SYNTHESIS AND CHARACTERIZATION OF CARBAZOLE-BASED CONJUGATED POLYMER VIA DIRECT ARYLATION POLYMERIZATION

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2020

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : SYNTHESIS AND CHARACTERIZATION OF CARBAZOLE-BASED CONJUGATED POLYMER VIA DIRECT ARYLATION POLYMERIZATION

- IJAZAH : MASTER OF SCIENCE
- BIDANG : INDUSTRIAL CHEMISTRY

Saya **WONG XIN LIN**, Sesi **2016-2020**, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

WONG XIN LIN MS1611043T

Disahkan Oleh,

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

(Dr. Mond Sani Bin Sarjadi) Penyelia

Tarikh : 25 March 2020

SYNTHESIS AND CHARACTERIZATION OF CARBAZOLE-BASED CONJUGATED POLYMER VIA DIRECT ARYLATION POLYMERIZATION

WONG XIN LIN

THESIS SUBMITTED IN FULFILLMENT FOR THE MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2020

DECLARATION

I hereby declare that this thesis is my own work except for the quotations and references which have been properly acknowledged.

16 August 2019

M

WONG XIN LIN MS1611043T

CERTIFICATION

NAME : WONG XIN LIN

MATRIK NO. : **MS1611043T**

- TITLE : SYNTHESIS AND CHARACTERIZATION OF CARBAZOLE-BASED CONJUGATED POLYMER VIA DIRECT ARYLATION POLYMERIZATION
- DEGREE : MASTER OF SCIENCE
- FIELD : INDUSTRIAL CHEMISTRY
- VIVA DATE : 16th JANUARY 2020

ACKNOWLEDGEMENT

This thesis would not have been successfully accomplished if not for the assistance and support of many parties. Therefore, I would like to thank all those people who made this thesis possible.

First of all, I would like to express my deepest gratitude to my research supervisor, Dr. Mohd. Sani bin Sarjadi, for his guidance, support and useful advice during my research. I am extremely thankful to him for devoting much time in reviewing my thesis progress, giving valuable suggestions as well as making corrections.

My heartfelt thanks also goes to Prof. Lutfor Rahman for his generous assistance, guidance, and advices.

Besides, I am grateful to all the laboratory assistants who never hesitate to lend out a helping hand whenever I need it. I would like to acknowledge with much appreciation, Pn. Julianah binti Awang @ Joseph, lab assistant of the Nuclear Magnetic Resonance (NMR) Laboratory in Institute of Tropical Biology and Conservation (IBTP), for helping me in NMR analysis. To En. Timani Kumin, lab assistant in Centre for Instrumentation and Science Service, I am thankful for his help in SEM analysis. My sincere thanks also go to En. Mohd. Rachyeidy bin Abd Rashid, En. Taipin bin Gadoit, En. Abdullah bin Saudi, and Pn. Siti Juliyana Kamaruddin, for giving me access to the laboratory and research facilities.

I would also like to thank my senior, Puah Perng Yang, for his assistance, valuable comments and suggestions.

Last but not least, I would like to thank my family for always being supportive in my education, both mentally and financially. Their unconditional trust and timely encouragement have helped me get through the difficult times.

Wong Xin Lin 16 August 2019

ABSTRACT

Conjugated polymers, with excellent optical and electrical properties, have appeared as promising operative materials for a diverse range of applications. Donor-Acceptor (D-A) framework, which copolymerizes electron-donors and electron- acceptors alternatively in conjugated backbones, has proven to be the most effective strategy for obtaining low bandgap polymers that desirable for optoelectronic applications. The synthesis of conjugated polymers is primarily relied on conventional cross-couplings, in particularly, Suzuki and Stille couplings, which involve the use of costly toxic organometallic reagents for monomers' Despite robust and effective, functionalization. these protocols produce stoichiometric quantities of toxic byproducts. Direct arylation polymerization (DArP) is a newly established synthetic strategy that provides a clean and low cost pathway towards conjugated polymers. It allows direct coupling of aryl halides and aromatic compounds without preactivation of Carbon-Hydrogen (C-H) bonds. In this research, an alternating D-A type copolymer based on N-9-hexadecyl-2,7dibromocarbazole and 4,7-di(2-thienyl)benzothiadiazole was synthesized by DArP. This structure is modified from the classical low bandgap copolymer poly[N-9'--5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] heptadecanyl-2,7-carbazole-alt (PCDTBT) which exhibited excellent devices performance. One-pot DArP reaction was carried out under phosphine-free condition with palladium (II) acetate as the catalyst, pivalic acid as the additive, and potassium carbonates as the base. The resulting copolymer, poly[(9-hexadecyl-2,7-carabzole-alt-4,7-di(2-thienyl)-2,1,3benzothiadiazole)] (P1) was obtained in 44%. It showed good solubility in organic solvents and has been satisfactorily characterized by FTIR and NMR. UV-Vis absorption spectra show the presence of inter-chain interaction and aggregation in the solid state. The optical bandgap of the copolymer was found to be in between 1.77 – 1.81 eV, which is slightly lower than that of the PCDTBT (1.88 eV).

ABSTRAK

SINTESIS DAN PENCIRIAN BAGI POLIMER BERKONJUGAT ASAS-KARBAZOL MELALUI PEMPOLIMERAN ARILASI LANGSUNG

Polimer koniugasi, dengan sifat optik dan elektrik yang sangat baik, telah muncul sebagai bahan pengendali yang menjanjikan untuk pelbagai aplikasi. Kerangka Donor-Acceptor (D-A), yang mengkopolimerkan penyumbang elektron dan penerima elektron secara alternatif dalam tulang belakang konjugat, telah terbukti sebagai strategi yang paling berkesan untuk mendapatkan polimer bandgap yang rendah yang diinginkan untuk aplikasi optoelektronik. Sintesis polimer konjugasi ini terutamanya bergantung kepada penyambung silang konvensional, terutamanya, gandingan Suzuki dan Stille, yang melibatkan penggunaan reagen organik organometalit yang mahal untuk kegunaan monomer. Walaupun kuat dan berkesan, protokol ini menghasilkan kuantiti stoikiometrik produk sampingan toksik. Polimerisasi arilasi langsung (DArP) adalah strategi sintetik yang baru ditubuhkan yang menyediakan laluan kos yang bersih dan rendah ke arah polimer konjugat. Ia membolehkan gandingan langsung aril halida dan sebatian aromatik tanpa preaktivasi bon Carbon-Hydrogen (C-H). Dalam hal ini, kopolimer jenis D-A berselang-seling berdasarkan benzothiadiazole N-9-heksadecil-2,7dibromocarbazole dan 4,7-dalam (2-siyenyl) disintesis oleh DArP. Struktur ini diubahsuai daripada kopolimer rendah band klasik [N-9'-heptadecanyl-2,7carbazole-alt-5,5- (4', 7'-di-2-thenyenyl-2', 1' 3'-benzothiadiazole)] (PCDTBT) yang mempamerkan prestasi peranti yang sangat baik. Reaksi DArP satu periuk dijalankan di bawah keadaan bebas fosfin dengan palladium (II) asetat sebagai pemangkin, asid pivalik sebagai aditif, dan karbonat kalium sebagai bes. Kopolimer yang dihasilkan, poli [(9-heksadecil-2,7-carabzole-alt-4,7-di (2-thenyenyl) -2,1,3benzothiadiazole)] (P1) diperolehi dalam 44%. Ia menunjukkan keterlarutan yang baik dalam pelarut organik dan telah dicirikan oleh FTIR dan NMR dengan memuaskan. Spektra penyerapan UV-Vis menunjukkan kehadiran interaksi antara rantaian dan pengagregatan dalam keadaan pepejal. Penumpukan optik kopolimer didapati berada di antara 1.77 - 1.81 eV, yang sedikit lebih rendah daripada PCDTBT (1.88 eV).

LIST OF CONTENTS

	F	Page
TITLE		i
DECLARATION		ii
CERTIFICATION		iii
ACKNOWLEDGEMENT		iv
ABSTRACT		v
ABSTRAK		vi
LIST OF CONTENTS		viii
LIST OF TABLES		xi
LIST OF FIGURES		xiii
LIST OF SCHEMES		xix
LIST OF SYMBOLS AND A	BBREVIATIONS	xxi
LIST OF APPENDICES	UNIVERSITI MALAYSIA SABAH	xxiv

CHAPT	ER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statements	2
1.3	Research Objectives	5
1.4	Scope of Study	5

CHAPTI	ER 2 LITERATURE REVIEW	8
2.1	Photovoltaic Cells	8

2.2	Device Operating Principles	10
2.3	Organic Photovoltaic Device Architectures	10
2.4	Device Efficiency2.4.1Open Circuit Voltage (Voc)2.4.2Short Circuit Current (Jsc)2.4.3Fill Factor (FF)	13 13 14 14
2.5	 Active Layer Materials 2.5.1 Conjugated polymers as electron donor materials 2.5.2 Fullerence derivatives as electron acceptor material 	15 15 20
2.6	Molecular Design of Conjugated Polymers2.6.1Low bandgap polymer2.6.2Carbazole2.6.32,1,3-benzothiadiazole	21 21 23 24
2.7	Synthesis of Conjugated Polymers2.7.1Direct Arylation Polymerization	25 25
2.8	StructuralDefects in Direct Arylation Polymers2.8.1Homocoupling defects2.8.2Branching defects2.8.3End group defects2.8.4Residual metal defects	28 29 29 30 31
2.9	Structural Defects Control via Manipulation of Reaction2.9.1Reaction temperature2.9.2Nature of ligands2.9.3Choice of solvents	32 32 33 34
2.10	Preparation of Carbazole-based and Benzothiadiazole-based Copolymers via Direct Arylation Polymerization	35
СНАРТ	ER 3 METHODOLOGY	44
3.1	Materials	44
3.2	Preparation of Monomers	45

 3.2.1
 Synthesis of 4,4'-Dibromo-2,2'-dinitrobiphenyl (1)
 45

 3.2.2
 Synthesis of 4,4'-Dibromo-2,2'-diaminobiphenyl (2)
 46

	3.2.3	Synthesis of 2,7-Dibromocarbazole (3)	47
	3.2.4	Synthesis of 2,7-dibromo-9-hexadecyl-9H-carbazole (4)	48
	3.2.5	Synthesis of 4,7-dibromo-2,1,3-benzothiadiazole (5)	49
	3.2.6	Synthesis of 4,7-di(2-thienyl)-2,1,3-benzothiadiazole (6)	50
3.3	Preparat	ion of Polymer	51
3.4	Characte	rization Techniques	52
	3.4.1	Thin Layer Chromatography (TLC)	52
	3.4.2	Melting Point	52
	3.4.3	Fourier Transform Infrared Spectroscopy (FTIR)	53
	3.4.4	Nuclear Magnetic Resonance (NMR) Spectroscopy	54
	3.4.5	Scanning Electron Microscopy (SEM)	54
3.5	Optical B	andgap Measurement by Ultraviolet-Visible (UV-VIS)	
	Spectro	metry	56

	and i		
СНАРТ	ER 4 RE	SULT & DISCUSSION - MONOMERS	57
E	Curathonia	of 4.44 dibuone 2.24 distustishen d (1)	
4.1	Synthesis		57
19	4.1.1	Thin-Layer Chromatography (TLC)	60
l'	4.1.2	Fourier Transform Infrared Spectroscopy (FTIR)	61
	4.1.3.	Nuclear Magnetic Resonance (NMR)	62
	4.1.4.	Scanning Electron Microscopy (SEM)	64
4.2	Synthesis	of 4,4'-dibromo-2,2'-diaminobiphenyl (2)	65
	4.2.1	Thin-Layer Chromatography (TLC)	69
	4.2.2	Fourier Transform Infrared Spectroscopy (FTIR)	70
	4.2.3	Nuclear Magnetic Resonance (NMR)	71
	4.2.4	Scanning Electron Microscopy (SEM)	72
4.3	Synthesis	of 2,7-Dibromo-9H-carbazole (3)	73
	4.3.1	Thin-Layer Chromatography (TLC)	76
	4.3.2	Fourier Transform Infrared Spectroscopy (FTIR)	76
	4.3.3	Nuclear Magnetic Resonance (NMR)	78
	4.3.4	Scanning Electron Microscopy (SEM)	79
4.4	Synthesis	of 2,7-dibromo-9-hexadecyl-9H-carbazole (4)	80
	4.4.1	Thin-Layer Chromatography (TLC)	83
	4.4.2	Fourier Transform Infrared Spectroscopy (FTIR)	84

	4.4.3	Nuclear Magnetic Resonance (NMR)	85
	4.4.4	Scanning Electron Microscopy (SEM)	88
4.5	Synthesis	s of 4,7-dibromo-2,1,3-benzothiadiazole (5)	89
	4.5.1	Thin-Layer Chromatography (TLC)	93
	4.5.2	Fourier Transform Infrared Spectroscopy (FTIR)	94
	4.5.3	Nuclear Magnetic Resonance (NMR)	95
	4.5.4	Scanning Electron Microscopy (SEM)	96
4.6	Synthesis	s of 4,7-dithien-2-yl-2,1,3-benzothiadiazole (6)	98
	4.6.1	Thin-Layer Chromatography (TLC)	102
	4.6.2	Fourier Transform Infrared Spectroscopy (FTIR)	103
	4.6.3	Nuclear Magnetic Resonance (NMR)	104
	4.6.4	Scanning Electron Microscopy (SEM)	106

CHAPT	ER 5 R	ESULT & DISCUSSION – POLYMER	108
5.1	Preparat di(thiop	ion of Poly[(9-hexadecyl-2,7-carbazole)-alt-(4,7- hen-2-yl) benzo[c][1,2,5]thiadiazole)] (P1)	108
2	5.1.1	Infrared Spectroscopic Studies of Polymer	114
14	5.1.2	Nuclear Magnetic Resonance (NMR) Studies of Polymer	115
5.2	Ultraviole	et-Visible (UV-Vis) Absorption Studies - Optical Bandgap	117

СНАРТЕ	ER 6 CONCLUSION	121
6.1	Conclusions	121
6.2	Future work	122
REFERE	INCES	123

APPENDICES	136

LIST OF TABLES

Table 2.1	Reaction conditions for the synthesis of carbazole- based and benzothiadiazole-based polymers via direct arylation polymerization	42
Table 3.1	Chemical used for the experiments	44
Table 4.1	Physical properties of 4,4'-dibromo-2,2'-dinitrobipheny	60
Table 4.2	The vibrational frequencies of 2,5- dibromonitrobenzene and 4,4'-dibromo-2,2'- dinitrobiphenyl	62
Table 4.3	Physical properties of 4,4'-dibromo-2,2'- diaminobiphenyl	69
Table 4.4	The vibrational frequencies of 4,4'-dibromo-2,2'- dinitrobiphenyl and 4,4'-dibromo-2,2'-diaminobiphenyl	71
Table 4.5	Physical properties of 2,7-dibromo-9H-carbazole	75
Table 4.6	The vibrational frequencies of 4,4'-dibromo-2,2'- diaminobiphenyl and 2,7-dibromo-9H-carbazole	77
Table 4.7	Physical properties of 2,7-dibromo-9-hexadecyl- carbazole	83
Table 4.8	The vibrational frequencies of 2,7-dibromo-9H- carbazole, 1-bromohexadecane, and 2,7-dibromo-9- hexadecyl-carbazole	85
Table 4.9	Physical properties of 4.7-dibromo-2,1,3- benzothiadiazole	93

- Table 4.10The vibrational frequencies of 2,1,3-benzothiadiazole95and 4,7-dibromo-2,1,3-benzothiadiazole95
- Table 4.11Direct arylation coupling of DBrBT with Ts under100different mole ratio
- Table 4.12Physical properties of 4,7-di(2-thienyl)-2,1,3-102benzothiadiazole
- Table 4.13The vibrational frequencies of 4,7-dibromo-2,1,3-
benzothiadiazole104
and104
4,7-di(2-thienyl)-2,13-
benzothiadiazole
- Table 5.1The vibrational frequencies of Poly[(9-hexadecyl-9H-115carbazole)-alt-(4,7-di(2-thienyl)-2,1,3-benzothiadiazole)]

Table 5.2 Optical properties of polymer 119 UNIVERSITI MALAYSIA SABAH

LIST OF FIGURES

Figure 1.1	Conventional Cross Coupling VS Direct Arylation Polymerization	3
Figure 1.2	The chemical structure of Poly[N-9'-Heptadecanyl-2,7- carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'- benzothiadiazole)] (PCDTBT)	4
Figure 1.3	General Procedure to Prepare Monomers	7
Figure 2.1	Diagram of Organic and Inorganic Solar Cells Category	9
Figure 2.2	Metal-Insulator-Metal Structure	11
Figure 2.3	Architecture of a typical bulk heterojunction polymer solar cell device	12
Figure 2.4	Current-voltage (I-V) curve of a solar cell	13
Figure 2.5	Chemical structures of PCBM and PC ₇₁ BM	20
Figure 2.6	Lowering of bandgap by Donor-Acceptor interaction	22
Figure 2.7	Chemical structures of carbazole with different substituted pattern	23
Figure 2.8	Chemical structures of BT and DTBT	24
Figure 2.9	Catalytic cycle for carboxylate-mediated direct (hetero)arylation	28
Figure 2.10	Homocoupling defect	29

Figure 2.11	Branching defect	30
Figure 2.12	Cross-linking defect	30
Figure 2.13	End group defect	31
Figure 2.14	Residual metal defect	32
Figure 2.15	Chemical structures of polymers P1- P25 synthesized by DArP	41
Figure 3.1	Mel-Temp melting point apparatus	53
Figure 3.2	Perkin Elmer Fourier Transform Infrared Spectrometer	53
Figure 3.3	JEOL ECA 600 Spectrometer	54
Figure 3.4	Scanning Electron Microscope (SEM)	55
Figure 3.5	SEM sputter coating system	55
Figure 3.6	Agilent Cary 60 UV-Vis Spectrophotometer SIA SABAH	56
Figure 4.1	(a) The filtered out green colour cuprous bromide, CuBr by-product; and (b) 4,4'-dibromo-2,2'- dinitrobiphenyl in crystal form	59
Figure 4.2	The TLC plate showing (a) 2,5-dibromonitrobenzene and (b) 4,4'-dibromo-2,2'-dinitrobiphenyl spots under ultraviolet light	60
Figure 4.3	The FTIR spectra of (a) 2,5-dibromonitrobenzene and (b) 4,4'-dibromo-2,2'-dinitrobiphenyl	61
Figure 4.4	The 1 H-NMR spectrum of 4,4'-dibromo-2,2'- dinitrobiphenyl in CDCl ₃ . (a) Full spectrum (b) Expanded spectrum	63

Figure 4.5	The ¹³ C-NMR spectrum of 4,4'-dibromo-2,2'- dinitrobiphenyl	64
Figure 4.6	SEM images of 4,4'-dibromo-2,2'-dinitrobiphenyl crystal at magnification of (a) 1000x and (b) 2000x	65
Figure 4.7	(a) Hydroxide of tin precipitated from the solution upon the addition of NaOH; and (b) Purified 4,4'-dibromo-2,2'-diaminobiphenyl	68
Figure 4.8	The TLC plate showing (a) 4,4'-dibromo-2,2'- dinitrobiphenyl and (b) 4,4'-dibromo-2,2'- diaminobiphenyl spots under ultraviolet light	69
Figure 4.9	The FTIR spectra of (a) 4,4'-dibromo-2,2'- dinitrobiphenyl and (b) 4,4'-dibromo-2,2'- diaminobiphenyl	70
Figure 4.10	The ¹ H-NMR spectrum of 4,4'-dibromo-2,2'- diaminobiphenyl	71
Figure 4.11	The ¹³ C-NMR of 4,4'-dibromo-2,2'-diaminobiphenyl	72
Figure 4.12	SEM images of 4,4'-dibromo-2,2'-diaminobiphenyl at magnification of (a) 500x and (b) 1000x	73
Figure 4.13	(a) Short silica gel column and (b) 2,7-dibromo-9H- carbazole	75
Figure 4.14	The TLC plate showing (a) 4,4'-dibromo-2,2'- diaminobiphenyl and 2,7-dibromo-9H-carbazole (3) under UV light	76
Figure 4.15	The TLC plate showing (a) 4,4'-dibromo-2,2'- diaminobiphenyl and 2,7-dibromo-9H-carbazole (3) under UV light	77
Figure 4.16	¹ H-NMR spectrum of 2,7-dibromo-9H-carbazole	78

Figure 4.17	Proton-decoupled ¹³ C-NMR spectrum of 2,7-dibromo- 9H-carbazole	79
Figure 4.18	SEM images of 2,7-dibromo-9H-carbazole at magnification of (a) 400x and (b) 1000x	80
Figure 4.19	2,7-dibromo-9-hexadecyl-carbazole	82
Figure 4.20	TLC plate showing (a) 2,7-dibromo-9H-carbazole and (b) 2,7-dibromo-9-hexadecyl-9H-carbazole	83
Figure 4.21	The FTIR spectra of (a) 2,7-dibromo-9H-carbazole (b) 1-bromohexadecane and (c) 2,7-dibromo-9- hexadecyl-9H-carbazole	84
Figure 4.22	¹ H-NMR spectra of 2,7-dibromo-9-hexadecyl-9H- carbazole. (a) Full view (b) Expanded view in range of 7.2-7.9 ppm and (c) Expanded view in range of 0.0- 4.2 ppm	87
Figure 4.23	The proton-decoupled ¹³ C-NMR spectrum of 2,7- dibromo-9-hexadecyl-9H-carbazole	88
Figure 4.24	SEM images of 2,7-dibromo-9-hexadecyl-9H-carbazole at magnification of (a) 100x and (b) 500x	89
Figure 4.25	White suspension formed upon the addition of water	92
Figure 4.26	4,7-dibromo-2,1,3-benzothiadiazole recrystallized from (a) toluene/ethanol and (b) chloroform/hexane	92
Figure 4.27	The TLC plate showing (a) 2,1,3-benzothiadiazole and (b) 4,7-dibromo-2,1,3-benzothiadiazole spots under ultraviolet light	93
Figure 4.28	The FTIR spectra of (a) 2,1,3-benzothiadiazole and (b) 4,7-dibromo- 2,1,3-benzothiadiazole	94

Figure 4.29	The ¹ H-NMR spectrum of 4,7-dibromo- 2,1,3- benzothiadiazole	95
Figure 4.30	The ¹³ C-NMR spectrum of 4,7-dibromo- 2,1,3- benzothiadiazole	96
Figure 4.31	SEM images of 4,7-dibromo-2,1,3-benzothiadiazole at magnification of (a) 100x and (b) 500x	97
Figure 4.32	(a) Silica gel column chromatography; and (b) Purified 4,7-di(2-thienyl)-2,1,3-benzothiadiazole	101
Figure 4.33	4,7-di(2-thienyl)-2,1,3-benzothiadiazole recrystallized from hexane	101
Figure 4.34	The TLC plate showing (a) 4,7-dibromo-2,1,3- benzothiadiazole and (b) 4,7-dithien-2-yl-2,1,3- benzothiadiazole under 365 nm UV light	102
Figure 4.35	The FTIR spectra of (a) 4,7-dibromo-2,1,3- benzodithiazole and (b) 4,7-dithien-2-yl-2,1,3- benzodithiazole	103
Figure 4.36	The ¹ H-NMR spectra of 4,7-dithienyl-2,1,3- benzothiadiazole in CDCl ₃ ; (a) Full spectrum and (b) Expanded spectrum	105
Figure 4.37	The proton-decoupled ¹³ C-NMR spectrum of 4,7- dithienyl-benzothiadiazole	106
Figure 4.38	SEM images of 4,7-dithien-2-yl-2,1,3-benzothiadiazole crystal at magnification of (a) 100x and (b) 500x	107
Figure 5.1	Addition of polymer sample to an excess of methanol for polymer precipitation	111
Figure 5.2	Soxhlet thimble immersed in the extraction solvent	112
Figure 5.3	Precipitation of polymer	113

Figure 5.4	Dark purple precipitate of polymer	113
Figure 5.5	FTIR spectrum of Poly[(9-hexadecyl-9H-carbazole)- alt-(4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole)]	114
Figure 5.6	¹ H-NMR spectrum of Poly[(9-hexadecyl-9H-carbazole)- alt-(4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole)]. Peak marked with X is the residual methanol left after precipitation	117
Figure 5.7	UV-Vis absorption spectrum of polymer in chloroform solution	118
Figure 5.8	Drop-casted solid film of PCbz-DTBT	119
Figure 5.9	UV-Vis absorption spectrum of polymer cast on a glass substrate	120
	DIMS	

UNIVERSITI MALAYSIA SABAH

LIST OF SCHEMES

Page

Scheme 1.1	Synthesis of poly[(9-hexadecyl-carbazole)-alt-(4,7- di(2-thienyl)-2,1,3-benzothiadiazole)] by direct arylation polymerization	6
Scheme 1.2	Preparation of carbazole-based monomer	6
Scheme 1.3	Preparation of benzothiadiazole-based monomer	6
Scheme 4.1	The preparation of 4,4'-dibromo-2,2'-dinitrobiphenyl	57
Scheme 4.2	The ionic mechanism for the Ullmann coupling of 2,5-dibromonitrobenzene	58
Scheme 4.3	The preparation of 4,4'-dibromo-2,2'- diaminobiphenyl	66
Scheme 4.4	Mechanism for the reduction of nitro group to amine	67
Scheme 4.5	Mechanism for the reduction of 4,4'-dibromo-2,2'- dinitrobiphenyl to 4,4'-dibromo-2,2'-diaminobiphenyl	68
Scheme 4.6	The preparation of 2,7-dibromo-9H-carbazole	74
Scheme 4.7	Plausible mechanism for the intramolecular cyclization of 4,4'-dibromo-2,2'-diaminobiphenyl into 2,7-dibromo-9H-carbazole	74
Scheme 4.8	The preparation of 2,7-dibromo-9-hexadecyl- carbazole	81

Scheme 4.9	Proposed mechanism for the <i>N</i> -alklyation of dibromocarbazole under phase-transfer catalyst condition	82
Scheme 4.10	The preparation of 4,7-dibromo-2,1,3- benzothiadiazole	90
Scheme 4.11	The generation of bromonium ion electrophile (Br ⁺) from N- bromosuccinimide (NBS)	90
Scheme 4.12	Electrophilic bromination of 2,1,3-benzothiadiazole	91
Scheme 4.13	The preparation of 4,7-di(2-thienyl)-2,1,3- benzothiadiazole	98
Scheme 4.14	Mechanism for cross coupling of thiophene and 4,7- dibromo-2,1,3-benzothiadiazole under phosphine- free condition	99
Scheme 5.1	The preparation of poly[(9-hexadecyl-2,7-carbazole)- alt-(4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole)] (P1) from 2,7-dibromo- 9-hexadecyl-carbazole (4) and 4,7-di(2-thienyl)- 2,1,3-benzothiadiazole (6)	108
Scheme 5.2	Proposed mechanism for the palladium-catalysed	110

Scheme 5.2Proposed mechanism for the palladium-catalysed110direct arylation of 2,7-dibromo-9-hexadecylcarbazolewith 4,7-di(thiophen-2-yl)benzo[C][1,2,5]thiadiazole110

LIST OF SYMBOLS AND ABBREVIATIONS

%	Percentage
*	Multiplication
\sim	Similarity
°C	Degree celsius
П	Pi
α	Alpha
β	Beta
δ	Delta
λ	Lambda
(<i>o</i> -MeOPh)₃P	Tris(2-methoxyphenyl)phosphine
внэ	Bulk heterojunction
brs	Broad singlet
C-Br	Carbon-bromine bond
Cbz	Carbazole
С-Н	Carbon-hydrogen bond
CHCl₃	Chloroform
C-I	Carbon-iodine bond
CMD	Concerted metalation-deprotonation
Cs ₂ CO ₃	Cesium carbonates
DArP	Direct arylation polymerization
DBrBT	4,7-dibromo-2,1,3-benzothiadiazole

DMAc	Dimethylacetamide
DMF	Dimethylforamide
DTBT	4,7-di(2-thienyl)-2,1,3-benzothiadiazole
Eg ^{opt}	Optical band gap
eV	Electronvolt
FF	Fill factor
FTIR	Fourier Transform Infrared
g	Grams
GPC	Gel permeation chromatography
H ₂ SO ₄	Sulphuric acid
номо	Highest occupied molecular orbital
HPCy ₃ BF ₄	Tricyclohexylphosphine tetrafluoroborate
ІТО	Indium tin oxide
Jsc	Short circuit current
K ₂ CO ₃	Potassium carbonates
КОАс	Potassium acetate
LUMO	Lowest unoccupied molecular orbital
M _n	Number average molecular weight
Na ₂ SO ₄	Sodium sulphate
NBS	N-bromosuccinimide
NDA	Neodecanoic acid
nm	Nanometer
NOE	Nuclear overhauser enhancement