EFFECTS OF CARBON/NITROGEN COMPOST RATIO ON ASIATICOSIDE AND MADECASSOSIDE CONTENT AND MORPHOLOGICAL TRAITS OF PEGAGA (*Centella asiatica*)

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2014

EFFECTS OF CARBON/NITROGEN COMPOST RATIO ON ASIATICOSIDE AND MADECASSOSIDE CONTENT AND MORPHOLOGICAL TRAITS OF PEGAGA (*Centella asiatica*)

MARY SINTOH

FACULTY OF SCIENCE AND NATURAL RESOURCES
UNIVERSITI MALAYSIA SABAH
2014

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

22 September 2014 ______

Mary Sintoh PS2006-8193

CERTIFICATION

NAME : MARY SINTOH

MATRIC NO. : **PS2006-8193**

TITLE : EFFECTS OF CARBON/NITROGEN COMPOST RATIO ON

ASIATICOSIDE AND MADECASSOSIDE CONTENT AND

MORPHOLOGICAL TRAITS OF PEGAGA (Centella

asiatica)

DEGREE : MASTER OF SCIENCE (INDUSTRIAL CHEMISTRY)

VIVA DATE : 10 SEPTEMBER 2014

DECLARED BY;

2. CO-SUPERVISOR

Assoc. Prof. Dr. Marcus Atong

ACKNOWLEDGEMENTS

I would like to acknowledge many parties in enabling me to conduct my research at the Masters Degree level. Without them my research would not go smoothly as intended.

First of all, I would like to express my sincere thanks to Faculty of Science and Natural Resources, Universiti Malaysia Sabah which provided me a good learning environment and research opportunity throughout my Degree of Master of Science. I would like to express my sincere gratitude to my supervisors, Assoc. Prof. Dr. How Siew Eng, Assoc. Prof. Dr Marcus Atong and Assoc. Professor Dr. Noumie Surugau from Universiti Malaysia Sabah for the academic guidance and research conduct.

My gratitude also goes to Datuk Dr Mohd. Yaakub Johari from Institute for Development Studies (Sabah) and the Sabah Economic Development and Investment (SEDIA) for the support, kind understanding and far-sightedness in upgrading staff scientific expertise in biotechnology.

My thanks also goes to Ministry of Science, Technology and Innovation (MOSTI) under the Satellite Biotechnology project for funding the research and the State government of Sabah for allowing their staff to pursue higher education.

I would also like to thank my friends Mr. Justin Janim, Ch'ng Ai Ying, Khoo Yau Liang, Tan Yung Chie and others from the Natural Product laboratory staffs and students, for their kind support in assisting and facilitating my research works where possible. Last but not least, my thanks goes to my family especially my brother Wollis Felix and wife Easther Yakin who consented to be my referee. My late husband, Choo Thiam Chui who encouraged me to be a better person and my kids Micheal, Cassandra, Harry and Mariane who gave me reason to be courageous and resourceful.

Mary Sintoh 30 September 2014

ABSTRACT

Centella asiatica (C. asiatica) L. Urban (Umbelliferae) or Pegaga is an important herbal plants used in traditional medicine, modern herbal preparation and in the drug development for host of diseases. In this study, the yield of phytochemicals in C. asiatica namely madecassoside and asiaticoside and its' morphological traits were studied in relation to their compost carbon/nitrogen (C/N) ratio. The preparation and characterisation of three types of compost namely (1) compost A; (2) compost B; (3) compost C; and another commercial compost Biosmart and control were undertaken. The *C. asiatica* kampong variety with cordate leaves and crenate margin was used. The leaf and petiole of *C. asiatica* were harvested in a monthly interval, and five monthly reading was recorded for statistical analysis and for the extraction and determination of asiaticoside and madecassoside using Reverse Phase Liquid Chromatography (RP-HPLC). Results show that the four types of compost and control have C/N value ranging from 7.15 to 13.43. A good compost quality has a C/N value between 12 to 15. C. asiatica asiaticoside content range from 1.80 mg/g (0.18%) to 35.32 mg/g (3.53%) with *C. asiatica* planted with Biosmart yield the highest asiaticoside content of 35.32 mg/g (3.53%) in August, three months after planted as compared to control (23.21 mg/g or 2.31%). The *C. asiatica* madecassoside content range from 1.84 mg/g (0.18%) to 22.59 mg/g (2.26%) with *C. asiatica* planted with commercial Biosmart having the highest madecassoside content of 22.59 mg/g (2.26%) in August compared to negative control of 16.72 mg/g (1.67%). In this study, it is found that C/N had significant effect to the morphological trait (length of petiole, size of leaves and number of progenies) and the asiaticoside madecassoside content using Pearson Correlation Coefficient (P=+1 or -1). Their C/N value is steadily low (8.92 to 10.13) compared to the standard of a good compost (C/N 12 to 15) throughout the cultivation.

UNIVERSITI MALAYSIA SABAH

ABSTRAK

KESAN NISBAH KOMPOS CARBON/NITROGEN TERHADAP KANDUNGAN ASIATICOSIDE DAN MADECASSOSIDE SERTA CIRI-CIRI MORFOLOGI DALAM PEGAGA(Centella asiatica)

Centella asiatica (C. asiatica) L. Urban (Umbelliferae) atau Pegaga merupakan herba yang penting dalam ubatan tradisional, persediaan herba moden dan dalam pembangunan dadah untuk pelbagai penyakit. Dalam kajian ini, penghasilan madecassoside, asiaticoside dan ciri-ciri fitokimia dalam C. asiatica seperti morfologinya telah dikaji hubung kaitnya dengan nisbah karbon/nitrogen (C/N) dalam kompos. Penyediaan dan pencirian secara kimia tiga jenis kompos yakni (1) kompos A; (2) kompos B; (3) kompos C; dan kompos komersil Biosmart serta kontrol telah dilaksanakan. C. asiatica variasi kampong dengan daun kordat dan tepinya beralur telah digunakan. Daun dan petiole C. asiatica telah dituai selang sebulan, dan bacaan untuk lima bulan telah direkodkan untuk analis statistik dan juga untuk penentuan hasilan madecassoside, asiaticoside menggunakan Reverse Phase High Performance Liquid Chromatography (RP-HPLC). Keputusan menunjukkan bahawa empat jenis kompos dan satu kontrol negatif mempunyai nilai C/N dalam julat 7.15 -13.43. Kualiti kompos yang baik mempunyai nilai C/N antara 12 -15. Keputusan menunjukkan kandungan asiaticoside sampel C. asiatica adalah dalam julat 1.80 mg/g (0.18%) kepada 35.32 mg/g (3.53%) dengan C. asiatica ditanam dengan Biosmart memberikan hasil yang tinggi sebanyak 35.32 mg/g (3.53%) pada bulan Ogos, tiga bulan selepas ditanam berbanding dengan control (23.21mg/g atau 2.31%). Kandungan madecassoside yang didapati adalah dalam julat 1.84 mg/g (0.18%) kepada 22.59 mg/g (2.26%) dengan C. asiatica ditanam dengan Biosmart mempunyai kandungan madecassoside yang tertinggi sebanyak 22.59 mg/g (2.26%) dalam bulan Ogos berbanding dengan kontrol 16.72 mg/g (1.67%). Dalam kajian ini, didapati C/N mempunyai kesan signifikan terhadap perkembangan morfologi (panjang petiole dan daun, bilangan anak) dan kandungan madecassoside dan asiaticoside menggunakan korelasi Pearson Correlation coefficient (P=+1 atau P=-1). Nilai C/N kekal rendah (8.92 hingga 10.13) berbanding dengan piawai kompos yang baik (C/N 12 to 15) sepanjang penanaman.

CONTENTS

		Page
TITL	E	i
DEC	LARATION	ii
CER	TIFICATIONS	iii
ACK	NOWLEDGEMENTS	iv
ABS	TRACT	V
ABS	TRAK	vi
LIST	OF CONTENTS	vii
LIST	OF TABLES	х
LIST	OF FIGURES	xii
LIST	OF APPENDICES	xiv
LIST	OF SYMBOLS, ABBREVIATIONS AND UNITS	XV
CHA	PTER 1: INTRODUCTION	
1.1	Background	1
1.2	Research Objectives	4
	LINIU/EDOLTIANAL NYOLA GADALI	
CHA	PTER 2: LITERATURE REVIEW SITI MALAYSIA SABAH	
2.1	Introduction	5
2.2	Uses in Ethnobotany	9
2.3	Bio-Active Constituents	10
2.4	Application in Clinical Studies	12
2.5	Importance Of <i>C. asiatica</i> In The Natural Product Industry	13
2.6	The Importance of Composting in Planting Herbs	17
2.7	Uses of Compost	18
2.8	Composting Approach	19
2.9	C. asiatica Planting	25
2.10	Method of Extraction	26
2.11	Growth and Centelloside Production	28
2.12	Effects of C/N on Asiaticoside Production in Culture Media	29

2.13	Effects of Carbon and Nitrogen Sources on the Production of 3	
244	Secondary Metabolites	5.4
2.14	Effects of NPK on Centelloside Accumulation in Leaves of	31
	C. asiatica	
2.15	Methyl Jasmonate (MeJa)-Induced Triterpenoid Production in	32
	C. asiatica	
2.16	Effects of Macronutrients on Cell Growth and Triterpenoids	33
	Production in <i>C. asiatica</i>	
СНА	PTER 3: MATERIALS AND METHODOLOGY	
3.1	Introduction	34
3.2	Materials and methods	38
	3.2.1 Compost and Composting	38
	3.2.2 Determination of Compost C:N Value	40
	3.2.3 Cultivation of <i>C. asiatica</i>	44
	3.2.4 Physical growth measurement	44
B	3.2.5 Preparation for <i>C. asiatica</i> Extracts	45
	3. <mark>2.6 Prep</mark> aration of Standard Solution	45
	3.2.7 Extraction of Asiaticoside and Madecassoside	45
	3.2.8 RP-HPLC Analysis VERSITI MALAYSIA SABAH	46
3.3	Procedures for RP-HPLC Analysis	47
3.4	Method of validation	48
	3.4.1 Calibration curve	48
3.5	Statistical analysis	49
3.6	Percentage Yield	50
СНА	PTER 4: RESULTS AND DISCUSSION	
4.1	Compost Analysis	53
	4.1.1 Compost Maturity by Solvita Diagnostic Test	55
4.2	Compost C/N and Morphological Traits	55
4.3	Compost C/N and <i>C. asiatica</i> Yield	61
4.4	Linear Calibration	64

4.5	Asiaticoside Content in <i>C. asiatica</i>	64
4.6	Madecassoside Content in <i>C. asiatica</i>	69
4.7	Relationship between Compost C/N, Asiaticoside and	74
	Madecassoside Content	
4.8	Correlation between C/N and Morphological Traits of C. asiatica	76
4.9	Correlation between C/N and C. asiatica Percentage Yield	78
4.10	Correlation between C/N and Active Constituents	78
4.11	Percentage of asiaticoside and madecassoside compared to the	80
	previous findings	
CHAP	TER 5: CONCLUSION	84
DEEE	DENCE	07
KEFE	RENCE	87
APPE	NDICES	96

LIST OF TABLES

		Page
Table 2.1:	Systematic classification (Taxonomy) of <i>C. asiatica</i>	5
Table 2.2:	Names and Synonyms	6
Table 2.3:	Ethnobotanical Application on Diseases	10
Table 2.4:	Summary of Pharmacodynamics Effects of <i>C. asiatica</i>	12
Table 2.5:	Clinical Studies on <i>C. asiatica</i>	13
Table 2.6:	Mono-preparations, form of administration;	14
Table 2.7:	manufacturer	28
Table 3.1:	Important Parameters of Some Common Solvents	39
	Summary of Compost mixtures	
Table 3.2:	Conditions of RP-HPLC	46
Table 3.3:	Gradient Elution for RP-HPLC	46
Table 3.4:	Weight of Standard Asiaticoside and Madecassoside	48
A7 ==	Injected and Peak Areas.	
Table 3.5:	The weight of extract and percentage yield for July	50
Table 3.6:	The weight of extract and percentage yield for August	51
Table 3.7:	The weight of extract and percentage yield for	51
AB	September UNIVERSITI MALAYSIA SABAH	
Table 3.8:	The weight of extract and percentage yield for	52
	November	
Table 3.9:	The weight of extract and percentage yield for	52
	December	
Table 4.1:	Comparison between the Initial and Final C/N ratio	54
Table 4.2:	Compost C/N and C. asiatica Morphological traits	56
Table 4.3:	Variation of C/N and Percentage yield (%)	61
Table 4.4:	Summary of Days of growth and Percentage Yield	63
Table 4.5:	Asiaticoside Content in each fraction extracts	65
Table 4.6:	Asiaticoside Content in Control	67
Table 4.7:	Asiaticoside Content in Biosmart	67
Table 4.8:	Asiaticoside Content in Compost A	68

Table	4.9:	Asiaticoside Content in Compost B		
Table	4.10:	Asiaticoside Content in Compost C	69	
Table	4.11:	Madecassoside Fraction Extract in mg/g and % From	70	
		Samples		
Table	4.12:	Madecassoside Content in Control	71	
Table	4.13:	Madecassoside Content in Bio smart	71	
Table	4.14:	Madecassoside Content in Compost A	72	
Table	4.15:	Madecassoside Content in Compost B	72	
Table	4.16:	Madecassoside Content in Compost C	73	
Table	4.17:	Compost C/N and C. asiatica Asiaticoside and	76	
		Madecassoside		
Table	4.18:	Pearson Correlation Between C/N and Morphological	77	
Table	4.19:	Traits Pearson's Correlation, P Between C/N and C.		
		asiatica Yield		
Table	4.20:	Correlation Between C/N and	80	
	9	Asiaticoside/Madecassoside		
Table	4.21:	Previous Research on Centella asiatica Asiaticoside and	82	
		Madecassoside Content		
Es				

UNIVERSITI MALAYSIA SABAH

LIST OF FIGURES

		Page
Figure 2.1:	C. asiatica salad. Waxy surface	7
Figure 2.2:	C. asiatica Keriting. Lobed leaves	7
Figure 2.3:	C. asiatica Kampung. Coarse Surface and Crenate Margin	8
Figure 2.4:	Structure of Four Main Phytochemicals Present in C.	9
	asiatica	
Figure 2.5:	The Mevalonic Acid Pathway of Triterpenoids Biosynthesis	11
Figure 2.6 a:	C. asiatica Capsule	15
Figure 2.6 b:	C. asiatica Tea	15
Figure 2.7:	C. asiatica Cream For Skin Care	16
Figure 2.8:	C. asiatica Topical Ointments Brand Madecassol and	17
	Blastoestimulina	
Figure 2.9:	Examples of Commercial Herb Fertiliser	18
Figure 2.10:	Compost Bin With Thermometer	24
Figure 2.11:	Extraction of <i>C. asiatica</i>	27
Figure 3.1:	Steps of Work In The Study	35
Figure 3.2:	C. asiatica Kampong	36
Figure 3.3:	Specimen Vouchers EMS 8349 and 8350 for Centella	36
	asiatica.	
Figure 3.4:	C. asiatica Cultivated in 1m x 1m Bog in Five Replicates In	37
	A Nursery	
Figure 3.5:	C. asiatica Cultivated In A Nursery	37
Figure 3.6:	Compost A Bin	38
Figure 3.7:	Compost B Bin	38
Figure 3.8:	Compost C Bin	38
Figure 3.9:	Compost A	39
Figure 3.10:	Compost B	39
Figure 3.11:	Compost C	40
Figure 3.12:	Commercial Biosmart	40
Figure 3.13:	Solvita® Diagnostic Test	42

Figure 3.14:	CO ₂ Colour Chart	42
Figure 3.15:	Ammonia Colour Chart	43
Figure 3.16:	Method for Physical Measurement	46
Figure 3.17:	Chromatogram of Retention Time and mAU For	47
	Asiaticoside and Madecassoside	
Figure 3.18:	Calibration Graph of Asiaticoside Standard	49
Figure 3.19:	Calibration Graph of Madecassoside Standard	49
Figure 4.1:	Length of Petiole According To Days Of Growth	58
Figure 4.2:	Leaf Size According to Days of Growth	59
Figure 4.3:	Number Of Progenies According To Days Of Growth	60
Figure 4.4:	Comparison Of Asiaticoside Content By Type Of Compost	66
Figure 4.5:	Comparison Of Madecassoside Content By Type Of	74
	Compost	

LIST OF APPENDIXS

		Pages
APPENDIX 4.1 :	Guide to Solvita Testing for Compost Maturity	96
APPENDIX 4.2A1 :	C. asiatica sample 1 planted using compost A in August	104
APPENDIX 4.2A2:	C. asiatica sample 2 planted using compost A in August	106
APPENDIX 4.2A3:	C. asiatica sample 3 planted using compost A in August	108
APPENDIX 4.2B1:	C. asiatica sample 1 planted using compost B in August	110
APPENDIX 4.2B2:	C. asiatica sample 2 planted using compost B in August	112
APPENDIX 4.2B3:	C. asiatica sample 3 planted using compost B in August	114
APPENDIX 4.2BS1:	C. asiatica sample 1 planted using compost BS in August	116
APPEND <mark>IX 4.2BS2</mark> :	C. asiatica sample 2 planted using compost BS in August	118
APPENDIX 4.2BS3:	C. asiatica sample 3 planted using compost BS in August	120
APPENDIX 4.2C1:	C. asiatica sample 1 planted using compost C in August	122
APPENDIX 4.2C2:	C. asiatica sample 2 planted using compost C in August	124
APPENDIX 4.2C3:	C. asiatica sample 3 planted using compost C in August	126
APPENDIX 4.2CTRL1:	C. asiatica sample 1 planted using compost CTRL in August	128
APPENDIX 4.2CTRL2:	C. asiatica sample 2 planted using compost CTRL in August	130
APPENDIX 4.2CTRL3:	C. asiatica sample 3 planted using compost CTRL in August	131

LIST OF SYMBOLS, ABBREVIATION AND UNITS

IDS(SABAH) - Institute for Development Studies (Sabah)

MOSTI - Ministry of Science Technology and Innovation

Demoplot - UNDP/SGP-IDS plot at Kimanis, Papar,Sabah

g - Gram

Mg - Miligram

MI - Mililiter

μL - Microliter

μg - Microgram

mg/mL - Miligram per mililiter

Mg/g - Miligram per gram

UV-Vis - Ultrviolet Visible

CAN - Acetonitrile

RP-HPLC - Reversed Phase High Performance Liquid

DAD - Chromatography Diode auto detector

rpm - Revolution per minute

ANOVA - Analysis of variance

Nm - nanometer

v/v - Volume by volume

Pearson Correlation Coefficient

> - More than

≠ - Not equivalent to

TI MALAYSIA SABAH

CHAPTER 1

INTRODUCTION

1.1 Background

Centella asiatica (C. asiatica) L.Urban (Umbelliferae) or Pegaga is an important herbal plant widely cultivated and collected as a vegetable 'salad' or spice in China, Southeast Asia, India, Sri Lanka, Africa, and Oceanic countries.

In addition to neuroprotective effect of *C. asiatica*, it has been reported to own a wide range of biological activities desired for human health such as wound healing, anti-inflammatory, antipsoriatic, antiulcer, hepatoprotective, anticonvulsant, sedative, immunostimulant, cardioprotective, antidiabetic, cytotoxic and antitumor, antiviral, antibacterial, insecticidal, antifungal, antioxidant, and for lepra and venous deficiency treatments (Orhan, 2012). *C. asiatica* is a local plant in Sabah traditionally being used by the Sabah herbal practitioner as herbal remedy for diuretic, diarrhoea, hypertension and sexual diseases (Johari *etal.*, 1998).

The extracts of *C. asiatica* had been evaluated for several biological properties. These properties include antioxidant activity (Jayashree *et al.*,2003 and Gnanaprasagam *et al.*,2004); and anti-proliferative effect(Yoshida *et al.*,2005). Pure triterpenoids of *C. asiatica* had also been reported to cause alteration in gene expression in human fibroblast (Coldren *etal.*,2003;Lu *et al.*,2004). Recently asiaticoside had been shown to induce type I collagen in human fibroblast (Lee *etal.*,2006). Active constituents of *C. asiatica* are components of many drugs and cosmetic preparations worldwide in the field of skin care. Madecassol® and Blastoestimulina® are the most known pharmaceutical products that contain *C. asiatica* constituents as active ingredients (Randriamampionona *etal.*, 2007).

The main principle components of *C. asiatica* are two glycosides namely asiaticoside and madecassoside. There are however, significant differences in active

constituents observed between samples of *C. asiatica* originating from different countries such as Nepal and Madagascar. The highest asiaticoside content of 8.14 per cent (8.14±0.05) was measured in samples collected from wild in Gorkha, Nepal (84°38.74′E Long: 28°01.39′N Lat) at 600 metres above sea level (Devkota *et al.*, 2010). Secondly, 6.42 per cent was measured in samples collected in Mangoro region, Madagascar(Randriamampionona *et al.*, 2007). The third highest of asiaticoside(1.70±0.02 %) and madecassoside (5.67±0.08 %) contents were detected among sixty accessions of *C.asiatica* in South India and the Andaman island (Thomas *et al.*, 2010). In Malaysia, the second accession (leaves 7.85cm) of *C. asiatica* from Pontian, Johor yielded an asiaticoside content of 2.56μg/mL and madecassoside content of 5.30μg/mL. These phytochemicals are only detected in the leaves and madecassoside in roots (1.57μg/mL), but none on the petiole (Zainol *et al.*,2008). In comparison, using the same methods of extraction, the glasshouse-grown F-line Malaysian origin yielded an asiaticoside content of 0.79±0.03 (%) and madecassoside content of 0.97±0.06 (%) (Aziz *et al.*, 2007).

Malaysian imports about 30 per cent of dried herbs including *C. asiatica* from the Madagascar origin for the herbal formulation and further commercial processing in the Malaysian herbs factory (Johari *et al.*,1998). In Malaysia, *C. asiatica* is collected all year long for further processing and extraction of their phytochemical constituents. The phytochemicals were extracted without taking into consideration the cultivation period and the best harvesting time for *C. asiatica*. This could be one of the factors that result in low concentration of asiaticoside and madecassoside content in *C. asiatica* (Zainol *et al.*,2008; Aziz *et al.*, 2007). The concentration of active compound is very much needed in time series data to help farmers to determine the best cultivation and harvesting conditions.

Composts are considered as organic soils improvement (Gomez, 1998). Traditionally, composts are made of plant and animal waste material decomposed by many agents such as bacteria and actinomycetes. Composts provide plants with good nutrient especially Phosphorus(P) and Nitrogen(N) for its physical growth especially the length of petiole, leaf sizes and its lushness. Composts added to soil not only provide a media for plant growth but also affect the production of

phytochemical constituent in plants (Barker *et al.*, 2007). The *C. asiatica* triterpenes production can be affected by compost since N and P is supplied via the amendment and inducement changes in soil chemical composition in compost (Ormeno *etal.*, 2009).

Carbon to Nitrogen ratio (C/N) is an important component in compost quality. Carbon is an energy-producing factor while nitrogen builds tissue. In the photobioreactors (PBRs), the carbon to nitrogen ratio in the feed is a critical parameter that significantly influences microbial growth and hydrogen production (Androga *et al.*, 2011). Raw organic matter has a higher carbon-nitrogen ratio than humus or of the average soil. The average carbon-nitrogen ratio of the bodies of bacteria and fungi falls between4:1 to 10:1. The ratio of C/N 17:1 will increase the nitrogen store of the soil. If the C/N ratio is too high (excess carbon), decomposition slows down. If the C/N ratio is low (excess nitrogen) the compost became a stinky pile(Crow and Miller, 2000).A good compost should have a C/N ratio of 12 to 15, (C=12 to 15 and N=1) for stable organic matter. Humus has a low carbon-nitrogen ratio (Barry, Cogger and Sullivan, 2002).

In this study, the effect of compost C/N ratio on asiaticoside and madecassoside in time series were studied by quantifying the amount of these two compounds present in organic *C. asiatica* samples using a rapid and simple reverse-phase high performance liquid chromatographic method (Verma *et al.*, 1999). The relationship and correlation between compost C/N ratio, asiatico side and made cassoside concentration, plant part(leaf and petiole), different type of compost used to cultivate organic *C. asiatica* and also time of growth were evaluated. C/N ratio is one of the compost important element to indicate the type of material and ease of decomposition; hard woody materials with a high C/N ratio being more resilient than soft leafy materials with a low C/N ratio.

The field of the study was conducted in Demoplot project area in Kimanis Papar, Sabah, Malaysia. The five acres project site is a test-field for ex-situ herbal cultivation. There were 200 species of herbs being domesticated at that area. The species of *C. asiatica* with *C.asiatica* Kampung variety was chosen to be

investigated in this study. This *C.asiatica* was cultivated in a bog in a nursery in Sabah, Malaysia with climate and geographic attribute under controlled conditions.

1.2 Research Objectives

The objectives of this study are as follows:

- **a.** To prepare and characterize the ratio of Carbon to Nitrogen of three types of compost;
- **b.** To cultivate *C. asiatica* herbs using the compost;
- **c.** To quantify and compare the asiaticoside and madecassoside and its' morphological traits in the *C. asiatica* cultivated; and
- **d.** To determine the best harvesting time for *C. asiatica*.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Pegaga or *Centella asiatica* L.Urban(Umbelliferae) or *C. Asiatica* is described as a small, slender, creeping herb and has long-stalked, green reniform leaves with rounded apices which have smooth texture with palmately netted veins (Bala and Ng,2000). The systematic classification(taxonomy) of *C. asiatica* are shown in Table 2.1 and the names and synonyms in Table 2.2 Brinkhaus(*et al.*,2000).

Table 2.1: Systematic Classification (Taxonomy) of *C. asiatica*

Classification	Name
Kingdom	Eukaryota
Subkingdom	Embryophyta
Division	Spermatophyta
Subdivision	Angiospermae
Class	Dicotyledoneae
Subclass	Rosidae III MALAYSIA SABAH
Superorder	Aralianae
Order	Araliales(Umbelliflorae)
Family	Apiaceae or Umbelliferae
Subfamily	Hydrocotyle
Genus	Centella
Species	Centellaasiatica

Source: Brinkhaus et al. (2000)

Presently, in Malaysia, there are three types of *C. asiatica* subspecies, the *C. asiatica* salad (Figure 2.1), *C. asiatica* Keriting or Nyonya (Figure 2.2) and *C. asiatica* kampong (biasa) (Figure 2.3) or *C. asiatica* ubi. Among the three types,

the *C. asiatica* kampong has been used largely by the traditional healer and also as salad or ulam by the community(Bala and Ng,2000).

Table 2.2: Names and Synonyms

Synonyms	Hydrocotyleasiatica L., Hydrocotylelunata Lam.,
Symonyme	CentellacoriaceaNannfd., Centellacordifolia, (Hooker
	fil.) Nannfd.
	CentelladuseniiNannfd.,Centellafloridiana (C.et R.)
	Nannfd.,Centellarepanda(Pers.) Small.,
	Centellatriflora (R.et P.)Nannfd.,Centellauniflora
	(Col.) Nannfd.
Chinese name	Luei Gong Gen, Tungchian
English name	Indian Pennywort
French name	Hydrocotyleasiatiquenabel
German name	Asiatischerwasser
Indonesian names	
Sumatra	Kaki kuda
Jawa	Kaki kuda,C. asiatican, Antanangede, Gagan-
	gagan, Gang-gagan, Kerokbatok, Panegowan,
ABA	Rendeng, Calinganrambat, Kos tekosan
	Pagaga, Tungke-tungke
Sulawesi	Papaiduh, Pepiduh, Piduh
Bali	Puhe beta, Kaki kuta,Tetekaro,Tetekadho
Flores	
Italian name	Indrocotile
	Tsubo-kusa
Japanese name	TSUDU-KUSA
Japanese name Mauritius	Bavilacqua

Source: Brinkhaus et al.(2000)

Figure 2.1: *C. asiatica* salad. Waxy surface.

Figure 2.2: *C. asiatica* Keriting. Lobed leaves.

Figure 2.3: C. asiatica Kampung. Coarse Surface and Crenate Margin.

C. asiatica's main phytochemical constituents with commercial potential include asiatic acid, asiaticosides, madecassic acid and madecassoside. The structures of these compounds are shown in Figure 2.4.

UNIVERSITI MALAYSIA SABAH