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ABSTRACT 

 
Combining bimetallic nanoparticles (NPs) with rare-earth ions in tellurite glass is an 
interesting field for researchers due to the amplification in surface-enhanced Raman 
scattering (SERS). To ensure the SERS effect to occur, a selection of SERS substrate 
is very crucial as their plasmonic properties and nanostructured metallic surface will 
stimulate the plasmonic excitation for Raman scattering to take place. Determining 
the SERS enhancement in tellurite glass with addition of bimetallic NPs is the main 
focus of this research. Four series of glass are prepared via melt-quenching method. 
Glass containing monometallic titanium NPs with erbium content are prepared with 
composition of (70-x-y)TeO2–20ZnO–9Na2O–1Er2O3–(x)TiO2–(y)Al2O3, where x = 
0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol% and y = 0 mol%. Glass containing monometallic 
titanium NPs without erbium content are prepared with composition of (70-x-y)TeO2–
20ZnO–9Na2O–0Er2O3–(x)TiO2–(y)Al2O3, where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 
mol% and y = 0 mol%. In contrary, glass containing bimetallic titanium and 
aluminium NPs with erbium content are prepared with composition of (70-x-y)TeO2–
20ZnO–9Na2O–1Er2O3–(x)TiO2–(y)Al2O3 where x = 0.0 and 0.3 mol% and y = 0.0, 
0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mol%. Glass containing bimetallic titanium and 
aluminium NPs without erbium content are prepared with composition of (70-x-
y)TeO2–20ZnO–9Na2O–0Er2O3–(x)TiO2–(y)Al2O3  where x = 0.0 and 0.3 mol% and y 
= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mol%. In-depth characterization are performed 
by using X-Ray Diffraction (XRD), Ultraviolet-Visible Spectroscopy (UV-VIS) Fourier-
Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), 
Photoluminescence Spectroscopy (PL), Atomic Force Microscopy (AFM) and Raman 
Spectroscopy.  XRD spectra confirms the amorphous nature of glass samples with 
the appearance of broad hump between 25° to 35° and the absence of sharp peak. 
A weak plasmon band is observed at 550 nm for glass containing monometallic 
titanium NPs. Meanwhile, a weak plasmon band is observed at 554 nm and 827 nm 
for glass containing bimetallic titanium and aluminium NPs. The variations in the 
direct optical band gap, indirect optical band gap and Urbach energy is due to the 
contribution of metallic NPs. FTIR spectra shows the appearance of Zn−O tetrahedral 

bond, symmetric stretching vibrations of Te−O in Te, Te−O−Zn linkages, vibrations 

of water molecules and fundamental stretching of hydroxyl group for glass containing 
monometallic NPs. Glass containing bimetallic NPs display the Zn−O tetrahedral bond, 

stretching vibrations of Al−O, Te−O bending vibrations in TeO3 units, Al−O stretching, 

vibrations of water molecules and fundamental stretching of hydroxyl group. TEM 
image display the increasing size of NPs following the Ostwald ripening process and 
coalescence process. AFM image illustrates the formation of scattered island due to 
NPs. PL emission spectra display the two significant peaks centred at 547 nm and 
668 nm with enhancement in intensity due to the surface plasmon resonance (SPR) 
effect. Raman spectra illustrate the amplification in Raman signal with Raman 
enhancement factor of 1.55, 1.45, 1.51 and 1.61 for TZNETiAl0.6 glass. The 
amplification in Raman signal due to excitations of surface plasmon from titanium 
and aluminium NPs. TZNETiAl0.6 glass shows optimum properties to be used in 
molecular detection application due to favourable surface roughness value which is 
suitable for substrate properties and highest enhancement intensity in PL and Raman 
spectra attribute to the plasmonic effect from titanium and aluminium NPs.  
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ABSTRAK 

 
SIFAT STRUKTUR, MORFOLOGI DAN OPTIK ZARAHNANO DWILOGAM 

DALAM SISTEM KACA TELURIT UNTUK KESAN PENINGKATAN 
PENYERAKAN PERMUKAAN RAMAN 

 
Gabungan zarahnano dwilogam dengan ion nadir bumi dalam kaca telurit adalah 
bidang kaji yang menarik bagi para penyelidik disebabkan kesan peningkatan 
penyerakan permukaan Raman (SERS). Untuk memastikan kesan SERS berlaku, 
pemilihan substratum SERS adalah sangat penting di mana sifat plasmonik dan 
struktur permukaan logam nano akan membantu dalam pengujaan plasmonik untuk 
penyerakan Raman. Penentuan peningkatan penyerakan permukaan Raman dalam 
kaca telurit dengan penambahan zarahnano dwilogam ialah fokus utama dalam kajian 
ini. Empat siri kaca disediakan melalui kaedah perlindapan leburan. Kaca 
mengandungi monologam zarahnano titanium dengan kandungan erbium disediakan 
dengan komposisi (70-x-y)TeO2–20ZnO–9Na2O–1Er2O3–(x)TiO2–(y)Al2O3 , di mana x 
= 0.0, 0.1, 0.2, 0.3, 0.4 dan 0.5 mol% dan y = 0 mol%. Kaca mengandungi 
monologam zarahnano titanium tanpa kandungan erbium disediakan dengan 
komposisi (70-x-y)TeO2–20ZnO–9Na2O–0Er2O3–(x)TiO2–(y)Al2O3  , di mana x = 0.0, 
0.1, 0.2, 0.3, 0.4 dan 0.5 mol% dan y = 0 mol%. Sebaliknya, kaca mengandungi 
dwilogam zarahnano titanium dan aluminium dengan kandungan erbium disediakan 
dengan komposisi (70-x-y)TeO2–20ZnO–9Na2O–1Er2O3–(x)TiO2–(y)Al2O3 di mana x = 
0.0 dan 0.3 mol% dan y= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 dan 0.6 mol%. Kaca 
mengandungi dwilogam zarahnano titanium dan aluminium tanpa kandungan erbium 
disediakan dengan komposisi (70-x-y)TeO2–20ZnO–9Na2O–0Er2O3–(x)TiO2–(y)Al2O3  

di mana x = 0.0 dan 0.3 mol% dan y= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 dan 0.6 mol%. 
Pencirian lanjut dijalankan menggunakan Pembelauan Sinar-X (XRD), Spektroskopi 
Ultraungu-Cahaya Nampak (UV-VIS), Spektroskopi Inframerah Transformasi Fourier 
(FTIR), Mikroskopi Penghantaran Elektron (TEM), Spektroskopi Pendarkilau (PL), 
Mikroskopi Daya Atom (AFM) dan Spektroskopi Raman. Spektra XRD mengesahkan 
sifat amorfus sampel kaca dengan kemunculan bonggol pada 25° sehingga 35° dan 
ketidakhadiran puncak tajam. Kepelbagaian pada jurang jalur optik langsung, jurang 
jalur optik tak langsung dan tenaga Urbach disebabkan sumbangan zarahnano logam. 
Jalur plasmon lemah didapati pada 550 nm bagi kaca mengandungi monologam 
zarahnano titanium. Manakala, jalur plasmon lemah didapati pada 554 nm dan 827 
nm bagi kaca mengandungi dwilogam zarahnano titanium dan aluminium. 
Kepelbagaian pada jurang jalur optik langsung, jurang jalur optik tak langsung dan 
tenaga Urbach disebabkan sumbangan zarahnano logam. Spektra FTIR menunjukkan 
kemunculan ikatan tetrahedron Zn-O, getaran regangan simetri Te-O pada Te, 
rantaian Te-O-Zn, getaran molekul air dan regangan asas kumpulan hidroksil bagi 
kaca mengandungi zarahnano monologam. Kaca yang mengandungi zarahnano 
dwilogam menunjukkan ikatan tetrahedron Zn-O, getaran regangan Al-O, getaran 
lengkungan Te-O dalam unit TeO3, regangan Al-O, getaran molekul air dan regangan 
asas kumpulan hidroksil. Imej TEM menunjukkan peningkatan saiz zarahnano melalui 
proses pematangan Ostwald dan proses pergabungan. Imej AFM menunjukkan 
pembentukan serakan pulau-pulau disebabkan zarahnano. Spektra sinaran PL 
menunjukkan dua puncak ketara berpusat pada 547 nm dan 668 nm dengan 
peningkatan pada keamatan disebabkan kesan resonans plasmon permukaan (SPR). 
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Spektra Raman menunjukkan penggandaan pada isyarat Raman dengan faktor 
peningkatan 1.55, 1.45, 1.51 dan 1.61 bagi kaca TZNETiAl0.6. Penggandaan pada 
isyarat Raman disebabkan pengujaan plasmon permukaan daripada zarahnano 
titanium dan aluminium. Kaca TZNETiAl0.6 menunjukkan ciri-ciri optimum untuk 
digunakan dalam aplikasi pengesanan molekul disebabkan nilai kekasaran permukaan 
yang sesuai untuk dijadikan sebagai sifat substrat dan peningkatan keamatan 
tertinggi pada spektra PL dan Raman disebabkan oleh kesan plasmonik daripada 
zarahnano titanium dan aluminium.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  Background of Study 

Glass architectural is plain and simply aesthetically in human eyes. This versatile 

material is used in everyday applications, from homes to kitchenware, automobiles, 

decorations and down to several unseen applications such as electronics, medical 

equipment, insulator and reinforcement material. Types of glass are made according 

to their specific needs and applications. The engineering of glass is made to exhibit 

different kind of structural, optical, thermal and chemical properties (Shelby, 2005).  

The most common glasses used in the commercial glass industry are 

borosilicate and soda-lime silicate. Borosilicate-based glass are commonly found in 

the exterior lighting, industrial and lab equipment as they are high durability and its 

superior thermal shock resistance (Hasanuzzaman et al., 2016).  Food and drinks 

beverage and container, accessories and decorative tableware are made from soda-

lime silicate-based glass, basically almost 80% of world-wide production due to its 

inexpensive cost and easy to be made as they have relatively low melting point 

(Ashby, 2012).  Meanwhile, there is another type of glass which an interesting smart 

material in non-crystalline solids research has been reported. Tellurite glass as the 

most stable oxide has opened a whole new photonics world to the interest of 

researchers such as optical amplifiers, lasers utilizing tellurite-based glass gain media, 

solar energy harvesting, biomedical applications, optical sensing and more 

applications (El-Mallawany, 2018). The trigonal bipyramid structure of tellurium 

dioxide gives it the advantage to form different bonds with different ions which 

enable it to be tune to favourable material properties for photonic application 

(Gulenko et al., 2014).  
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Metallic nanoparticles (NPs) and tellurite glass have recently grown in 

research on the optical and luminescence enhancement properties. This glass 

preparation is study along with the presence of rare-earth ion due to the energy 

transfer mechanism from the metallic NPs to the rare-earth ion which will be 

contributed to the intensified local field and luminescence enhancement (de Almeida, 

2008). The local field effect induced by the surface plasmon resonance (SPR) of 

metallic NPs which is yield in the vicinity of rare-earth ion is investigated extensively 

due to its stimulating effect in intensified Raman signal, or also known as surface-

enhanced Raman scattering (SERS). These metallic NPs are called as the SERS 

substrate for which they possess the favourable properties as a plasmonic material.  

SERS is initially founded in 1970 by Fleischmann and co-workers when they 

reported an unusually large Raman signal is obtained from pyridine adsorbed on a 

roughened silver electrode (Fleischmann et al., 1974). Since then, SERS has been 

exploited mostly in biomedical and biochemical research which provide new 

combination and techniques for analytical applications. However, some issues should 

be taken into consideration before SERS is fully taken into bio-clinical practices such 

as reproducibility, background interference signal and qualitative analysis. The 

convergence of photonics and nanoscience creating more opportunities on producing 

SERS substrate that is significant on detecting wider range of biological or chemical 

analytes (Candeloro et al., 2017).  

Few experiments have been demonstrated with incorporation of monometallic 

NPs in tellurite glass. In previous work demonstrated by Amjad et al (2013), the 

embedment of silver NPs shows significant Raman signal up to the power of tenth 

along with enhancement in photoluminescence due to the local field effect of silver 

NPs (Amjad et al., 2013). Another experiment is conducted with incorporation of gold 

NPs in tellurite glass resulting in SERS enhancement which is highly potential 

candidate for solid state lasers and other nanophotonic devices (Ghoshal et al., 

2015). A similar experimental work was performed by Saidi et al (2018), in which the 

enhancement of Raman signal is observed in the tellurite glass with the presence of 

bimetallic NPs of silver and titanium. Hence, it is proved the combination of bimetallic 

NPs potentially improves the absorption, optical and structure properties better than 

monometallic NPs due to the attributed localized surface plasmon resonance of Ag/Ti 
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which transferred the strong local electric field to the rare-earth ions positioned in 

their vicinity (Saidi et al., 2018).  

This current research proposed a new idea of producing a simple and cheaper 

nanostructured plasmonic glass which exerts the SERS capabilities for molecular 

detection application by using conventional melt-quenching technique. The direct 

embedment of metallic NPs into glass composition by using a melt-quenching 

technique provides facile glass fabrication which possesses beneficial features for 

SERS application. The other technique of fabricate nanostructured plasmonic glass 

such as ion-exchange, chemical vapour deposition and laser-induced plasma required 

multiple steps and involves an intricate process. In current research, the selection of 

titanium and aluminium as bimetallic NPs is prerequisite due to their plasmonic 

properties in the ultraviolet (UV) region which give rise to the Localized Surface 

Plasmon Resonance (LSPR) on the surface of metallic NPs.  

 

1.2 Problem Statement 

In order to identify the molecular structure of a molecule, the vibrational information 

of the molecule must be extracted. This is possible with the aid of Raman 

spectroscopy. Raman spectroscopy is a method to analyse the molecular and 

vibrational properties of a molecule in a non-contact and non-destructive ways 

(Vašková et al., 2011). In this modern developing century, the established technique 

of Raman spectroscopy is constantly used in chemical and materials analysis 

(Ochsenkuhn et al., 2012). However, Raman spectra signal is not strong enough to 

be applicable in wide biomedical field and biomolecular sensing application (El-Said 

et al., 2017).  

In order to overcome this limitation, this research proposes the embedment 

of metallic NPs in the glass matrix to allow the amplification of Raman spectra up to 

the factor of 105. The amplification in Raman spectra with the aid from metallic NPs 

is known as surface-enhanced Raman spectroscopy (SERS) (Sharma, 2012). In this 

research, two series of glasses containing monometallic and bimetallic NPs were 

prepared by using conventional melt-quenching technique. Further, the surface 

morphology, structural and optical properties of each glass is characterized in-depth 


