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ABSTRACT 

 

Aerosol optical depth (AOD) represents the total attenuation of solar terrestrial 

radiation caused by aerosol. In long-term monitoring networks, accurate 

measurement of AOD is difficult due to the lack of frequent calibration of the 

spectrometer. This is because conventional Langley calibration is usually performed 

at high mountains for clear and stable atmosphere and regular access to high 

altitudes is inefficient in terms of accessibility and economical prospects. Therefore, 

a near-sea-level Langley calibration algorithm is developed to allow frequent 

calibration feasible even at low altitude. It uses the combination of Perez-Du 

Mortier (PDM) model and statistical filter to constrain the Langley extrapolation to 

get closest possible extraterrestrial constant over a wide range of wavelengths. To 

further contain the wavelength-dependent error due to varying extraterrestrial 

constant, the Ratio Langley method is combined with the proposed algorithm to 

improve the prediction accuracy. In this way, more accurate AOD can be estimated 

by reanalysis of the calibrated volume spectrum using Beer-Lambert law. A total of 

568 useful solar spectral data had been collected using ground-based spectrometer 

for the validation purposes. It is found that the AODs predicted by the proposed 

algorithm agree well to the reference values obtained from i-SMARTS model with 

high linearity and small error <3% for all wavelengths. The consistency of the 

proposed method is also validated with good resultsover two study areas (n=241) 

with different location, day, and time. Overall results implied that the application of 

the proposed algorithm in near-sea-level Langley calibration is proven feasible for 

AOD measurement.  
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ABSTRAK 

 

PEMBANGUNAN ALGORITMA PENENTUKURAN LANGLEY BERHAMPIRAN 

PARAS LAUT BAGIPENGUKURAN KEDALAMN OPTIK AEROSOL  

 

Kedalaman optik aerosol (AOD) mewakili jumlah penyusutan sinaran cahaya 

daratan yang disebabkan oleh aerosol. Dalam pemantauan jangka panjang, 

pengukuran AOD yang tepat adalah sukar kerana penentukuran kerap 

spektrometer jarang dilakukan. Ini adalah disebabkan kaedah konvensional 

penentukuran Langley biasanya dilakukan di gunung yang tinggi untuk suasana 

jelas dan stabil tetapi akses ke kawasan tanah tinggi adalah tidak cekap dari segi 

kemudahan dan ekonomi. Oleh itu, objektif utama tesis ini adalah untuk membina 

algoritma penentukuran Langley di tapak berhampiran paras laut bagi pengukuran 

AOD supaya penentukuran kerap boleh dilaksanakan walaupun di kawasan rendah. 

Algorithma ini menggunakan gabungan model Perez-Du Mortier (PDM) dan penapis 

statistik untuk mengekang ekstrapolasi Langley bagi mendapatkan pemalar ruang 

angkasa yang setepat mungkin dalam pelbagai panjang gelombang. Seterusnya, 

untuk mengawal ralat hasil daripada respon instrumen fasid, kaedah Nisbah 

Langley telah digabungkan dengan algoritma tersebut untuk meningkatkan 

ketepatan ramalan. Melalui cara ini, nilai AOD yang lebih jitu boleh dianggarkan 

dengan menganalisis semula data spektral yang telah ditentukur menggunakan 

Hukum Beer-Lambert. Dalam kajian ini, sebanyak 568 data solar spektral telah 

dikumpulkan dengan menggunakan spektrometer berasaskan tanah bagi tujuan 

pengesahan. Ia didapati bahawa hasil ramalan AODs bersetuju baik dengan nilai-

nilai rujukan yang diperolehi daripada model i-SMARTS dengan kolerasi tinggi dan 

ralat kecil <3% bagi semua panjang gelombang. Algorithma ini juga telah disahkan 

konsisten dengan keputusan yang baik pada dua kawasan kajian (n=241) yang 

berlainan dari segi lokasi, hari, dan masa. Keseluruhannya, keputusan kajian ini 

menyimpulkan bahawa penggunaanalgoritmadalam penentukuran Langley pada 

kawasan berhampiranlaut terbukti sesuai bagi pengukuranAOD. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Aerosol Basic: Definition, Sources, and Size Distributions. 

Aerosols are small solid particles or liquid droplets suspended in air or other gases 

environment. They can be naturally produced or manmade generated. Natural 

aerosols are emitted into the atmosphere by natural processes such as sea spray, 

volcanoes eruptions, windblown dust from arid and semi-arid regions, terrestrial 

biomass burning and others. Meanwhile, manmade aerosol are generated from 

combustion or emission from industrial, welding, and vehicle exhaust or produced 

intentionally for commercial uses (i.e. flame reactor aerosol that produces 

nanoparticles). They have very limited life time of about a few days to one week. 

Despite their relatively short life times, they regularly travel over long distances via 

air trajectories. The transport pathways may vary seasonally and interannually 

depending on the air-mass altitude (Paul et al., 2011).  

 

Since aerosols have irregular shapes (i.e. aggregated, spherical, fibrous, and 

others), categorizing them is often based on the diameter of an idealized sphere, or 

better known as particle size. These sizes range from few nanometers to several 

tens of micrometers. More specifically, the aerosol particles with diameters 

d≤0.1μm belong to the nuclei mode, particles with diameter 0.1≤d≤2.5μm belong 

to the accumulation mode where all of these aerosol also known as fine particles, 

and particles with d≥2.5μm are in the coarse mode. Particles in an aerosol are of 

the same size is known as monodisperse aerosol and this type of aerosol are 

normally produced in laboratory for specific purposes. Most aerosols particularly 

atmospheric aerosols are polydisperse, which have a range of particle sizes. 

Categorization of these aerosols is based on the use of the particle-size distribution.  

 

 

 



 

2 

Figure 1.1 shows the idealized number and volume density distribution of 

some atmospheric aerosols. The intermediate between nucleation and accumulation 

is Aietken mode, which makes up the majority of the aerosol mass. Particles in this 

size range dominate aerosol direct interaction with sunlight of either scattering or 

absorbing. Particles at the small end of this size range play significant role in 

interactions with cloud, whereas particles at the large end contribute significantly 

near dust and volcanic sources, though of much less numerous. The particles of 

coarse mode are typically of very minor in number mass but high in volume 

distribution due to large particle size.  

 

 

 

Figure 1.1: Idealized number and volume distribution of atmospheric  

aerosols  

Source       :   Huang (2009) 

 

Aerosols may further be divided into two broad categories based on their 

nature of formation: primary and secondary aerosols. Primary aerosols are directly 

emitted as particles or liquid into the atmosphere by processes occurring on land or 

water which could be natural or manmade origin. Sources of primary aerosols are 

sea spray, windblown desert dust, volcanoes, plant particles, biomass burning, 
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incomplete combustion of fossil fuels and etc. Secondary aerosols, on the other 

hand, are produced indirectly via atmospheric physical or chemical conversion of 

gases to particles compounds by nucleation and condensation gases precursors. 

They are mainly composed of sulphates, carbonaceous particles, nitrates, 

ammonium and mineral dust of industrial origin (Ghan and Schwartz, 2007).  

 

Figure 1.2 depicts the atmospheric aerosol particle surface weighted by size 

distribution together with the different mechanisms of aerosol generation. The 

nuclei range is composed of both primary and secondary aerosols, but physical 

mechanisms such as condensation and coagulation quickly transform the particle 

mass from nuclei mode to accumulation mode. These mechanisms are related to 

their growth and may change their physical and chemical properties (Pöschl, 2005). 

Besides, the sources and sink for the fine and coarse modes are also different. The 

fine particles are generally originated from the secondary aerosols and are 

deposited typically by rain-wash. Meanwhile, the coarse particles are mainly 

composed of primary aerosols and sink through sedimentation.  

 

 

 

Figure 1.2 :  Idealized schematic of the sources and sink of primary and 

secondary aerosols . 

Source        : Whitby et al. (1972) 
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1.2 Impacts of Atmospheric Aerosol on Climate and Human Health 

Aerosols exert a variety of impacts on environment depending on their properties 

such as their concentration, size, structure, and chemical composition (Pöschl, 

2005). Unlike greenhouse gases, which possesses long life-time and a near-

homogeneous spatial distribution, atmospheric aerosols are highly heterogeneous 

and have limited lifetime of the order of one week in the lower troposphere (Nair et 

al., 2012). This is because aerosols undergo various physical and chemical 

interactions and transformations in the atmosphere due to diffusion and aging 

processes such as nucleation, coagulation, humidification and gas to particle phase 

conversion (Chaâbane et al., 2005). These processes change their intrinsic 

characteristics and thus posing varying effects onenvironment. The two main 

concerns of aerosol effects are impacts on climate and human health, which are 

briefly discussed in the following.  

 

1.2.1 Direct and Indirect Aerosol Effects on Climate 

In general, aerosol effects on climate can be classified as direct and indirect with 

respect to radiative forcing of the climate system. Radiative forcing is changes in 

the energy flux of solar terrestrial radiation in the atmosphere, induced by 

anthropogenic or natural changes in atmospheric composition, Earth surface 

properties, or solar activity. Firstly, most of aerosols are highly reflective, they 

increase the albedo of the earth and thereby cooling the surface and effectively 

offsetting greenhouse gas warming by about 25% to 50%(Kiehl et al., 2000). This 

is described as the direct effect which makes the atmosphere brighter when viewed 

from space since much of Earth’s surface is covered by dark oceans and aerosols 

also scatter visible light backing into space. 

 

 Secondly, aerosols in the low atmosphere act as sites at which water vapor 

can accumulateduring cloud droplet formation, serving as cloud condensation nuclei 

(CCN). Any change in number concentration or hydroscopic properties of such 

particle has potential to modify physical and radiative properties of cloud. In this 

case, the indirect effects of aerosol include an increase in cloud brightness, a 

reduction in precipitation and an increase in cloud lifetime. These indirect effects 

were first shown by Twomey (1974) that pollution can lead to an increase in solar 
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radiation reflected by clouds. The influence of aerosol in this matter lies in the 

mechanism that the process of cloud condensation causes some of the particles in 

atmosphere to grow into cloud droplets. These growing particles have typically 

larger cross-sectional area than the nucleating particles. On the whole, the overall 

effectis a great magnification of the light scattering power of those particles and 

resulting in a negative radiative forcing at top of atmosphere (TOA) (Lohmann, 

2006).  

 

 The scattering and absorption of radiation by aerosols can also cause 

perturbation in Earth’s energy balance in a semi-direct effect(Yu et al., 2006). The 

effects of this are twofold: warming the atmosphere and cooling the surface below. 

For instance, black carbon or biomass burning aerosols are absorbing aerosols that 

absorb incident sunlight and re-radiate at infrared wavelength to cause positive 

radiative forcing and contributing to global warming (Mishchenko et al., 2007). In 

contrast, negative radiative forcing type aerosols are sulphate, nitratre and organic 

carbon particles which causes atmospheric and surface cooling by reflecting solar 

radiation back to space (Myhre et al., 2009). In this way, an overall effect includes 

of reducing the atmosphere vertical temperature gradient and therefore 

contributing to the reduction of formation of convective cloud.  

 

Finally, aerosol are also highly interactive with other components of the 

climate system, for instance, acidification of lakes and forests through the 

deposition of sulfates and nitrates and reduction of snow and ice albedo through 

the deposition of black carbon (Ghan and Schwartz, 2007). Also reported in 

renewable energy application is the most important variable that conditions the 

accuracy of the predicted spectra under cloudless skies is aerosol optical depth 

(AOD) (Gueymard, 2008), which directly constitutes the performance of solar 

photovoltaic technology.  

 

1.2.2 Aerosol Human Health Effects 

Excessive inhalation of particulate matter by human is detrimental to asthma, lung 

cancer, cardiovascular issues, birth defects, and more severely premature death. 

Large particles are typically filtered in the nose and throat via cilia or mucus but 


