# DEVELOPMENT OF NEAR-SEA-LEVEL LANGLEY CALIBRATION ALGORITHM FOR AEROSOL OPTICAL DEPTH MEASUREMENT



# SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2014

# DEVELOPMENT OF NEAR-SEA-LEVEL LANGLEY CALIBRATION ALGORITHM FOR AEROSOL OPTICAL DEPTH MEASUREMENT

**JACKSON CHANG HIAN WUI** 

# THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

# SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2014

## DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been dully acknowledged.

26 February 2014

Jackson Chang HianWui PS2011-8036



### CERTIFICATION

- NAME : JACKSON CHANG HIAN WUI
- MATRIC NO. : **PS2011-8036**
- TITLE : DEVELOPMENT OF NEAR-SEA-LEVEL LANGLEY CALIBRATION ALGORITHM FOR AEROSOL OPTICAL DEPTH MEASUREMENT
- DEGREE : MASTER OF SCIENCE
- VIVA DATE : 18 FEBRUARY 2014

### **DECLARED BY;**



- 2. Co -SUPERVISOR
  - Dr. Justin Sentian

### ACKNOWLEDGEMENT

I wish to express my deepest gratitude and appreciation to my supervisors, Associate Professor Dr.Jedol Dayou and Dr. Justin Sentian of School of Science and Technology, Universiti Malaysia Sabah who had been patient enough to advise, guide and supervise me towards the completion of this thesis. Their continuous encouragement provided me the necessary impetus to complete the research and publish this thesis in some journals.

My special sense of gratitude is also expressed to my dearest family who had been supporting me throughout the past years particularly in moral and financial support. Finally, I wish to thank all my friends and e-VIBS lab members for their constructive ideas and encouragements throughout my master studies.



#### ABSTRACT

Aerosol optical depth (AOD) represents the total attenuation of solar terrestrial radiation caused by aerosol. In long-term monitoring networks, accurate measurement of AOD is difficult due to the lack of frequent calibration of the spectrometer. This is because conventional Langley calibration is usually performed at high mountains for clear and stable atmosphere and regular access to high altitudes is inefficient in terms of accessibility and economical prospects. Therefore, a near-sea-level Langley calibration algorithm is developed to allow frequent calibration feasible even at low altitude. It uses the combination of Perez-Du Mortier (PDM) model and statistical filter to constrain the Langley extrapolation to get closest possible extraterrestrial constant over a wide range of wavelengths. To further contain the wavelength-dependent error due to varying extraterrestrial constant, the Ratio Langley method is combined with the proposed algorithm to improve the prediction accuracy. In this way, more accurate AOD can be estimated by reanalysis of the calibrated volume spectrum using Beer-Lambert law. A total of 568 useful solar spectral data had been collected using ground-based spectrometer for the validation purposes. It is found that the AODs predicted by the proposed algorithm agree well to the reference values obtained from i-SMARTS model with high linearity and small error <3% for all wavelengths. The consistency of the proposed method is also validated with good resultsover two study areas (n=241) with different location, day, and time. Overall results implied that the application of the proposed algorithm in near-sea-level Langley calibration is proven feasible for AOD measurement.

#### ABSTRAK

# PEMBANGUNAN ALGORITMA PENENTUKURAN LANGLEY BERHAMPIRAN PARAS LAUT BAGIPENGUKURAN KEDALAMN OPTIK AEROSOL

Kedalaman optik aerosol (AOD) mewakili jumlah penyusutan sinaran cahaya daratan yang disebabkan oleh aerosol. Dalam pemantauan jangka panjang, pengukuran AOD yang tepat adalah sukar kerana penentukuran kerap spektrometer jarang dilakukan. Ini adalah disebabkan kaedah konvensional penentukuran Langley biasanya dilakukan di gunung yang tinggi untuk suasana jelas dan stabil tetapi akses ke kawasan tanah tinggi adalah tidak cekap dari segi kemudahan dan ekonomi. Oleh itu, objektif utama tesis ini adalah untuk membina algoritma penentukuran Langley di tapak berhampiran paras laut bagi pengukuran AOD supaya penentukuran kerap boleh dilaksanakan walaupun di kawasan rendah. Algorithma ini menggunakan gabungan model Perez-Du Mortier (PDM) dan penapis statistik untuk mengekang ekstrapolasi Langley bagi mendapatkan pemalar ruang angkasa yang setepat mungkin dalam pelbagai panjang gelombang. Seterusnya, untuk mengawal ralat hasil daripada respon instrumen fasid, kaedah Nisbah Langley telah digabungkan dengan algoritma tersebut untuk meningkatkan ketepatan ramalan. Melalui cara ini, nilai AOD yang lebih jitu boleh dianggarkan dengan menganalisis semula data spektral yang telah ditentukur menggunakan Hukum Beer-Lambert. Dalam kajian ini, sebanyak 568 data solar spektral telah dikumpulkan dengan menggunakan spektrometer berasaskan tanah bagi tujuan pengesahan. Ia didapati bahawa hasil ramalan AODs bersetuju baik dengan nilainilai rujukan yang diperolehi daripada model i-SMARTS dengan kolerasi tinggi dan ralat kecil <3% bagi semua panjang gelombang. Algorithma ini juga telah disahkan konsisten dengan keputusan yang baik pada dua kawasan kajian (n=241) yang berlainan dari segi lokasi, hari, dan masa. Keseluruhannya, keputusan kajian ini menyimpulkan bahawa penggunaanalgoritmadalam penentukuran Langley pada kawasan berhampiranlaut terbukti sesuai bagi pengukuranAOD.

## **TABLE OF CONTENTS**

|                                                                | Page   |
|----------------------------------------------------------------|--------|
| TITLE                                                          | i      |
| DECLARATION                                                    | ii     |
| CERTIFICATION                                                  | iii    |
| ACKNOWLEDGEMENT                                                | iv     |
| ABSTRACT                                                       | v      |
| ABSTRAK                                                        | vi     |
| TABLE OF CONTENTS                                              | vii    |
| LIST OF TABLES                                                 | х      |
| LIST OF FIGURES                                                | xii    |
| LIST OF SYMBOLS                                                | xv     |
|                                                                | 1      |
| 1.1 Aerosol Basic: Definition Sources and Size Distributions   | 1      |
| 1.2 Impacts of Atmospheric Aerosol on Climate and Human Health | 4      |
| 1.2 Impacts of Adhospheric Acrosol Effects on Climate          | 4      |
| 1.2.2 Aerosol Human Health Effects                             | י<br>5 |
| 1.3 Measurement of Aerosol Optical Depth                       | 6      |
| 1.4 Problem Statement                                          | 7      |
| 1.5 Research Objective                                         | 9      |
| 1.6 Thesis Contribution                                        | 9      |
| 1.7 Thesis Arrangement                                         | 10     |
|                                                                | 10     |
| CHAPTER 2: LITERATURE REVIEW                                   | 12     |
|                                                                | 12     |
| 2.2 Fundamental Theory of Aerosol Absorption and Scattering    | 12     |
| 2.2.1 Optical Properties of an Ensemble Spherical Particle     | 15     |
| 2.3 Review of Aerosol Optical Depth Retrieval Method           | 17     |
| 2.3.1 Retrieval with Satellite Data                            | 17     |
| 2.3.2 Retrieval with Ground-Based Radiometer                   | 22     |

|     | 2.3.3  | Retrieval with Airborne Radiometer                         | 26 |
|-----|--------|------------------------------------------------------------|----|
|     | 2.3.4  | Retrieval with Lidar                                       | 27 |
| 2.4 | The G  | overning Factors of Aerosol Optical Depth Measurement      | 30 |
|     | 2.4.1  | Sources of Uncertainty                                     | 34 |
|     | 2.4.2  | Economical Aspect                                          | 38 |
| 2.5 | Conve  | entional Langley Calibration Method                        | 40 |
| 2.6 | Histo  | rical Development of Langley Calibration Method            | 44 |
|     | 2.6.1  | Basic Sunphotometry Langley Method                         | 45 |
|     | 2.6.2  | Circumsolar Langley Method                                 | 46 |
|     | 2.6.3  | Cloud-Screened Langley Method                              | 48 |
|     | 2.6.4  | Maximum Value Composite (MVC) Langley Method               | 52 |
|     | 2.6.5  | Comparative Langley Method                                 | 53 |
|     |        |                                                            |    |
| CH/ | APTER  | 3: RESEARCH METHODOLOGY                                    | 56 |
| 3.1 | Intro  | duction                                                    | 56 |
| 3.2 | Prelin | ninary Instrument Testing                                  | 56 |
| l   | 3.2.1  | Wavelength Verification                                    | 59 |
| 2   | 3.2.2  | Spectral Intensity Verification                            | 60 |
| 3.3 | Deve   | opment of Near-Sea-Level Langley Calibration Algorithm     | 61 |
|     | 3.3.1  | Clear-Sky Detection Model                                  | 61 |
|     | 3.3.2  | Statistical Filter                                         | 64 |
| 3.4 | Near-  | Sea-Level Langley Calibration Experiment                   | 64 |
|     | 3.4.1  | Solar Spectral Measurement                                 | 65 |
|     | 3.4.2  | Implementation of the Proposed Calibration Algorithm       | 69 |
|     | 3.4.3  | Retrieval of Spectral AOD                                  | 71 |
| 3.5 | Perfo  | rmance Analysis of the Proposed Algorithm                  | 72 |
|     | 3.5.1  | Validation Analysis using i-SMARTS AOD Inversion Technique | 72 |
|     | 3.5.2  | Consistency Analysis of the Algorithm                      | 74 |
| CH  | APTER  | 4: RESULTS & DISCUSSION                                    | 77 |
| 4.1 | Intro  | duction                                                    | 77 |
| 4.2 | Instru | ument Testing Results                                      | 77 |

|                          | 4.2.1                  | Background Noise Correction                                  | 77  |
|--------------------------|------------------------|--------------------------------------------------------------|-----|
|                          | 4.2.2                  | Wavelength Verification Results                              | 78  |
|                          | 4.2.3                  | Spectral Intensity Verification Results                      | 80  |
| 4.3                      | Langle                 | y Calibration at Near-Sea-Level                              | 81  |
|                          | 4.3.1                  | Determination of Extraterrestrial Constant from Langley Plot | 81  |
|                          | 4.3.2                  | Data Analysis of the Predicted Spectral AOD                  | 86  |
| 4.4                      | Impro                  | oved PDM Algorithm using Ratio Langley Method                | 92  |
|                          | 4.4.1                  | Statistical Comparison between Corrected and Reference AOD   | 93  |
|                          | 4.4.2                  | Overall Uncertainty Analysis of the Proposed Calibration     | 99  |
|                          |                        | Algorithm                                                    |     |
| 4.5                      | Consi                  | stency Analysis of the Improved PDM Calibration Algorithm    | 101 |
|                          |                        |                                                              |     |
| CH/                      | APTER                  | 5: CONCLUSION                                                | 107 |
| 5.1                      | 5.1 Overview 10        |                                                              |     |
| 5.2                      | 5.2 Recommendation 108 |                                                              |     |
|                          | ß                      |                                                              |     |
| REF                      | EREN                   | CES                                                          | 110 |
| LIST OF PUBLICATIONS 121 |                        |                                                              | 121 |
|                          | <u>(</u> \)            |                                                              |     |
|                          | X                      | UNIVERSITI MALAYSIA SABAH                                    |     |
|                          |                        |                                                              |     |

## LIST OF TABLES

|           |                                                                 | Page |
|-----------|-----------------------------------------------------------------|------|
| Table 2.1 | Overall comparisons between AOD retrieval methods.              | 32   |
| Table 2.2 | Sources of uncertainty for each retrieval method.               | 35   |
| Table 2.3 | Estimated cost for each retrieval method based on different     | 38   |
|           | instruments.                                                    |      |
| Table 3.1 | Specification of ASEQ spectrometer.                             | 57   |
| Table 3.2 | Calculation of appropriate resistance loading for each LED.     | 57   |
| Table 3.3 | Spectral information of each LED provided by the                | 60   |
|           | manufacturer ROHM in datasheet.                                 |      |
| Table 3.4 | Perez model classification of sky condition (Djamila et al.,    | 62   |
|           | 2011).                                                          |      |
| Table 3.5 | Du Mortier model classification of sky condition (Zain-         | 63   |
|           | Ahmed et al., 2002).                                            |      |
| Table 4.1 | Comparison of peak wavelength between measured and              | 79   |
| EV -      | reference value.                                                |      |
| Table 4.2 | Resulting Langley plots after PDM and statistical filtration, n | 85   |
| 117       | represents remaining data points where total initial point is   |      |
|           | 730, R2 is correlation coefficient.                             |      |
| Table 4.3 | Determination of calibration factor, k using ASTM G173-03       | 85   |
|           | Reference Spectra.                                              |      |
| Table 4.4 | Truncated data of predicted optical depths using the            | 87   |
|           | proposed calibration algorithm over study area TMT, KK in       |      |
|           | Apr – May 2012 (Total data n=568).                              |      |
| Table 4.5 | Truncated data of reference optical depths simulated using      | 88   |
|           | i-SMARTS model over study area TMT, KK in Apr-May 2012          |      |
|           | (Total data=568).                                               |      |
| Table 4.6 | Statistical comparison between predicted and reference          | 90   |
|           | AODs over study area TMT, KK.                                   |      |
| Table 4.7 | Statistical comparison between corrected and reference          | 94   |
|           | AODs over study area TMT, KK.                                   |      |

| Table 4.8  | Truncated data of error estimation between corrected and      | 96  |
|------------|---------------------------------------------------------------|-----|
|            | reference AODs over study area TMT, KK in Apr-May 2012        |     |
|            | (Total data n=568).                                           |     |
| Table 4.9  | Overall justification of the proposed calibration algorithms. | 100 |
| Table 4.10 | Results comparison with other normally calibrated             | 100 |
|            | spectrometers.                                                |     |
| Table 4.11 | Truncated data of corrected and reference AOD over study      | 102 |
|            | area SST, UMS Kota Kinabalu in Jul-Aug 2012 (Total data       |     |
|            | n=241).                                                       |     |
| Table 4.12 | Statistical comparison between corrected and reference        | 105 |
|            | AODs over study area SST, UMS.                                |     |



# LIST OF FIGURES

|             |                                                                   | Page |
|-------------|-------------------------------------------------------------------|------|
| Figure 1.1  | Idealized number and volume distribution of atmospheric aerosols  | 2    |
| Figure 1.2  | Idealized schematic of the sources and sink of primary and        | 3    |
|             | secondary aerosols                                                |      |
| Figure 2.1  | Simplified visualization of scattering of an incident EM wave     | 13   |
|             | by particle                                                       |      |
| Figure 2.2  | Intrinsic visualisation of transmission of an extraterrestrial    | 17   |
|             | radiation I $\lambda$ ,o through an optical path length s1 and s2 |      |
| Figure 2.3  | This map is based on data from the Moderate Resolution            | 20   |
|             | Imaging Spectroradiometer (MODIS), shows average aerosol          |      |
|             | amounts around the world for 2007 2011.                           |      |
| Figure 2.4  | Diminution of solar transmission at multiple AOD values from      | 23   |
| B           | 0 to 1. Simulation is based on urban aerosol model over           |      |
| AY 📕        | tropical atmosphere using SMARTS model.                           |      |
| Figure 2.5  | AERONET networks worldwide and CIMEL sunphotometer –              | 24   |
| 217         | adapted from AERONET NASA in                                      |      |
|             | http://aeronet.gsfc.nasa.gov/.                                    |      |
| Figure 2.6  | Idealized Langley plot at 500nm for multiple AOD values.          | 42   |
|             | Simulation is based on urban aerosol model over tropical          |      |
|             | atmosphere using SMARTS model.                                    |      |
| Figure 2.7  | Comparison between the Langley-plot method (left panel)           | 48   |
|             | and the Circumsolar Langley method (right panel) at               |      |
|             | λ=500nm                                                           |      |
| Figure 2.8  | Objective cloud-screening algorithm imposed in Langley            | 50   |
|             | calibration $\lambda$ =500nm                                      |      |
| Figure 2.9  | Langley plot for the MFRSR 500nm channel. Solid circles           | 51   |
|             | represent time periods identified as clear by Long and            |      |
|             | Ackerman clear-sky detection algorithm                            |      |
| Figure 2.10 | Comparison between maximum value composite (MVC)                  | 53   |

|            | Langley method and conventional Langley method at 500nm channel                 |    |
|------------|---------------------------------------------------------------------------------|----|
| Figure 3.1 | Schematic diagram of the LED connection circuit.                                | 58 |
| Figure 3.2 | Central wavelength of the emission lines of LEDs obtained in                    | 60 |
|            | datasheet from SLR-322 series LED lamps manufacturer                            |    |
|            | ROHM.                                                                           |    |
| Figure 3.3 | Flowchart of the near-sea-level calibration scheme.                             | 65 |
| Figure 3.4 | Experimental set-up over the study area Tun Mustapha                            | 66 |
|            | Tower (116°E, 6°N, 7.844m above sea level).                                     |    |
| Figure 3.5 | Shading disc of 0.09m diameter is held 1m parallel from the                     | 68 |
|            | sensor to ensure the shading angle $\Theta$ s to the sensor is the              |    |
|            | same as the viewing angle $\Theta v$ of the sensor.                             |    |
| Figure 3.6 | Flowchart of the implementation of PDM filtration in                            | 70 |
|            | repetitive regression algorithm (RRA).                                          |    |
| Figure 3.7 | Synthetic data of DNI from i-SMARTS.                                            | 74 |
| Figure 3.8 | Experimental set-up over the study area School of Science &                     | 75 |
| er 📑       | Technology, UMS (116°E, 6°N, 20.398m above sea level).                          |    |
| Figure 4.1 | Uncorrected, background noise and corrected spectra of red                      | 78 |
| 2017       | LED spectrum measured by ASEQ spectrometer.                                     |    |
| Figure 4.2 | Comparison of measured and reference spectrum for all LEDs                      | 79 |
|            | in normalized intensity against wavelength.                                     |    |
| Figure 4.3 | Evolution spectra pattern at different values of current in mA                  | 80 |
|            | for all LEDs (a) red, (b) orange, (c) yellow, (d) green.                        |    |
| Figure 4.4 | Correlation analysis for normalized luminous intensity at                       | 81 |
|            | different current in mA for all LEDs (a) red, (b) orange, (c)                   |    |
|            | yellow, and (d) green.                                                          |    |
| Figure 4.5 | Langley plot at 470nm (a) before filtration, after filtration                   | 84 |
|            | using (b) Perez-Du Mortier model (NI $\geq$ 0.92 and $\epsilon \geq$ 1.55), and |    |
|            | (c) statistical filtration.                                                     |    |
| Figure 4.6 | Langley plot at (a) 500nm, (b) 550nm, and (c) 660nm after                       | 84 |
|            | Perez-Du Mortier model and statistical filtration.                              |    |
| Figure 4.7 | Histogram plot between predicted and reference AOD values                       | 89 |

|             | at (a) 470nm, (b) 500nm, (c) 550nm, and (d) 660nm over        |     |
|-------------|---------------------------------------------------------------|-----|
|             | study area TMT, KK.                                           |     |
| Figure 4.8  | Scatter plot between predicted and reference AOD at           | 90  |
|             | multiple wavelength (a) 470nm, (b)500nm, (c) 550nm, and       |     |
|             | (d) 660nm over study area TMT, KK.                            |     |
| Figure 4.9  | Variation of extraterrestrial constant plotted against number | 91  |
|             | of observation at multiple wavelengths.                       |     |
| Figure 4.10 | Frequency distribution of corrected and reference AOD for     | 94  |
|             | multiple wavelength (a) 470nm, (b) 500nm, (c) 550nm, and      |     |
|             | (d) 660nm over study area TMT, KK.                            |     |
| Figure 4.11 | Correlation analysis between corrected and reference AOD at   | 95  |
|             | multiple wavelength (a) 470nm, (b) 500nm, (c) 550nm, and      |     |
|             | (d) 660nm over study area TMT, KK.                            |     |
| Figure 4.12 | Histogram of FB values between corrected and reference        | 97  |
| Æ           | AODs for multiple wavelengths (a) 470nm, (b) 500nm, (c)       |     |
| - AR        | 550nm, and (d) 660nm over study area TMT, KK.                 |     |
| Figure 4.13 | Fluctuation of relative error in corrected AODs over study    | 98  |
| R           | area TMT, KK. The dotted line represents baseline of          |     |
| 2017        | acceptable error (±0.03).                                     |     |
| Figure 4.14 | Frequency distribution of corrected and reference AOD for     | 103 |
|             | multiple wavelength (a) 470nm, (b) 500nm, (c) 550nm, and      |     |
|             | (d) 660nm over study area SST, UMS.                           |     |
| Figure 4.15 | Correlation analysis between corrected and reference AOD at   | 104 |
|             | multiple wavelength (a) 470nm, (b) 500nm, (c) 550nm, and      |     |
|             | (d) 660nm over study area SST, UMS.                           |     |
| Figure 4.16 | Histogram of FB values between corrected and reference        | 104 |
|             | AODs for multiple wavelengths (a) 470nm, (b) 500nm, (c)       |     |
|             | 550nm, and (d) 660nm over study area SST, UMS.                |     |

## LIST OF SYMBOLS

d Diameter of aerosol particle  $E^{i}$ Parallel components of incident electrical field  $\boldsymbol{E}^{i}_{r}$ Perpendicular components of incident electrical field E<sup>s</sup>, Parallel components of scattered electrical field E<sup>s</sup>r Perpendicular components of scattered electrical field Amplitude scattering function S(**θ**)  $\pi_n/\overline{\upsilon}_n(\cos\theta)$ Mie angular function  $\boldsymbol{P}^{1}_{n}$ Legendre polynomials Scattering coefficient in the function of size parameter xa<sub>n</sub>/b<sub>n</sub> I,Q,V,UStoke parameters Scattering cross-section of the particle  $\sigma_{s}$ Radius of the particle r Efficiencies of extinction due to particle  $Q_e$ Efficiencies of scattering due to particle **Q**₅ Efficiencies of absorption due to particle **Q**<sub>a</sub> Size parameter of particle X Size distribution of particle N(r)Volumeextinction coefficients due to particle Ke Ks Volumescattering coefficients due to particle Ka Volumeabsorption coefficients due to particle Extraterrestrial irradiance at top-of-atmosphere at wavelength  $\lambda$ I<sub>ο,λ</sub> 5 Optical path length **P(r)** Received power lidar signal at range r  $P_o(r)$ Transmitted power lidar signal at time  $t_{o}$  and range r Velocity of light С Pulse duration of lidar signal η Effective system received area of lidar signal A Range of lidar signal r **B(r)** Volume backscatter coefficient of the atmosphere Attenuation coefficient of the atmosphere *σ*(*r*)

| φ                                                  | Backscatter-extinction coefficient ratio                                       |
|----------------------------------------------------|--------------------------------------------------------------------------------|
| 5                                                  | Distance-corrected backscattered lidar power                                   |
| τ                                                  | Extinction coefficient                                                         |
| h                                                  | Height                                                                         |
| a                                                  | Angstrom's exponent of particle size                                           |
| β                                                  | Angstrom's coefficient of the number of particles                              |
| λ                                                  | Wavelength                                                                     |
| $I_{\lambda}$                                      | Direct normal irradiance at ground at wavelength $\lambda$                     |
| R                                                  | Earth-to-Sun distance in astronomical unit (au)                                |
| $\boldsymbol{\mathcal{T}}_{\mathcal{T},\lambda,i}$ | Total optical depth of the <i>i-th</i> scatterer at wavelength $\lambda$       |
| <b>m</b> <sub>i</sub>                              | Optical air mass of the <i>i-th</i> scatterer                                  |
| $\mathcal{T}_{\mathcal{R},\lambda,i}$              | Rayleigh optical depth of the <i>i-th</i> scatterer at wavelength $\lambda$    |
| <b>Τ</b> <sub>ο,λ,i</sub>                          | Ozone optical depth of the <i>i-th</i> scatterer at wavelength $\lambda$       |
| <b>Τ</b> <sub>a,λ,i</sub>                          | Aerosol optical depth of the <i>i-th</i> scatterer at wavelength $\lambda$     |
| $\mathcal{T}_{g,\lambda,i}$                        | Trace gases optical depth of the <i>i-th</i> scatterer at wavelength $\lambda$ |
| P                                                  | Site's atmospheric pressure                                                    |
| p <sub>o</sub>                                     | Mean atmospheric pressure at sea-level                                         |
| H 🔍 🔪 📷                                            | Altitude from sea-level                                                        |
| C.                                                 | Ozone concentration in Dobson unit (DU)                                        |
| P                                                  | Uncalibrated pixel ERSITI MALAYSIA SABAH                                       |
| Po                                                 | Extrapolated of uncalibrated pixels at zero air mass                           |
| Po(avg)                                            | Average of extrapolated of uncalibrated pixels at zero air mass                |
| п                                                  | Number of observation                                                          |
| k                                                  | Calibration factor                                                             |
| Τ                                                  | Transmission of light passing through medium                                   |
| 1                                                  | Thickness of medium                                                            |
| Z                                                  | Angle of the beam of primary illumination                                      |
| $oldsymbol{arphi}$                                 | Optical index or turbidity optical index                                       |
| <b>F</b> <sup>1</sup>                              | Single scattering approximation of the circumsolar intensity in                |
|                                                    | the almuncantar of the Sun                                                     |
| $\mu_o$                                            | Cosine of solar zenith angle                                                   |
| ø                                                  | Azimuthal angle measured from solar principal plane                            |

| ωο                           | Single scattering albedo                                          |
|------------------------------|-------------------------------------------------------------------|
| P(cos <del>O</del> )         | Normalized phase function at the scattering angle $\Theta$        |
| ΔΩ                           | Solid viewing angle of the radiometer                             |
| F                            | Measured intensity radiation of the Sun                           |
| Fa                           | Measured intensity radiation in the alumcantar of the Sun         |
| Fo                           | Extrapolated of measured intensity radiation at zero air mass     |
| SSR                          | Single scattering ratio                                           |
| $\boldsymbol{\mathcal{U}}_m$ | Air molecules of optical depth                                    |
| m                            | Complex index fraction of aerosol                                 |
| ω                            | Ground albedo                                                     |
| θ                            | Scattering angle                                                  |
| f(r')                        | Relative size distribution of particle radius $r'$                |
| <i>r</i> ′                   | Particle radius                                                   |
| M(t)                         | Multiplier necessary to produce correct size distribution at some |
| and the                      | time <i>t</i>                                                     |
| ψ /2                         | Constant between two wavelengths of aerosol optical depth         |
| Y 🖓 💻                        | Curvature of Angstrom's exponent                                  |
| βμ                           | Aerosol optical depth at wavelength one micron                    |
| v ( Second                   | Voltage supply                                                    |
| V <sub>F</sub>               | Forward voltage VERSITI MALAYSIA SABAH                            |
| I <sub>F</sub>               | Forward current                                                   |
| R                            | Resistance                                                        |
| R <sub>v</sub>               | Variable resistance                                               |
| R <sub>f</sub>               | Fixed resistance                                                  |
| $\lambda_{p}$                | Peak wavelength of the spectrum                                   |
| $\sigma_{\lambda}$           | Bandwidth of the spectrum                                         |
| <b>A</b> <sub>jk</sub>       | Area of the curve at <i>j-th to k-th</i> waveleength              |
| <b>C(</b> λ) <sub>jk</sub>   | Curve spectrum at <i>j-th to k-th</i> waveleength                 |
| <b>I</b> <sub>ed</sub>       | Diffuse horizontal irradiance                                     |
| $I_{eg}$                     | Global horizontal irradiance                                      |
| ε                            | Perez's clearness index                                           |
| NI                           | Du Mortier's nebulosity index                                     |

| <b>I</b> <sub>dir</sub>   | Direct horizontal irradiance                            |
|---------------------------|---------------------------------------------------------|
| Ø <sub>H</sub>            | Solar zenith angle                                      |
| <b>I</b> <sub>d,cl</sub>  | Diffuse illumination                                    |
| CR                        | Cloud ratio                                             |
| Ar                        | Rayleigh scattering coefficient in Perez Model          |
| a <sub>a</sub>            | Solar altitude                                          |
| σ                         | Residual standard deviation                             |
| <b>k<sub>Ray(λ)</sub></b> | Rayleigh scattering coefficient at wavelength $\lambda$ |
| $k_{oz(\lambda)}$         | Ozone absorption cross-section at wavelength $\lambda$  |
| g                         | Asymmetry factor                                        |
| SSA                       | Single scattering albedo                                |
| FB                        | Fractional bias                                         |
| <b>P</b> <sub>pre</sub>   | Predicted value                                         |
| <b>P</b> <sub>ref</sub>   | Reference value                                         |
| RE                        | Relative error                                          |
| MAE                       | Mean absolute error                                     |
| MAFB                      | Mean absolute fractional bias                           |
| RMSE                      | Root mean square error                                  |
| NRMSE                     | Normalized root mean square error                       |
| R <sup>2</sup> ABA        | Coefficient of correlation TI MALAYSIA SABAH            |

#### **CHAPTER 1**

#### INTRODUCTION

#### **1.1** Aerosol Basic: Definition, Sources, and Size Distributions.

Aerosols are small solid particles or liquid droplets suspended in air or other gases environment. They can be naturally produced or manmade generated. Natural aerosols are emitted into the atmosphere by natural processes such as sea spray, volcanoes eruptions, windblown dust from arid and semi-arid regions, terrestrial biomass burning and others. Meanwhile, manmade aerosol are generated from combustion or emission from industrial, welding, and vehicle exhaust or produced intentionally for commercial uses (i.e. flame reactor aerosol that produces nanoparticles). They have very limited life time of about a few days to one week. Despite their relatively short life times, they regularly travel over long distances via air trajectories. The transport pathways may vary seasonally and interannually depending on the air-mass altitude (Paul *et al.*, 2011).

Since aerosols have irregular shapes (i.e. aggregated, spherical, fibrous, and others), categorizing them is often based on the diameter of an idealized sphere, or better known as particle size. These sizes range from few nanometers to several tens of micrometers. More specifically, the aerosol particles with diameters  $d\leq 0.1\mu$ m belong to the nuclei mode, particles with diameter  $0.1\leq d\leq 2.5\mu$ m belong to the accumulation mode where all of these aerosol also known as fine particles, and particles with  $d\geq 2.5\mu$ m are in the coarse mode. Particles in an aerosol are of the same size is known as monodisperse aerosol and this type of aerosol are normally produced in laboratory for specific purposes. Most aerosols particularly atmospheric aerosols are polydisperse, which have a range of particle sizes. Categorization of these aerosols is based on the use of the particle-size distribution.

Figure **1.1** shows the idealized number and volume density distribution of some atmospheric aerosols. The intermediate between nucleation and accumulation is Aietken mode, which makes up the majority of the aerosol mass. Particles in this size range dominate aerosol direct interaction with sunlight of either scattering or absorbing. Particles at the small end of this size range play significant role in interactions with cloud, whereas particles at the large end contribute significantly near dust and volcanic sources, though of much less numerous. The particles of coarse mode are typically of very minor in number mass but high in volume distribution due to large particle size.



# Figure 1.1: Idealized number and volume distribution of atmospheric aerosols

Source : Huang (2009)

Aerosols may further be divided into two broad categories based on their nature of formation: primary and secondary aerosols. Primary aerosols are directly emitted as particles or liquid into the atmosphere by processes occurring on land or water which could be natural or manmade origin. Sources of primary aerosols are sea spray, windblown desert dust, volcanoes, plant particles, biomass burning, incomplete combustion of fossil fuels and etc. Secondary aerosols, on the other hand, are produced indirectly via atmospheric physical or chemical conversion of gases to particles compounds by nucleation and condensation gases precursors. They are mainly composed of sulphates, carbonaceous particles, nitrates, ammonium and mineral dust of industrial origin (Ghan and Schwartz, 2007).

Figure 1.2 depicts the atmospheric aerosol particle surface weighted by size distribution together with the different mechanisms of aerosol generation. The nuclei range is composed of both primary and secondary aerosols, but physical mechanisms such as condensation and coagulation quickly transform the particle mass from nuclei mode to accumulation mode. These mechanisms are related to their growth and may change their physical and chemical properties (Pöschl, 2005). Besides, the sources and sink for the fine and coarse modes are also different. The fine particles are generally originated from the secondary aerosols and are deposited typically by rain-wash. Meanwhile, the coarse particles are mainly composed of primary aerosols and sink through sedimentation.



# Figure 1.2 : Idealized schematic of the sources and sink of primary and secondary aerosols .

Source : Whitby *et al.* (1972)

#### **1.2 Impacts of Atmospheric Aerosol on Climate and Human Health**

Aerosols exert a variety of impacts on environment depending on their properties such as their concentration, size, structure, and chemical composition (Pöschl, 2005). Unlike greenhouse gases, which possesses long life-time and a near-homogeneous spatial distribution, atmospheric aerosols are highly heterogeneous and have limited lifetime of the order of one week in the lower troposphere (Nair *et al.*, 2012). This is because aerosols undergo various physical and chemical interactions and transformations in the atmosphere due to diffusion and aging processes such as nucleation, coagulation, humidification and gas to particle phase conversion (Chaâbane *et al.*, 2005). These processes change their intrinsic characteristics and thus posing varying effects onenvironment. The two main concerns of aerosol effects are impacts on climate and human health, which are briefly discussed in the following.

#### 1.2.1 Direct and Indirect Aerosol Effects on Climate

In general, aerosol effects on climate can be classified as direct and indirect with respect to radiative forcing of the climate system. Radiative forcing is changes in the energy flux of solar terrestrial radiation in the atmosphere, induced by anthropogenic or natural changes in atmospheric composition, Earth surface properties, or solar activity. Firstly, most of aerosols are highly reflective, they increase the albedo of the earth and thereby cooling the surface and effectively offsetting greenhouse gas warming by about 25% to 50% (Kiehl et al., 2000). This is described as the direct effect which makes the atmosphere brighter when viewed from space since much of Earth's surface is covered by dark oceans and aerosols also scatter visible light backing into space.

Secondly, aerosols in the low atmosphere act as sites at which water vapor can accumulateduring cloud droplet formation, serving as cloud condensation nuclei (CCN). Any change in number concentration or hydroscopic properties of such particle has potential to modify physical and radiative properties of cloud. In this case, the indirect effects of aerosol include an increase in cloud brightness, a reduction in precipitation and an increase in cloud lifetime. These indirect effects were first shown by Twomey (1974) that pollution can lead to an increase in solar radiation reflected by clouds. The influence of aerosol in this matter lies in the mechanism that the process of cloud condensation causes some of the particles in atmosphere to grow into cloud droplets. These growing particles have typically larger cross-sectional area than the nucleating particles. On the whole, the overall effectis a great magnification of the light scattering power of those particles and resulting in a negative radiative forcing at top of atmosphere (TOA) (Lohmann, 2006).

The scattering and absorption of radiation by aerosols can also cause perturbation in Earth's energy balance in a semi-direct effect(Yu *et al.*, 2006). The effects of this are twofold: warming the atmosphere and cooling the surface below. For instance, black carbon or biomass burning aerosols are absorbing aerosols that absorb incident sunlight and re-radiate at infrared wavelength to cause positive radiative forcing and contributing to global warming (Mishchenko *et al.*, 2007). In contrast, negative radiative forcing type aerosols are sulphate, nitratre and organic carbon particles which causes atmospheric and surface cooling by reflecting solar radiation back to space (Myhre *et al.*, 2009). In this way, an overall effect includes of reducing the atmosphere vertical temperature gradient and therefore contributing to the reduction of formation of convective cloud.

# UNIVERSITI MALAYSIA SABAH

Finally, aerosol are also highly interactive with other components of the climate system, for instance, acidification of lakes and forests through the deposition of sulfates and nitrates and reduction of snow and ice albedo through the deposition of black carbon (Ghan and Schwartz, 2007). Also reported in renewable energy application is the most important variable that conditions the accuracy of the predicted spectra under cloudless skies is aerosol optical depth (AOD) (Gueymard, 2008), which directly constitutes the performance of solar photovoltaic technology.

#### 1.2.2 Aerosol Human Health Effects

Excessive inhalation of particulate matter by human is detrimental to asthma, lung cancer, cardiovascular issues, birth defects, and more severely premature death. Large particles are typically filtered in the nose and throat via cilia or mucus but