DESIGN AND DEVELOPMENT OF REAL-TIME PARTICULATE MATTER MEASURING INSTRUMENT APPLYING LASER SCATTERING TECHNIQUE FOR MICROENVIRONMENT MONITORING

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2020

DESIGN AND DEVELOPMENT OF REAL-TIME PARTICULATE MATTER MEASURING INSTRUMENT APPLYING LASER SCATTERING TECHNIQUE FOR MICROENVIRONMENT MONITORING

ANGELO SEAN FRANCIS TIWON

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2020

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

- JUDUL : DESIGN AND DEVELOPMENT OF REAL-TIME PARTICULATE MATTER MEASURING INSTRUMENT APPLYING LASER SCATTERING TECHNIQUE FOR MICROENVIRONMENT MONITORING
- IJAZAH : IJAZAH SARJANA

BIDANG : FIZIK DENGAN ELEKTRONIK

Saya **ANGELO SEAN FRANCIS TIWON**, Sesi **2018-2019**, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

SULIT

TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

ANGELO SEAN FRANCIS TIWON MS1721043T

(Tandatangan Pustakawan)

Tarikh : 11 June 2020

(Dr. Chee Fuei Pien) Penyelia Utama

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries and references which have been duly acknowledged.

11 June 2020

.....

Angelo Sean Francis Tiwon MS1721043T

CERTIFICATION

NAME	:	ANGELO SEAN FRANCIS TIWON
MATRIC NO	:	MS1721043T
TITLE	:	DESIGN AND DEVELOPMENT OF REAL-TIME
		PARTICULATE MATTER MEASURING INSTRUMENT
		APPLYING LASER SCATTERING TECHNIQUE FOR
		MICROENVIRONMENT MONITORING
DEGREE	:	MASTER OF SCIENCE
FIELD	:	PHYSICS WITH ELECTRONICS
VIVA DATE	:	12 MARCH 2020

1. CHAIRMAN Dr. Chee Fuei Pien

- 2. COMMITTEE Assoc.Prof Dr. Justin Sentian
- 3. COMMITTEE Mr. Jackson Chang Hian Wui

ACKNOWLEDGEMENT

First and foremost. Praise to the lord for his wonderful blessings in providing me an extraordinary strength to complete this dissertation.

My utmost thanks I would like to send to my parents Mr. Francis Tiwon and Mdm. Eveline D Sibir for their continuous prayers and blessings throughout this journey. Not to forget my siblings, Bio, Grace and Koko for always being there for me at times of hardship when I don't have anyone to share with.

Greatest thanks I would also bid to my ever-supportive supervisor Dr. Chee Fuei Pien for her patients and continuous encouragement throughout this whole journey. Special thanks to my co supervisor Mr. Jackson Chang Hian Wui and Assoc.Prof Dr. Justin Sentian for their ideas and moral support.

Honorable mention to my two brothers Mr Mivolil Duinong and Mr Abdul Ismail Bin Abdul Rani and sister Ms. Syira who have grace this journey together with me. Thank you for being there for me through my up and downs. Only you know how many tears and blood were shredded throughout this whole journey.

To all my wonderful friends in Material Science Lab (Jannah, Izzu, Flo, Kak Ros and Bibi), e-Vibs (Syida, Mar, Sal, Yen, Ixora, Hafiz, Kachong, Sarah) and mix lab (Haje, Kak Salmia and Kak Yaya) thank you for your time and company. Your presence makes me less lonely.

Finally, thank you to Universiti Malaysia Sabah especially the center of postgraduate and center of research and innovation for allowing me to pursue my postgraduate dream. Not to forget every individual and parties who have contributed to the completion of this dissertation directly and indirectly. Thank you very much!

Angelo Sean Francis Tiwon 11 June 2020

ABSTRACT

Particulate Matter (PM) is one of the key indicators in determining Air Quality Index (AQI). While PM has been has identified as one of global health threat by the World Health Organization (WHO), and there is an urgent need for routine air monitoring data on components of the PM mass to identify the role of PM chemical components in causing adverse health effects for exposure control, assessment of particle exposure on a more personal level are not achievable by the conventional method due to their high cost and relatively large size. Therefore, it is crucial to have a better approach in monitoring particulate matter that can provide better spatial and temporal coverage which is made possible with the emergence of low-cost PM sensor. In this study a real time particulate matter measuring instrument applying laser scattering technique was developed and evaluated. Based on the evaluation, PMSA003 was selected as the best sensor to be applied in this PM monitoring instrument due to its high linearity response with reference instruments with R²>0.9 and low intra-model variability of 17.71%. A humidity correction algorithm was developed based on the climate susceptibility test as it was observed there are strong correlation between the reported mass concentration and humidity at more than 65 %RH. To further improve the performance of the instrument, it was deployed in three ambient setting where the density factor for the conversion of particle distribution to mass concentration was obtained for the indoor, outdoor and factory setting. The finalized prototype was validated with the Thermo Scientific[™] 1405 TEOM[™] Continuous Ambient Particulate Monitor. TOEM is certified Federal Equivalent Method (FEM) instrument by US. Through the field deployment, the prototype showed high correlation with the reference instrument with $R^2 > 0.9332$ for PM_{2.5} and $R^2 > 0.7623$ for PM_{10.0}. In conclusion, an integrated real time particulate matter measuring instrument was designed, developed and evaluated where the term design is referring to the whole system design. The developed instrument shows excellent correlation with reference instruments thus validating its potential to be applied for real life application.

ABSTRAK

REKA BENTUK DAN PENGHASILAN INSTRUMEN PENGUKURAN JIRIM ZARAHAN MASA NYATA BERASASKAN SERAKAN LASER UNTUK PEMANTAUAN PERSEKITARAN MIKRO

Jirim Zarahan (PM) merupakan salah satu penentu Indeks Pencemaran Udara (IPU). Walaupun PM telah dikenal pasti sebagai salah satu ancaman kepada tahap kesihatan di dunia oleh Pertubuhan Kesihatan Sedunia (WHO) dan terdapat keperluan mendesak untuk pemantauan berterusan terhadap komponen PM dalam mengenal pasti kesannya terhadap tahap kesihatan manusia, namun taksiran terhadap kadar pendedahan PM pada skala individu tidak dapat dicapai oleh teknologi konvensional disebabkan oleh kos yang tinggi dan saiz yang agak besar. Oleh sebab itu, adanya keperluan mendesak untuk kaedah pemantuan PM yang boleh memberikan liputan ruangan dan temporal yang lebih mampan yang boleh dicapai menggunakan penderia PM kos rendah yang semakin berkembang pesat kini. Dalam kajian ini, sebuah instrumen pengukur PM masa nyata telah direka dibina dan dinilai. Melalui penilaian tersebut, penderia PMSA003 telah dipilih sebagai penderia terbaik untuk disepadukan dalam instrumen pengukur PM yang dibina kerana kelineran yang tinggi penderia tersebut dengan instrumen rujukan iaitu R²>0.9 dan juga kebolehubahan intra-model yang rendah penderia tersebut iaitu sebanyak 17.71%. Algoritma pembetulan berasaskan kelembapan juga telah diolah melalui cerapan kajian kerentanan iklim yang menunjukkan tahap korelasi yang tinggi di antara kelembapan dan jirim PM pada tahap kelembapan melebihi 65 %RH. Bagi memperbaiki prestasi instrumen yang dibina, instrumen tersebut telah diuji di tiga lokasi ambien yang berbeza yang mana faktor ketumpatan telah diperoleh untuk pertukaran taburan zarah kepada kepekatan jisim untuk kawasan dalaman, luaran dan industri. Produk akhir instrumen telah diuji sisi dengan sisi berasama instrumen pengawasan kualiti udara automatik, Thermo Scientific™ 1405 TEOM™. TOEM merupakan instrumen kaedah setara persekutuan (FEM) yang diperakui oleh US. Melalui kajian ini, instrumen yang dibina menunjukkan korelasi yang tinggi dengan instrumen rujukan iaitu setinggi R²>0.933 untuk PM_{2.5} dan R²>0.7623 untuk PM_{10.0}. Kesimpulannya, instrumen bersepadu bagi pengukuran PM masa nyata telah direka, dibina dan dinilai. Instrumen yang telah dibina menunjukkan tahap kolerasi yang tinggi dengan instrumen rujukan sekaligus mengesahkan kebolehupayaan instrumen tersebut untuk diaplikasikan dalam dunia nyata.

TABLE OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xv
LIST OF APPENDIXES CHAPTER 1: INTRODUCTION	xvii
1.1 Research Background	1
1.2 Problem Statement UNIVERSITI MALAYSIA SABAH	3
1.3 Research Objectives	5
1.4 Research Scope	5
1.5 Thesis Structure	6
CHAPTER 2: LITERATURE REVIEW	
2.1 Overview	8
2.2 Particulate Matter Pollution	8
2.2.1 Classification of Particulate Matter (PM)	8
2.2.2 Particulate Matter (PM) Health Hazard	10
2.2.3 Particulate Matter (PM) Exposure Standards	12
2.3 Conventional Method for Particulate Matter Monitoring	14
2.3.1 Gravimetric Method	14
2.3.2 Beta Attenuation Method (BAM)	16
2.3.3 Tapered Element Oscillating Microbalance (TEOM)	18

2.3.4 Limitations of Conventional Method for PM Monitoring	19
2.4 Optical Based Instrument for Particulate Matter Monitoring	19
2.4.1 Theory of Operations	19
2.4.2 Conversion from Particle Distribution to Mass Concentration	22
2.4.3 Low Cost Particulate Matter Sensors	23
2.5 Evaluations on Low-cost PM Sensors	25
2.5.1 Summary on Low-cost PM Sensors Evaluations	25
2.5.2 Comparison with Reference Instruments	28
2.6 Repeatability, Reproducibility, Stability and Limit of Detection	28
2.6.1 Effect of Particle Characteristics on Sensors Response	30
2.6.2 Climate Susceptibility Effect on PM Sensor	30
2.7 Design and Development of Test Chamber	31
2.8 Previous Study on Development of Particulate Matter Monitoring Instrument	33
2.9 Research Directions	35

CHAPTER 3: METHODOLOGY		
3.1 Overview 3	6	
3.2 Hardware Design of Particulate Matter Measuring Instrument 3	6	
3.2.1 Hardware Design Aspects Requirement 3	6	
3.2.2 Instrument Sensing Unit ERSITI MALAYSIA SABAH	8	
3.2.3 Instrument Processing Unit 4	3	
3.2.4 Instrument Data output4	4	
3.2.5 Power Supply4	7	
3.3 Integration of Particulate Measuring Device Hardware 4	8	
3.4 Design of System Software Interface		
3.5 Design of Test Chamber5	1	
3.6 Design of Laboratory Evaluation5.6	3	
3.6.1 Flowchart of Laboratory Evaluation 5.	3	
3.6.2 Reference Instrument 5-	4	
3.6.3 Preparation of Air Chamber Test5	5	
3.6.4 Linearity Test5	7	
3.6.5 Intra-Model Variability Test 5	9	
3.6.6 Climate Susceptibility Test6	0	
3.7 Determination of Density Factor in Various Field		

3.8 Validation with Federal Reference Instrument	64
CHAPTER 4: RESULTS AND DISCUSSION	
4.1 Overview	65
4.2 Construction of Particulate Matter Measuring Instrument	65
4.2.1 Integration of Sensors	65
4.3 Development of System Software Interface	67
4.4 Graphical User Interface	73
4.5 Design of test chamber	74
4.6 Linearity Test	75
4.6.1 Linearity Test Results for PM _{1.0}	75
4.6.2 Linearity Test Results for PM _{2.5}	79
4.6.3 Linearity Test Results for PM _{10.0}	84
4.6.4 Summary on Linearity Test Results	88
4.7 Intra-model Variability Test Results	89
4.7.1 Intra-model Variability Test Results for PMSA003	89
4.7.2 Intra-model Variability Test Results for PM7003	96
4.7.3 Summary on Intra-model Variability Test Results	102
4.8 Clim <mark>ate Suscepti</mark> bility Test Results	103
4.8.1 Climate Susceptibility Test Results for PMSA003	103
4.8.2 Development of Algorithm to Reduce climate Susceptibility	107
4.9 Results for Determination of Density Factor in Various Field	109
4.9.1 Diurnal PM Mass concentration in the Deployed Field	109
4.9.2 Density Factor Distribution in the Deployed Field	112
4.9.3 Determination of Density Factor for each of Environment	116
4.10 Data Validation with Federal Reference Instrument	118
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	
5 1 Overview	171

APPENDIX	137
REFERENCES	124
5.4 Recommendations and Future Works	123
5.3 Significant of the Study	123
5.2 Summary of Findings	121
5.1 Overview	121

LIST OF TABLES

Table 2.1	Health threat of particulate matter	11	
Table 2.2	Particulate matter standard around the world		
Table 2.3	Specification of the selected PM sensors available on the market	24	
Table 2.4	Summary on low cost PM sensor evaluation	26	
Table 2.5	Summary on test chamber design	31	
Table 2.6	Previous study on development of particulate monitoring	34	
	instrument		
Table 3.1	Technical summary of selected sensor	39	
Table 3.2	Technical details of BME280	42	
Table 3.3	PM _{2.5} allowable Range	45	
Table 3.4	Mapping of components pin	48	
Table 3.5	Evaluation summary of Purpleair-II	55	
Table 3.6	Locations of field evaluation	62	
Table 3.7	Average particle diameter	63	
Table 4.1	Software interface source code	68	
Table 4.2	PM _{1.0} concentration summary for linearity test from reference	76	
1 Car	instrument		
Table 4.3	Paired t-test of PM _{1.0} concentrations reported by reference	77	
	instrument against each sensor		
Table 4.4	Summary on $PM_{2.5}$ concentration during linearity test from	80	
	reference instrument		
Table 4.5	Paired t-test of $PM_{2.5}$ concentrations reported by reference	81	
	instrument against each sensor		
Table 4.6	Summary on $PM_{10.0}$ concentration during linearity test from	84	
	reference instrument		
Table 4.7	Paired t-test of $PM_{10.0}$ concentrations reported by reference	85	
	instrument against each sensor		
Table 4.8	Summary of $PM_{1.0}$ concentration from reference instrument	90	
Table 4.9	$PM_{1.0}$ intra-model variability results for PMSA003 sensor	90	
Table 4.10	Summary of $PM_{2.5}$ concentration from reference instrument	92	
Table 4.11	PM _{2.5} intra-model variability results for PMSA003 Sensor	92	
Table 4.12	Summary of $PM_{10.0}$ concentration from reference instrument	94	

Table 4.13	$PM_{10.0}$ intra-model variability results for PMSA003 sensor	94
Table 4.14	Summary for $PM_{1.0}$ concentration from reference instrument	96
Table 4.15	$PM_{1.0}$ intra-model variability results for PMS7003 sensor	96
Table 4.16	Summary for $PM_{2.5}$ concentration from reference instrument	98
Table 4.17	$PM_{2.5}$ intra-model variability results for PMS7003 sensor	98
Table 4.18	Summary for $PM_{10.0}$ concentration from reference instrument	100
Table 4.19	$PM_{10.0}$ intra-model variability results for PMS7003 sensor	100
Table 4.20	Summary for climate susceptibility test results	103
Table 4.21	PM mass concentration summary	109
Table 4.22	Descriptive statistic for density factor $PM_{1,0}$	114
Table 4.23	Descriptive statistic for density factor PM _{2.5}	115
Table 4.24	Descriptive statistic for density factor PM _{10.0}	115
Table 4.25	Calculated density factor for each environment settings	116
Table 4.26	Paired t-test between developed instrument and reference	118
	instrument	

LIST OF FIGURES

Figure 2.1	Penetration ability of PM into our respiratory system	9
Figure 2.2	E-FRM by MetOne instruments Inc	14
Figure 2.3	Sample collection of the PM _{2.5} FRM sampler	15
Figure 2.4	MetOne Model 1020 (Grants Pass, OR) Beta Attenuation	16
	Monitor (BAM)	
Figure 2.5	Schematic of a Beta Attenuation Monitor (BAM)	17
Figure 2.6	1405-F TEOM™ continuous ambient air monitor	18
Figure 2.7	Optical phenomenon by particles	20
Figure 3.1	Particulate matter detection by sensor	41
Figure 3.2	BME280 temperature, humidity and pressure sensor	41
Figure 3.3	Arduino Mega pin out	43
Figure 3.4	2.4-inch touchscreen Liquid Crystal Display (LCD)	44
Figure 3.5	SIM800 Global System for Mobile (GSM) communications	46
A P	module	
Figure 3.6	Lithium Polymer (LiPo) battery	47
Figure 3.7	Lithium battery protection circuit and charger	47
Figure 3.8	Block diagram of the designated instrument SIA SABAH	48
Figure 3.9	Design of printed circuit board	50
Figure 3.10	Flowchart of system operations	50
Figure 3.11	Test chamber design for laboratory evaluation	51
Figure 3.12	Divider design for test chamber	52
Figure 3.13	Flowchart for laboratory evaluation	53
Figure 3.14	Reference instrument PurpleAir-II (PA-II)	54
Figure 3.15	Process on preparation of air chamber test	55
Figure 3.16	Experiment setup for linearity test	57
Figure 3.17	Linearity test experimental process	58
Figure 3.18	Experiment setup for intra-model variability test	59
Figure 3.19	Experiment setup for climate susceptibility test	60
Figure 3.20	Locations of deployment	62
Figure 4.1	Developed PCB	66
Figure 4.2	Side and top view of developed instrument	67

Figure 4.3	Weight of developed instrument	67
Figure 4.4	Completed Graphical User Interface (GUI) for 2.4-inch	73
	touchscreen Liquid Crystal Display (LCD) Shield	
Figure 4.5	Air test chamber	74
Figure 4.6	Diurnal $PM_{1.0}$ concentration curve during linearity test	76
	for (a) Replicate 1, (b) Replicate 2 and (c) Replicate 3	
Figure 4.7	Regression between $PM_{1.0}$ of reference against $PM_{1.0}$ from	79
	each sensor for (a) Replicate 1, (b) Replicate 2, (c)	
	Replicate 3 and (d) average readings.	
Figure 4.8	Diurnal $PM_{2.5}$ concentration curve during linearity test for	80
	(a) Replicate 1, (b) Replicate 2 and (c) Replicate 3	
Figure 4.9	Regression plot between PM _{2.5} of reference instrument	83
	against $PM_{2.5}$ from sensor for (a) Replicate 1, (b) Replicate	
	2, (c) Replicate 3 and (d) average readings.	
Figure 4.10	Diurnal PM _{10.0} concentration curve during linearity test for	84
A	(a) Replicate 1, (b) Replicate 2 and (c) Replicate 3	
Figure 4.11	Regression plot between PM _{10.0} from reference instrument	86
8 .	against $PM_{10.0}$ from sensor for (a) Replicate 1, (b)	
	Replicate 2, (c) Replicate 3 and (d) average readings.	
Figure 4.12	PM _{1.0} diurnal Pattern for intra-model variability test for	90
	PMSA003 sensor for (a) Replicate 1, (b) Replicate 2 and	
	(c) Replicate 3	
Figure 4.13	PM _{2.5} diurnal pattern for intra-model variability test for	92
	PMSA003 sensor for (a) Replicate 1, (b) Replicate 2 and	
	(c) Replicate 3	
Figure 4.14	$PM_{10.0}$ diurnal pattern for intra-model variability test for	93
	PMSA003 sensor for (a) Replicate 1, (b) Replicate 2 and	
	(c) Replicate 3	
Figure 4.15	PM _{1.0} diurnal pattern for intra-model variability test for	95
	PMS7003 sensor for (a) Replicate 1, (b) Replicate 2 and	
	(c) Replicate 3	
Figure 4.16	PM _{2.5} diurnal pattern for intra-model variability test for	97
	PMS7003 sensor for (a) Replicate 1, (b) Replicate 2 and	
	(c) Replicate 3	

Figure 4.17	$PM_{10.0}$ diurnal pattern for intra-model variability test for	99
	PMS7003 sensor for (a) Replicate 1, (b) Replicate 2 and	
	(c) Replicate 3	
Figure 4.18	Climate susceptibility results	103
Figure 4.19	Regression between humidity against particulate mass	104
	concentration	
Figure 4.20	Regression between humidity against PM mass	105
	concentration for (a) Replicate 1, (b) Replicate 2 and (c)	
	Replicate	
Figure 4.21	Regression between humidity against PM _{1.0}	105
Figure 4.22	Regression between	106
Figure 4.23	Regression between humidity against $PM_{10.0}$	106
Figure 4.24	Regression between actual $PM_{1.0}$ against corrected $PM_{1.0}$	107
Figure 4.25	Regression between actual $PM_{2.5}$ against corrected $PM_{2.5}$	107
Figure 4.26	Regression between actual $PM_{10.0}$ against corrected $PM_{10.0}$	107
Figure 4.27	Diurnal PM mass concentration in outdoor setting	108
Figure 4.28	Diurnal PM mass concentration in indoor setting	108
Figure 4.29	Diurnal PM mass concentration in factory setting	109
Figure 4.30	Density factor distribution at outdoor setting	110
Figure 4.31	Density factor distribution at indoor setting	111
Figure 4.32	Density factor distribution at factory setting	111
Figure 4.33	Normalization of PM _{1.0} density factor	112
Figure 4.34	Normalization of PM _{2.5} density factor	112
Figure 4.35	Normalization of PM _{10.0} density factor	112
Figure 4.36	Boxplot for PM _{1.0} density factor	113
Figure 4.37	Boxplot for PM _{2.5} density factor	113
Figure 4.38	Boxplot for PM _{10.0} density factor	114
Figure 4.39	PM _{2.5} diurnal distribution	116
Figure 4.40	PM _{10.0} diurnal distribution	117
Figure 4.41	Regression of $PM_{2.5}$ concentration for developed	117
	instrument versus JAS instrument.	
Figure 4.42	Regression of $PM_{10.0}$ concentration for developed	117
	instrument versus JAS instrument.	

LIST OF ABBREVIATIONS

AT	-	Standard Atmospheric Condition
AQI	-	Air Quality Index
BAM	-	Beta Attenuation Monitor
CF	-	Industrial Condition
CV	-	Coefficient of Variants
COTS	-	Commercial off The Shelf
CSV	-	Comma Separated Value
EPA	-	Environmental Protection Agency
FEM	-	Federal Equivalent Method
FRM	-	Federal Reference Method
GND	-	Ground
GSM	100	Global System for Mobile Communication
GUI		Graphical User Interface
SH.		Height
HEPA		High Efficiency Particulate Air
Hz	and the second	Hertz
IDE	AB-A	Integrated Development Environment SIA SABAH
IMV	-	Intra-Model Variability
L	-	Length
L/min	-	Liter per Minute
LB	-	Lower Boundary
LCD	-	Liquid Crystal Display
LED	-	Light Emitting Diode
LiPo	-	Lithium Polymer
LLS	-	Laser Light Scattering Technique
LOD	-	Limits if Detection
mAh	-	Milliampere Hour
min	-	Minimum
max	-	Maximum
nRMSE	-	Normalize Root Mean Square Error

Ра	-	Pascal
PA	-	Purpleair
PCB	-	Printed Circuit Board
PTFE	-	Polytetrafluoroethylene
PM	-	Particulate Matter
RGB	-	Red Green Blue
RH	-	Relative Humidity
RTC	-	Real Time Clock
Rx	-	Receiver
SD	-	Serial Data
SDHC	-	Serial Data High Speed Card
SMPS	-	Scanning Mobility Particle Sizer
SPI	-	Serial Peripheral Interface
TEOM	- 76	Tapered Element Oscillating Microbalance
TET		Thin Film Transistor
TSP	-	Total Suspended Solid
Tx	-)	Transmitter
US	-	United States of America
VCC	B A.	Voltage Common Collector
W	-	Width
WHO	-	World Health Organization

LIST OF APPENDIX

		Page
Appendix A:	List of Conference and Journal Publications	139

CHAPTER 1

INTRODUCTION

1.1 Research Background

Particulate Matter (PM) is a form of air pollution composing of a mixture of solid and liquid particles (World Health Organization, 2013). PM exist in various range of sizes and made up of hundreds of different chemicals originating from various sources which can either be classified as primary PM or secondary PM (Nagar *et al.*, 2014). Primary PM originates from both human and natural activities such as agricultural and industrial activities as well as volcanic eruption, windblown dust and natural wildfires (Nagar *et al.*, 2014). Secondary PM originates from indirect formation of particles by the intermediate reactions of gases in the atmosphere.

PM is often used as one of the key indicator in Air Quality Index (AQI) due to their inhalable properties which may proposed health threat to living organisms (Brunekreef and Holgate, 2002). Various epidemiological studies had reported serious threat of PM to our cardiovascular system (Chuang *et al.*, 2011; World Health Organization, 2014) ranging from decreasing the lung function in children to increasing incidences of acute coronary events such as myocardial infarction and unstable angina (Gehring *et al.*, 2013; Stafoggia *et al.*, 2014).

Conventionally, PM exposure is controlled and measured by monitoring its mass concentration at different size fraction (Langner *et al.*, 2011). The most common practice is to monitor PM is by measuring particles with aerodynamic diameter of less than 10 μ m or also known as PM_{10.0} which is considered as the inhalable fraction. Lately, smaller particles with aerodynamic diameter of less than 2.5 μ m or known as PM_{2.5} are getting more attentions from regulatory body due to its ability to penetrate deeper into the cardiovascular system. Generally, the smaller

the size of particle, the deeper it will penetrate the respiratory tract and the more adverse the effect (Brown *et al.*, 2013). Smaller particles have been reported to have caused decreased lung function in children as well as cardiovascular mortality (Brauer *et al.*, 2012; Brown *et al.*, 2013; Hadei *et al.*, 2017).

There are various methods to monitor PM mass concentration. The US Environmental Protection Agency (EPA) has introduced the gravimetric method as the Federal Reference Method (FRM) for PM monitoring (Noble *et al.*, 2010). Technically, the gravimetric method works by continuously sampling airborne particulate matter onto a polytetrafluoroethylene (PTFE) Teflon filter paper via a stream of steady air flow and later determining the mass of the deposited PM after 24-Hours (Peters *et al.*, 2001). Alternative to this method is the Beta Attenuation Monitor (BAM) which uses radioactive decay for determination of particulate matter concentrations and the tapered Element Oscillating Microbalance (TEOM). These alternative methods are also known as the Federal Equivalent Method (FEM).

While being preferred as the standard method for PM mass concentration monitoring, the FRM and FEM method proposed various spatial and temporal limitations (Castell *et al.*, 2017; Wilson *et al.*, 2002). The Gravimetric method for instance requires at least 24-hours of sampling thus limiting the temporal understanding on PM distribution (Amaral, de Carvalho, Costa, and Pinheiro, 2015). Besides that, the high cost of installation and maintenance for both FRM and FEM monitoring stations which can easily cost up to more than \$10,000 has also resulted in relatively sparse monitoring (Schneider *et al.*, 2017) preventing robust spatial analysis on PM exposure to nearby residents (Wang *et al.*, 2015b). Due to this, there is an urgent need for cheaper and better yet reliable approach to PM monitoring.

1.2 Problem Statement

Unlike gases, PM does not have any defined chemical structure or physical properties (Langner *et al.*, 2011) and their concentrations may vary depending on time, location and pollutant sources (Adams *et al.*, 2015; *Ambient Air Monitoring Protocol For PM2.5 and Ozone Canada-wide Standards for Particulate Matter and Ozone*, 2011; Balasubramanian *et al.*, 2000). While this is true, the Conventional approach to PM monitoring fail to capture spatial gradient in the areas they represent (Jovašević-Stojanović *et al.*, 2015). This is mainly due to the limited number of available stations which is caused by their high cost of deployment and complex operations (Cao, Chow, Lee, and Watson, 2013; Castell *et al.*, 2017).

While PM has been has identified as one of global health threat by the World Health Organization (WHO, 2005) and there is an urgent need for routine air monitoring data on components of the PM mass to identify the role of PM chemical components in causing adverse health effects for exposure control (Lippmann, 2012), assessment of particle exposure on a more personal level are not achievable by the conventional method due to their high cost and relatively large size (Castellani *et al.*, 2014).

Recent technological advancement has seen the emergence of optical based sensor for particulate matter monitoring. These sensors are not only affordable and compact in size, but they are also capable of reporting near real time reading of PM concentration making them highly potential to be integrated as portable device for personal exposure assessment. Furthermore, these low-cost PM sensors are also able to report mass concentration within the range that is compatible with the current PM exposure compliance thus making them the best candidate to supplement the existing monitoring approach.

While these low-cost PM sensors have the capability to report real-time reading of PM mass concentration, technically however, the mass concentration by these sensors is actually derived based on particle size distribution under assumptions that all particles is spherical and density is known (Liu *et al.*, 2017b). Hence, the accuracy of the reported mass concentration by these sensors are easily deteriorated if one of this assumption is violated. In order to ensure accuracy of the reported

mass concentration by these sensors, the correct density factor must be applied, and this density factor is unique to every location due to the complexity of particle distribution. Therefore, the sensor must be evaluated in the environment that they will be used beforehand and so far, no such evaluation was ever conducted within the South East Asia region prior to the literature of this research study.

Another concern when using these low-cost PM sensors is the effect of humidity on their performance. Previous studies have showcased significant impact of humidity on the performance of low-cost PM sensor due to the change of the scattering coefficient (Wang *et al.*, 2015a; Zheng *et al.*, 2018). However, this limitations can be overcome by using correction model as presented by previous researcher (Soneja *et al.*, 2014; Tan, 2017). Malaysia is a tropical country and is known for having high humidity with annual average of 80 %RH, therefore, it is crucial to evaluate the effect of humidity on the performance of these low-cost PM sensor within this region to ensure the right correction model is applied.

In this study, the potential of these low-cost PM sensor was utilized by integrating them into a real-time and portable particulate matter measuring instrument for microenvironment monitoring. The developed instrument is small enough to be used for personal monitoring and have the capability to report real-time $PM_{1.0}$, $PM_{2.5}$ and $PM_{10.0}$ concentration simultaneously as well as particle distribution within the range of 0.3 to 10.0 micron thus overcoming the temporal limitations of the conventional method.

To ensure data reliability, the developed instrument was deployed in three types of environment namely indoor, outdoor and factory settings. The density factor from each location was determined based on the relationship between particle distribution and particle mass concentration. This density factor is crucial for the conversion of particle distribution to mass concentration thus ensuring data reliabilities. The performance of the developed instrument was further evaluated on their climate susceptibility response by manipulating the ambient humidity from low to high in a chamber experiment. The relationship between humidity and the sensor output was then used to develop a humidity correction model. In conclusion, this instrument was targeted towards overcoming the limitations of the conventional method for PM monitoring by integration of low-cost PM sensor with the capability of reporting PM mass concentration at a high reliability and accuracy. The compactness and simplicity of developed instrument operation also make it highly compatible for personal exposure assessment thus overcoming the spatial limitations of the conventional method. To ensure data reliability, the instrument was evaluated through laboratory and field evaluation against reference instrument and results were used to develop a model to improve the performance of the instrument.

1.3 Research Objectives

The objectives of this research are highlighted as follow:

- 1. To develop a particulate matter (PM) measuring instrument applying Laser Light Scattering (LLS) technique for monitoring PM_{1.0}, PM_{2.5} and PM_{10.0}.
- 2. To evaluate the linearity, intra-model variability, climate susceptibility and density factor of developed particulate matter measuring instrument through laboratory and field experiment.
- 3. To validate the performance of the calibrated particulate matter measuring instrument against Federal Equivalent Method (FEM) instrument.

UNIVERSITI MALAYSIA SABAH

1.4 Research Scope

In this study, the potential of low-cost PM sensor was utilized by integrating them into a real time and portable particulate matter measuring instrument for microenvironment monitoring. Microenvironment refers to immediate small-scale environment; environment where everything is represented in the micrometer unit. This monitoring instrument was developed using low-cost Commercial off the shelf (COTS) consumer electronics making it highly reproducible for large scale production thus promoting establishment of more monitoring networks which will creates unique opportunity for citizen-participatory sensing (Jovašević-Stojanović *et al.*, 2015). By making the developed instrument in compact and portable form with built in data logger, assessment of particle exposure in a more personal level can be achieved thus enabling better understanding on the role of PM chemical components in causing adverse health effects which is not achievable by the conventional method. To ensure data reliability, the instrument was evaluated in both laboratory and field deployment