP state. If there is no enemy seen, the
agent will continue on with the current state. All 16 transitions
were not previously defined carly. The transition represents the
controller chromosome. Hence, it will be evolved by the
Genetic Algorithm.

B, Genetic Algorithm (GA)

Genetic Algorithms were developed by Prof. John Holland
and his students at the University of Michigan during the 1960s
and 1970s {15]. It is a model of machine lcarning which

derives its behavior from a metaphor of the processes of

evolution in nature. The crossover and mutation are the most
important part of the genetic algorithm. The performance is
influenced mainly by these two operators. Processes loosely
bascd on natural sclection. crossover. and mutation are
repeatedly applied to a population of binary strings which
represent potential solutions. Over time. the number of above-
average individual's increases. and highly-fit building blocks
are combined from several fit individuals to find good
solutions to the problem at hand. QOutline of the GA used is
described below.

e |Start] Generate random population ol n
chromosomes (suitable solutions for the problem)

o [Fitness] Evaluate the
chromosome x in the poputation

fitness f(x) of each

o [New population] Create a new population by
repeating following steps until the new population is
complete

e [Selection] Select two parent chromosomes from a
population according to their fitness (the better fitness, the
bigger chance 1o be selected)

e |Crossover| With a crossover probability cross over
the parents to form a new offspring (children). If no

crossover was performed. offspring is an exact copy of

parents.

¢ |Mutation| With a mutation probability mutate néew
offspring at each locus (position in chromosome).
¢ [Accepting] Place new offspring in a new population
o [Replace] Use new generated population for a further
run ot algorithm
o [Test] If the end condition is satistied or at least one
individual has the desired fitness and enough generation
have passed, terminate. and return the best solution in
current population
¢ [Loop] Go tostep 2

The termination conditions are:
e (Gaming time reach 0.

e Mario loses all lives.

e Mario reached end of the level.

. ® Generation reached 300.

.
Typically. the transition of the FSM has been previously
prefixed in a common. Nevertheless, for this project. the

transition of the 'SM has been chosen to be evolved instead of

hard code the transition criteria. Hence, GA acts as an
adjustment system to figure out which transition could be best
suit the state. ‘The individual chromosome is represented by 16
integers which are depended to the following rules.

¢ Seenancnemy ==

e Seen an obstacle ==

e Scen nothing ==2

s Seen'an enemy & hole == 3

e Seenan enemy & obstacle == 1
e Seena hole & obstacle == 3

Fach of the genotypes is associated with a transition line
that will react based on the received inputs. Typically.
Uniform Crossover and Uniform Mutation have been utilized
during the optimiration processes.

IV, EXPERIMENTAL SETUP AND FITNESS FUNCTION

The crossover rates used are in between 60%. 70%. 80%

and 90%. The mutation rate used is 10%. There are a total of

10 individuals involved. Lach run is limited for 300 gencration
only. Each ol the generated optimal solution is tested 10 times
for an average score.

A simple fitness function is used to evaluate cach of the
individual. The fitness function is represented as below,

Fitness = distancelPassedPhys* sov.distance

This means the longer the Al agent move lorward. the
higher the fitness value it obtained. Hence. this simple fitness
function represents simple Mario Al behavior. It is not
necessary for Mario Al to either kill any enemy or collect any
coin as mark/point is not accumulated during game plays.
However. time is one of the invisible important feature even it
is not included in the fitness function. Mario Al still has to
move quietly 1o reach the goal otherwise. that particular
individual will be considered as failed child if the time reach
zero belore it reached the goal.

V. RESULTS AND DISCUSSIONS

The experimentation results obtained can be simplified as
tabulated in Table | below.

TABLE L. EXPLERIMENTATION RESULTS OBTAINED AFTER 10 RUNS
Mutation | Average Min Max Average
Rates Success Rate Generation Generation Scores

0.6 70% 47 353 2785

0.7 60% 55 410 2215

08§ 80% 27 477 3619

09 60% 17 89 3214

Table 1 clear shows, the controllers evolved for crossover
80% generated highly promising result. It reached average
score of 3619 whilst the actual maximum score is 4096.
Minimum generation used is 27 and maximum generation
reached 477. Overall, highest successful rate is 80%. the
controtlers evolved with 80% crossover rate. Minimum
generation involved is 17, the controllers cvolved with 90%
crossover rate. Minimum average score is 2213, the controllers
evolved with 70% crossover rate. Fig. 2. 3. 4. and 5 below
show four graphs generated Irom random selected individuals.
respeetively from four different rates of crossover
expetimentation.

[Finess score over Generation
Fitness Score
0

®

Generation

Figure 2. Fitness score generated from 60% crossover rale
Fig. 2 shows fitness over generation for individual

generated from 60% crossover rate. Fig. 2 shows. the Mario Al
had been successfully evolved for the required behavior during
generation 47. The [itness score was sudden increased during
generation 40. Then. it increased again during generation 46
and reached optimal fitness score during generation 47. This
shows the Mario Al learned how to pass a level.

Fitness score over Generation
Fitness Score

Generation

Figure 3. Fitness score generated from 70% crossover rate

Fig. 3 shows the fitness scored slightly increased during
generation 41, Then. it increased again during generations 44
and 46. However. there were sudden drops on generations 43
and 47. Nevertheless, the solutions maintained after generation
48 and it increased again and reached maximum fitness during

o)

generation 55. The sudden drop problem has been overcome
with elitism inclusion during the optimization processes.

Al
.

Fitness score over Generation
Fitness Score

Generation

Figure 4. Fitness score generated from 80% crossover rate

Iig. 4 shows there is a sudden big jump during gencration
16 10 13, However, the litness score decreased again to 1700
after generation 19. Then. there is a sudden jump again during
generation 27 and optimal solution found during that particular
generation.

Fitness score over Generation
Fitness Score

Generation

Figure 5. Fitness score gencrated from 90% crossover rate
Fig. 5 shows the solutions were maintained no change until
generation 12. There is a sudden increase of fitness during

g
generation 13. Then, the fitness score drop again during
g

generalion 14. But. it increase again during generation 17 to
reach optimal solution score.

Typically. there were two simple experiments conducted
for the generated optimal solutions. The first test had been
conducted purposely o verily the elfectiveness and efficiency
ot the generated controllers in different level of the Mario
game. 'The experimentation results showed that the generated
Mario Al was unable to perform well in different level. It
happened due to the changes of the environment. There is a big
gap for the difficulty of the level. Then, the experiment had

v

been conducted to test the feasibility of the algorithm and
mcthod used in this study. The experimentation results found
that the algorithms can be hybridized and used to evolve Mario
Al in different level. However, only independent Mario Al
could be generated to pass every different level.

VI. CONCLUSION

We have successfully developed simple Al controller
which capable to play the Infinite Mario Bros. The generated
controllers performed well and optimal solutions could be
generated with 80% crossover rate used. Hence. this proofs that
the proposed linite state machines can be combined with
Genetic Algorithm to generate promising controller.
Nevertheless, there are still rooms to be improved as the
controller has limited its capability to work and perform well in
certain environment/level.

REFERENCES

[} Fox, Malt (2006). The Video Games Guide. Boxtree Lid. pp. 261-262.

[2] Ellis. David (2004). "A Bricl” History ol Video Games". Official Price
Guide to Classic Video Games. Random House. p. 9.

[3] Julian Togelius. Sergey Karakovskiv. Jan Koutnik and furgen
Schmidhuber. Super Mario Evolution. 2009 [EEE Symposium on
Computational Intelligence and Games. 136-161.

[4] T. Schaul and J. Schmidhuber. ~Scalable neural networks for board
games.” in Proccedings of the International Conlerence on Artilicial
Neural Networks (ICANN), 2008,

[5] C. Bateman and R. Boon, 21st Century Game Design. Charles River
Media. 2005.

[6] G, N. Yannakakis and J. Hallam, “Towards optimizing entertainment in
computer games,” Applied Artificial Intelligence, vol. 21, pp. 933-971,
2007.

(7] K. Compton and M. Mateas. “Procedural level design for platform
games.” n Proceedings of the Artificial Intelligence and Interactive
Digital Entertaimment International Conference (AHDE). 2006.

[8] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation. Queensland University of Technology.
Brisbane, Australia. 2008,

[91 1. Marks and V. Hom, “Automatic design ol balanced board games.™ in
Proceedings of the Artificial Intelligence and Interactive Digital
Fntertainment Intemational Conterence (ANDE), 2007, pp. 25-30.

f101 T. W. Malone, “What makes computer games fun?" Byte, vol. 6. pp.
258-277.1981.

LHH) G. N Yannakakis and J. Hallam, “Game and Player Feature Selection
for Entertainment Capture.” in Proceedings of the IEEE Sympusiuin it
Computational Intelligence and Games. IHawaii. USA: IEEE, April
2007 pp. 244-251. .

{12} Markus Persson. Infinite Mario Bros.
htp/Awww.mojang.com/motch/mario/. 201 1.

[13) Jarret Raim Finite State Machine In Game, from
wwv.cse.lehigh edu/~munoz/CSE497/classes/FSM_In_Games.ppt.
2017,

[14]) K.-T. Chang, K.-O. Chin, and J. Teo. “The Evolution of Gamebots for
. 3D First Person Shooter (FPS).” in press. The Sixth International
Conference on Bio-Inspired Computing: Theories and Applications,
2011
[13] AL Eiben. and J.E. Smith. Introduction to Evolutionary Computing,
Springer. 2003.

