YIELD STUDY OF ACACIA HYBRID USING ORGANOSOLV PULPING AND THEIR RELATIONSHIP WITH HANDSHEET PROPERTIES

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERISTI MALAYSIA SABAH 2015

YIELD STUDY OF ACACIA HYBRID USING ORGANOSOLV PULPING AND THEIR RELATIONSHIP WITH HANDSHEET PROPERTIES

THESIS SUMMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERISTI MALAYSIA SABAH 2015

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JAZAH:	
AYA:(NA	SESI PENGAJIAN: MA PENULIS DALAM HURUF BESAR)
lengaku membenarkan tes yarat kegunaan seperti beri	is *(LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat kut:-
 Tesis adalah hak Perpustakaan Ur pemeliharaan sal 	milik Universiti Malaysia Sabah. niversiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian, pembelajaran, penyelidikan da naja.
 Perpustakaan Un tinggi. Perpustakaan Un Sila tandakan (/ 	iversiti Malaysia Sabah dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajia iversiti Malaysia Sabah dibenarkan membuat pendigitasian
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di AKTA RAHSIA RASMI 1972)
TERHAD) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana Penyelidikan dijalankan)
TIDAK TH	ERHAD UNIVERSITI MALAYSIA SABAH
	Disahkan oleh:
TANDATAN	IGAN PENULIS (TANDATANGAN PUSTAKAWAN)
Alamat tetap:	(NAMA PENYELIA)
Alamat tetap:	
Alamat tetap:	
Alamat tetap:	Tarikh:

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

20 June 2015

Eunice Chong Wan Ni PF 20108046

CERTIFICATION

- NAME : EUNICE CHONG WAN NI
- MATRIC NO : **PF 20108046**
- TITLE : YIELD STUDY OF ACACIA HYBRID USING ORGANOSOLV PULPING AND THEIR RELATIONSHIP WITH HANDSHEET PROPERTIES
- DEGREE : MASTER DEGREE (FORESTRY)
- VIVA DATE : 12 FEBRUARY 2015

ACKNOWLEDGEMENT

First of all, I would like to give thanks to God for His extraordinary blessing upon my master study. His unfailing love for me has sustained me even in time of difficulties.

I would also like to take this opportunity to thank and to appreciate my supervisor, Dr. Liew Kang Chiang, for his guidance and encouragement that stir up my passion even more in doing research. My gratitude extended to other lecturers of Faculty of Science and Natural Resources for their authentic comments on my research.

My heartfelt gratitude goes to my parents and my younger sister who never give up supporting me financially, mentally and spiritually throughout my master study. Not forgetting to thank Ministry of Higher Education Malaysia for the Fundamental Research Grant (FRG0198-SG-1/2010), Universiti Malaysia Sabah, Politeknik Kota Kinabalu, Sabah Forestry Development Authority (SAFODA) and Forest Research Institute Malaysia (FRIM) for their kind support and assistance especially in term of finance, laboratory equipments and chemical used for this study.

Finally, I would like to thank all of my brothers and sisters of Hope Church Kota Kinabalu and friends who never stop encouraging and praying for me. At the same time, I would also love to thank all who are willing to browse through my thesis.

Eunice Chong Wan Ni PF 20108046

ABSTRACT

This study was made on pulp production from the fast growing plant, Acacia hybrid. The total yield, screened yield, rejected yield, Kappa number, and fibre morphology of organosolv Acacia hybrid pulp and Kraft pulp were determined. This study aimed to focus on the effect of the varied concentration of organic solvent towards the pulp yield and its relationship with Kappa number and pulp yield as well as comparison between organsolv pulp and Kraft pulp. Uniform-sized chips were taken to undergo pulping in a digester with five different concentrations of ethanol, 50%, 60%, 70%, 80% and 90% (v/v) with 10% of 1 M sodium hydroxide as catalyst. All chips were digested in a temperature-controlled digester with constant amount of water added and temperature of 185 °C with the duration of three hours cooking time and correspond pressure 1.1-1.2 MPa. It was observed that increasing of ethanol concentration has led to pulp yield and viscosity increment while decreased in Kappa number. Screened yield of 90% ethanol concentration showed 44.19% which was higher compared to Kraft pulp yield. These increments showed a significant difference at $p \le 0.05$. Also, mechanical strength for tensile, burst, and folding of both non-beaten pulp and beaten pulp increased gradually with ethanol concentration from 50% to 90%. However, tear index decreased. The overall result showed that organosoly pulp properties were at par value as Kraft pulp properties.

ABSTRAK

KAJIAN PENGHASILAN PEMULPAAN ORGANOSOLV ACACIA HYBRID DAN HUBUNG KAITNYA DENGAN SIFAT-SIFAT KERTAS

Kajian ini telah dijalankan untuk menghasilkan pulpa daripada pokok Akasia. Jumlah penghasilan pulpa, hasilan penapisan pulpa, hasilan penolakkan pulpa, nombor kappa, dan morfologi serat bagi pulpa Akasia daripada proses organosolv pulpa dan Kraft pulpa telah ditentukan. Kajian ini bertujuan untuk memberi tumpuan kepada kesan kepekatan pelbagai pelarut organik terhadap hasil pulpa dan hubung kaitnya dengan nombor Kappa dan hasil pulpa serta perbandingan antara organosolv pulpa dan Kraft pulpa. Saiz cip kayu yang seragam telah diambil untuk menjalani prosess pemulpaan dalam mesin pencernaan dengan lima kepekatan etanol, 50 %, 60 %, 70 %, 80 % and 90 % (v/v) dengan 1 M natrium hidroksida sebanyak 10% sebagai pemangkin. Semua cip kayu yang telah dimasak dalam digester suhu terkawal dengan jumlah air yang ditambah secara konsisten dan suhu 185 °C dalam tempoh tiga jam masa memasak dan tekanan yang sesuai, 1.1-1.2 MPa. Adalah diperhatikan bahawa peningkatan kepekatan etanol telah membawa kepada peningkatan hasil pulpa dan kelikatan manakala pengurangan dalam nombor Kappa. Hasil pulpa bagi kepekatan etanol 90 % adalah 44.19% iaitu lebih tinggi daripada hasil Kraft pulpa. Peningkatan ini telah menunjukkan perbezaan yang signifikan pada p≤0.05. Kekuatan mekanikal kertas bagi kertas biasa dan kertas pemukulan meningkat secara perlahan apabila kepekatan etanol meningkat. Walau bagaimanapun, indeks koyakan. Keputusan keseluruhan menunjukkan ciri-ciri organosolv pulpa adalah setanding dengan Kraft pulpa.

TABLE OF CONTENTS

τιτι	-E	i
DEC	LARATION	ii
CER	TIFICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	STRAK	vi
ТАВ	LE OF CONTENTS	vii
LIST	T OF TABLES	х
LIST	r of figures	xi
ABB	REVIATION	xv
LIST	T OF APPENDIX	xvi
СНА	PTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2		2
1.3	Objectives	4
СНА	PTER 2: LITERATURE REVIEW	5
2.1	Description of Acacia hybrid wood	5
	2.1.1 Introduction of <i>Acacia</i> hybrid wood	5
	2.1.2 Physical properties	6
2.2	The potential of Acacia hybrid wood	9
2.3	Chemical composition of wood	10
2.4	Wood Fibre morphology	15
2.5	Chemical pulping	17
	2.5.1 Kraft pulping	18
	2.5.2 Organosolv pulping	19

	a.	The effect of catalyst in ethanol organosolv pulping	22
	b.	The effect organic solvent on pulp yield	23
	c.	The relationship of organic solvent and pulp and handsheet	25
		properties.	
2.6	Advanta	ages and disadvantages of organosolv pulping	26
CHA	PTER 3	: MATERIALS AMD METHODS	29
3.1	Sample	e preparation	29
	3.1.1	Wood chips	30
	3.1.2	Moisture content and density evaluations	33
3.2	Fibre n	norphology test before pulping	35
3.3	Chemic	cal composition test	37
	3.3.1	Preparation of wood powder	37
	3.3.2	Extractives test	38
	3.3.3	Holocellulose	39
	3.3.4	Alpha-cellulose	40
ß	3.3.5	Lignin	41
Z	3.3.6	Ash	41
3.4	Pulping	process	42
	3.4.1	Organosolv pulping VIVERSITI MALAYSIA SABAH	42
	3.4.2	Kraft Pulping (Control)	43
3.5	Screen	ing	45
3.6	Chemic	cal analyses of pulp	46
	3.6.1	Kappa number	46
	3.6.2	Viscosity	47
3.7	Freene	SS	48
3.8	Beating	g in Valley Beater	49
3.9	Fibre n	norphology using Scanning Electron Microscope (SEM)	50
3.10	Handsh	neet making	52
3.11	Handsh	neet testing	53
	3.11.1	Tensile index	55
	3.11.2	Tearing strength	56

	3.11.3	B Bursting strength	57
	3.11.4	Folding endurance	58
3.12	Statist	ical analyses	59
CHA	PTER 4:	RESULTS AND DISCUSSION	61
4.1	Moisture	e content, density and chemical composition	61
4.2	Fibre m	orphology	62
4.3	Organos	soly pulping	64
	4.3.1	Effect of ethanol concentration on pulp yield	65
	4.3.2	Effect of ethanol concentration on Kappa number	70
	4.3.3	The relationship of Kappa number and pulp yield	72
	4.3.4	Effect of ethanol concentration on viscosity	74
4.4	Pulp fib	re morphology (SEM)	77
4.5	Effect o	f ethanol concentrations on freeness	80
4.6	Effect o	f ethanol concentrations on handsheet properties	83
	9°		
CHA	PTE <mark>R 5</mark> :	CONCLUSIONS AND RECOMMENDATIONS	90
5.1	Conclus	ions	90
5.2	Recomm	nendations	92
	V.S.	UNIVERSITI MALAYSIA SABAH	
REFE	RENCE	S	93
APPI		S	102

LIST OF TABLES

Table 2.1	Physical properties of Acacia hybrid	7
Table 2.2	Wood density of Acacia hybrid and its parents	7
Table 2.3	Wood yield of Acacia hybrids and non-hybrids in Vietnam's	10
	plantation	
Table 2.4	Chemical compositions of Acacia hybrid and its parents	14
Table 3.1	Organosolv pulping conditions	43
Table 3.2	Dimension of test strips' specimen according to the standards	54
Table 4.1	Chemical compositions of Acacia hybrid	61
Table 4.2	Fibre dimensions of Acacia hybrid, Acacia mangium and	63
	Acacia auriculiformis	
Table 4.3	Basic pulp properties of organosolv pulping and Kraft pulping	76
Table 4.4	Handsheet properties of non-beaten and beaten pulp	88

LIST OF FIGURES

Figure 2.1:	Three years old Acacia hybrid's plantation	6
Figure 2.2:	Molecule of cellulose structure	12
Figure 2.3:	Kraft pulping process	18
Figure 3.1:	Billets from Acacia hybrid's trees	29
Figure 3.2:	Debarking of billet for sawing	30
Figure 3.3:	Wood strips for chipping	31
Figure 3.4:	Wood chips were screened using screener	31
Figure 3.5:	Uniformed sizes of wood chips obtained after screening	32
Figure 3.6:	Air dried wood chips	32
Figure 3.7:	Drying process of wood chips in the oven	33
Figure 3.8:	Density determination by water displacement method	34
Figure 3.9:	Match-sticks samples for fibre morphology test	35
Figure 3.10:	Match – stick wood strips submerged in glacial acetic acid	36
3 .	and hydrogen peroxide were heated at 60°C in a test tube	
Figure 3.11:	Fibre diameter and lumen were measured under image	37
	analyser with 20 times magnification ALAYSIA SABAH	
Figure 3.12:	Wood powders were placed in the crucible for oven-dry until	38
	the moisture content remained constant.	
Figure 3.13:	Extractives test using Soxhlet Extraction	39
Figure 3.14:	Rotary digester used in this study	43
Figure 3.15:	Wood chips were disintegrated into pulp using stock divider	44
Figure 3.16:	Screener used for screening pulp	45
Figure 3.17:	Kappa number test	47
Figure 3.18:	Viscosity was determined using Capillary viscometer	48
Figure 3.19:	Freeness test conducted in FRIM laboratory	49
Figure 3.20:	Pulps were beaten in the valley beater	50
Figure 3.21:	Pulps were coated with sputter coater	51
Figure 3.22:	The coated pulps were examined using SEM	51

Figure 3.23:	Wet handsheet was formed after mixing evenly in the	53
	handsheet's cylinder	
Figure 3.24:	Handsheet was cut in accordance to the ISO standard as	54
	above figure	
Figure 3.25:	Tensile machine was used to determine the tensile strength	55
	of handsheet according to ISO 1924-2:1994.	
Figure 3.26:	Tearing tester was used to determine the tear strength of	57
	handsheet according to ISO 1974:199.	
Figure 3.27:	Bursting strength of the handsheet was determined using	58
	the machine based on the standard, ISO 2758:2001.	
Figure 3.28:	Folding endurance of the handsheet was determined using	59
	the machine based on the standard, ISO 2758:2001.	
Figure 3.29:	The flow chart of both organosolv pulping and Kraft pulping	60
	of Acacia hybrid from the evaluation of raw material to	
19T	beating and handsheet production	
Figure 4.1:	Relationship between ethanol concentration and total	66
ET 📑	unscreened yield	
Figure 4.2:	Relationship between ethanol concentration and screened	66
	pulp yield	
Figure 4.3:	Relationship between ethanol concentration and rejected	67
	pulp yield.	
Figure 4.4:	Relationship between ethanol concentrations and Kappa number.	71
Figure 4.5:	Relationship between Kappa number and screened yield of	74
	different concentrations of ethanol in organosolv pulping.	
Figure 4.6:	The relationship of different ethanol concentrations used in	75
	organosolv pulping of Acacia hybrid and their effect on	
	viscosity	
Figure 4.7:	Non-beaten pulp of 50% ethanol organosolv pulp examined	77
	under 800 X magnification	
Figure 4.8:	Non-beaten pulp of 60% ethanol organosolv pulp examined	77
	under 800 X magnification	

Figure 4.9:	Non-beaten pulp of 70% ethanol organosolv pulp examined	78
	under 800 X magnification	
Figure 4.10:	Non-beaten pulp of 80% ethanol organosolv pulp examined	78
	under 800 X magnification	
Figure 4.11:	Non-beaten pulp of 90% ethanol organosolv pulp examined	78
	under 800 X magnification	
Figure 4.12:	Non-beaten pulp of Kraft examined under 800 X	78
	magnification	
Figure 4.13:	Beaten pulp of 50% ethanol organosolv pulp examined	79
	under 800 X magnification	
Figure 4.14:	Beaten pulp of 60% ethanol organosolv pulp examined	79
	under 800 X magnification	
Figure 4.15:	Beaten pulp of 70% ethanol organosolv pulp examined	79
	under 800 X magnification	
Figure 4.16:	Beaten pulp of 80% ethanol organosolv pulp examined	79
A	under 800 X magnification	
Figure 4.17:	Beaten pulp of 90% ethanol organosolv pulp examined	80
B.	under 800 X magnification.	
Figure 4. <mark>18</mark> :	Beaten pulp of Kraft examined under 800 X magnification.	80
Figure 4.19:	The relationship of different ethanol concentrations used in	82
	organosolv pulping of Acacia hybrid and their effect on	
	freeness of non-beaten pulp.	
Figure 4.20:	The relationship of different ethanol concentrations used in	82
	organosolv pulping of Acacia hybrid and their effect on	
	freeness of beaten pulp	
Figure 4.21:	The relationship of different ethanol concentrations used in	83
	organosolv pulping of Acacia hybrid and their effect on	
	handsheet's (test strips) tensile index of non-beaten pulp.	
Figure 4.22:	The relationship of different ethanol concentrations used in	84
	organosolv pulping of Acacia hybrid and their effect on	
	handsheet's (test strips) folding endurance of non-beaten	
	pulp.	

- Figure 4.23: The relationship of different ethanol concentrations used in 84 organosolv pulping of *Acacia* hybrid and their effect on handsheet's (test strips) burst index of non-beaten pulp.
- Figure 4.24: The relationship of different ethanol concentrations used in 84 organosolv pulping of *Acacia* hybrid and their effect on handsheet's (test strips) tear index of non-beaten pulp.
- Figure 4.25: The relationship of different ethanol concentrations used in 86 organosolv pulping of *Acacia* hybrid and their effect on handsheet's (test strips) tensile index of beaten pulp.
- Figure 4.26: The relationship of different ethanol concentrations used in 86 organosolv pulping of *Acacia* hybrid and their effect on handsheet's (test strips) folding endurance of beaten pulp.
- Figure 4.27: The relationship of different ethanol concentrations used in 87 organosolv pulping of *Acacia* hybrid and their effect on handsheet's (test strips) burst index of beaten pulp.

Figure 4.28:The relationship of different ethanol concentrations used in87organosolv pulping of Acacia hybrid and their effect on
handsheet's (test strips) tear index of beaten pulp.

UNIVERSITI MALAYSIA SABAH

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
AQ	Anthraquinone
Cm	Centimetre
CSF	Canadian Standard Freeness
Dbh	Diameter at breast height
FRIM	Forest Research Institute Malaysia
G	gram
H ₂ S O ₄	Sulphuric acid
kg	Kilogram
kPa	Kilopascal
kV	Kilovolt
KMn0 ₄	Sodium permanganate
cPs	Centipoise
ISO	International standards
L 🖉 📑	Litre
MR	Molarity
mm	millimetre
min	minute UNIVERSITI MALAYSIA SABAH
mg	miligram
ml	millilitre
mPa	Megapascal
O.D	Oven dry
Ν	Normality
NaOH	Sodium hydroxide
$Na_2S_2O_3$	Sodium thiosulfate
SAFODA	Sabah Forestry Development Authority
SEM	Scanning Electron Microscope
SPSS	Statistical Product and Service Solution
TAPPI	Technical Association of the Pulp and Paper Industry
°C	Degree Celsius
%	Percentage

LIST OF APPENDICES

Appendix A:	Calculation of Kraft pulping solution	102
Appendix B:	Analysis test on the concentration of ethanol and screened	103
	pulp yield.	
Appendix C:	Analysis test on the concentration of ethanol and reject	104
	pulp yield.	
Appendix D:	Analysis test on the concentration of ethanol and total	105
	pulp yield.	
Appendix E:	Analysis test on the concentration of ethanol and Kappa	106
	number	
Appendix F:	Analysis test on the concentration of ethanol and viscosity	107
Appendix G:	Analysis test on freeness (Non-beaten pulp)	108
Appendix H:	Analysis test on handsheet properties (Non-beaten pulp)	109
Appendix I:	Analysis test on freeness (Beaten pulp)	112
Appendix J:	Analysis test on handsheet properties (Beaten pulp)	113

UNIVERSITI MALAYSIA SABAH

CHAPTER 1

INTRODUCTION

1.1 Introduction

The industry of pulp and paper has been developed extensively since century ago and has emerged as an effective manufacturing sector in economic and social development throughout the world. Over million tons of paper has been consumed in Asia from the total of 109.4 Million Metric Tons in 2000 to 178.1 Million Metric Tons in 2010 to 250.7 Million Metric Tons in 2020 and to 323.7 Million Metric Tons in 2030 (RISI, 2012). Increasing of pulp and paper consumption has led to substantial research and development in pulping method mainly to mitigate air and water pollution, to reduce odorous emission, save energy consumption, increase the yield of pulp and ameliorate the physical and mechanical properties of paper.

Pulping is one of the most essential processes to form paper. It is a process which involves mechanical, semi-chemical or chemical treatment of breaking down lignin bonds within the wood structure to form fibrous mass, also known as pulp. This process is also known as delignification in some researches. Chemical pulping is among the most promising methods since it is able to produce higher yield and stronger pulp compared to those using semi-chemical and mechanical treatment. Statistic revealed that the world chemical pulps are mostly produced by the Kraft pulping process (Sridach, 2010). However, the pressure appeared to the environmental regulations on emissions of sulphur dioxide, suspended solids and wastewater pollution (UNEP, 1997). These environmental disadvantages have brought forth a more environmental friendlier pulping process referred as organosolv pulping.

Pulp and paper industry has emphasised on pulp yield production due to its benefit in generating profit to the industry. Besides that, high pulp yield production is required in order to fulfil the demand of the consumers. Pulp yield can be affected by many factors including wood species, wood anatomy, pulping chemistry, mill digester systems, cooking temperature, chip size, chip quality, Kappa number and many other sub-factors (MacLeod, 2007). In order to increase pulp yield, research has been continued to improvise the method of pulping especially in the area of pulping chemistry and Kappa number relationship using different species of hardwood and softwood. This study has emphasised in the usage of different concentrations of ethanol as organic solvent in the pulping process to evaluate on the yield of pulp produced.

Thus far, fast growing plantation species such as *Acacia mangium* is one of the most common plants used as raw material in pulp and paper industry in Sabah, Malaysia. However, research has shown that *Acacia* hybrid can be another alternative to *Acacia mangium*. It produced higher pulp yield compared to *Acacia mangium* and *Acacia auriculiformis* mainly because it contains higher composition of holocellulose content. Previous study stated that *Acacia auriculiformis* has the highest percentage of extractives which was 5.96% followed by *Acacia mangium 5.38%* and *Acacia* hybrid has the lowest percentage of extractives which was 2.9% (Yahya *et al.*, 2010). This is also the reason which *Acacia* hybrid was chosen as the raw material for this study.

UNIVERSITI MALAYSIA SABAH

1.2 Justification

Organic solvent particularly ethanol are considered as desirable solvent since previous study had proven that addition of ethanol in soda pulping is able to increase pulp yield while reducing Kappa number and screening rejects (Akgul and Tozluoglu, 2010). It has been the most frequently used solvent in organosolv pulping research for more than 100 years. Moreover, ethanol is easily penetrated through the structure of wood which leads to uniform delignification (Muurinen, 2000). It also act as an additive in mechanical pulping to reduce the use of energy and appeared to be a potential solvent in pretreatment process which enhance the efficiency of wood hydrolysis (Aravamuthan *et al.*, 2002). In caustic soda pulping, ethanol was added to improve delignification process which reduced the surface tension of the pulping liquor, hence causes penetration of ethanol into the wood chips to breakdown lignin component and prevent it from condensing (Muurinen,

2000). Kleinert (1940) revealed that ethanol was able to protect cellulose during delignification of cotton treated with water and ethanol solvent of various concentration.

Approximately 90% of wood was used extensively to produce virgin fibre pulp (Feng and Alen, 2001). Most of the wood pulp obtained from either hardwood or softwood. However, increasing in pulp and paper consumption has caused shortage in raw material. Therefore, it is important to find an alternative fibre source from fast growing plant. *Acacia* hybrid is one of the examples of fast growing plant that gaining over many species for commercial pulpwood production due to its morphology characteristic, physical properties and mechanical properties. It has the potential to produce high pulp yield and fix atmospheric nitrogen through symbiosis of the acacia's root with nitrogen fixing bacteria in the soil which improve the soil condition at the same time (Jahan *et al.,* 2007). Furthermore, it assists in reafforestation and act as a carbon stock to overcome the pressure of environmental problems (Kim *et al.,* 2008).

Another concern besides environmental issue is the pulp yield since there is a lack in the usage of raw material especially in wood. High pulp yield with low Kappa number and screened rejection are the most preferable outcome in pulping. Conventional Kraft pulping however did not convince for high pulp yield instead most of the organosolv pulp resulted in higher yield than the conventional Kraft or sulphite pulping. According to Xiao *et al.* (1999), *Eucalyptus cilriodora* chips were cooked in 8% of NaOH and 50% ethanol at 453 K for four hours and result shown that screened pulp yield was as high as 65%. Moreover, there were many studies on different species using ethanol as organic solvent had resulted in high yield (Muurinen, 2000). Therefore, it is which this study was done to emphasise on pulp yield produced using organosolv pulping method.

Organosolv pulping has been well established in laboratory scale whereby there are various organic solvents and catalysts being used in organosolv pulping. Most prominent organosolv processes are such as Kleinert, Alcell, MD Organocell, Organocell, SODA, ASAM, ASAE, NAEM, ester pulping, phenol pulping, Acetocell, Milox, and Formacell (Sridach, 2010). However, in this study, ethanol was selected as organic solvent and NaOH as the catalyst. Comparison was made between organosolv pulping and Kraft pulping since Kraft pulping is the most applied process to produce chemical pulps. Besides that, fast growing plants are rarely used as raw material in pulping as most research has been focusing on the use of non fibre resources. This study will then contribute to the industry and researchers in improvising the end product produced by the cooking condition applied in this study.

1.2 Objectives

This study was conducted based on the following objectives:

- 1. To determine and to compare the maximum pulp yield of *Acacia* hybrid and Kappa number using different concentrations of ethanol.
- 2. To compare physical and mechanical properties of handsheet between Kraft pulping and organosolv pulping.
- 3. To compare handsheet properties of beaten pulp and non-beaten pulp.

CHAPTER 2

LITERATURE REVIEW

2.1 Description of *Acacia* hybrid wood

This sub topic provides background of *Acacia* hybrid wood, explains the physical, mechanical and chemical properties of *Acacia* hybrid.

2.1.1 Introduction of *Acacia* hybrid wood

Acacia hybrid is under the family Fabaceae and subfamily Mimosoideae. In terms of its botanical characteristic and morphology, *Acacia* hybrid is a medium size tree which able to reach the height in ranged of 8 to 10 m and a diameter at breast height (DBH) of 7.5 to 9.0 cm in two years (Figure 2.1). The traits of the flower colour, leaf shape, size, pod, bark and wood density are the combination of those *Acacia mangium* and *Acacia auriculiformis* (Bueren, 2004).

Acacia is widely distributed throughout the tropics and subtropics mainly in Australia and Pacific. It was reported that the natural hybridisation between the Acacia auriculiformis as the male parent and Acacia mangium as the female parent was found in Sabah, Malaysia in the late 1970s. It was distributed where the mean annual temperature is 12°C to 35 °C and annual precipitation of 1200 to 1850 mm (Bueren, 2004).

Figure 2:1: Three years old *Acacia* hybrid's plantation. Source : Bueren (2004).

2.1.2 **Physical properties**

Acacia hybrid is able to identify from its distinct heartwood and sapwood whereby the heartwood is dark brown while the sapwood is light brown in colour. It is categorised as a hard and dense wood. The grain was fine and interlocked while its texture was moderately smooth. Moreover, it obtains fine lines of parenchyma which imitates the presence of growth rings (Rokeya *et al.,* 2010).

Emphasis has been given to *Acacia* hybrid since it posses good characteristics especially in growth rate and wood properties such as wood density, moisture content and fibre length which are very much attributed to the pulp and paper productions. Rokeya *et al.* (2010) reported that *Acacia* hybrid has the highest specific gravity and volumetric shrinkage which were 0.56 and 9.71 respectively when compared to *Acacia auriculiformis* which were only 0.61 and 8.01 and *Acacia mangium*, 0.52 and 7.01. Moreover, Kha (1996) stated that the wood density of *Acacia* hybrid was 0.455 g/cm³ which considered higher than *Acacia mangium*.