PHYSICOCHEMICAL PROPERTIES OF MODIFIED CASSAVA FLOUR FORTIFIED WITH MICROBIAL POLY-γ-GLUTAMIC ACID ## FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH 2020 # PHYSICOCHEMICAL PROPERTIES OF MODIFIED CASSAVA FLOUR FORTIFIED WITH MICROBIAL POLY-γ-GLUTAMIC ACID FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH 2020 #### **UNIVERSITI MALAYSIA SABAH** **BORANG PENGESAHAN STATUS TESIS** JUDUL : PHYSICOCHEMICAL PROPERTIES OF MODIFIED CASSAVA FLOUR FORTIFIED WITH MICROBIAL **POLY-γ-GLUTAMIC ACID** IJAZAH : SARJANA SAINS BIDANG : SAINS MAKANAN Saya, **HEVENNEY VIANIE HERONEY**, Sesi **2015-2020**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut: - 1. Tesis ini adalah hak milik Universiti Malaysia Sabah. 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. | 4. Sil <mark>a tandaka</mark> n (/): | ionigajian anggi | |---------------------------------------|--| | SULIT | (Mengandungi maklumat yang berdarjah
keselamatan atau kepentingan Malaysia seperti
yang termaktub di dalam AKTA RAHSIA 1972) | | TERHAD | (Mengandungi maklumat TERHAD yang telah
ditentukan oleh organisasi/badan di mana
penyelidikan dijalankan) | | TIDAK TERHAD | | | | Disahkan Oleh, | | HEVENNEY VIANIE HERONEY
MN1421049T | (Tandatangan Pustakawan) | | Tarikh: 21 September 2020 | (Prof. Madya. Dr. Hasmadi Mamat) | Penyelia Bersama ## **DECLARATION** I hereby declare that the work presented in this thesis is my own, except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged. 21 May 2020 _____ Hevenney Vianie Heroney MN1421049T ## **CERTIFICATION** NAME : HEVENNEY VIANIE HERONEY MATRIC NO : MN1421049T : PHYSICOCHEMICAL PROPERTIES OF MODIFIED **TITLE** CASSAVA FLOUR FORTIFIED WITH MICROBIAL **POLY-γ-GLUTAMIC ACID** : MASTER OF SCIENCE DEGREE **FIELD** : FOOD SCIENCE DATE OF VIVA : 21 MAY 2020 **CERTIFIED BY**; Signature UNIVERSITI MALAYSIA SABAH 1. MAIN SUPERVISOR Dr. Joko Sulistyo 2. CO-SUPERVISOR Assoc. Prof. Dr. Hasmadi Mamat ### **ACKNOWLEDGEMENT** First and foremost, I would like to thank God, my good Father, for giving me the strength, knowledge and opportunity to pursue this research study. Without His blessings and love from the beginning of my academic life up to today, this achievement would not have been possible. I want to express my sincere gratitude to my supervisors, Dr Joko Sulistyo and Assoc. Prof. Dr Hasmadi Mamat, for being with me in this journey as a teacher, role model and pillar of support. Thank you for providing me with your heartfelt support and for giving me invaluable suggestions and guidance throughout my studies. Besides my supervisors, I would like to thank the Dean of Faculty of Food Science and Nutrition, Assoc. Prof. Dr Patricia Matanjun and the rest of the lecturers, especially Dr Wolyna Pindi, for being with me at times when I need motivation, sparing her valuable time whenever I approached her and showing me the way ahead. I sincerely appreciate the support of all the lab assistants and staffs in the faculty for their assistance and suggestions. Some special words of gratitude go to my friends: Roy Jessesly, Hazriani Harris, Nur Atikah Lee, Nuratifah Ab Salleh, Farah Hidayah, Nursyahira Shahimi, Freedaenzee Edrews and Farah Izzati, whom I have shared moments of deep anxiety but also big excitement. Without them, all these challenging yet fruitful years would not have been the same, including our trips and the time we spent together at the university. My acknowledgement would not be complete without thanking my family for providing me with continuous encouragement and financial support. The blessings and unfailing support of my parents, Mr Heroney Junis and Mrs Rita Martin, and the help of my siblings have made a tremendous contribution to my research study. I am forever grateful to my partner, Fritzgerald Andrew, for putting up with me in difficult moments where I felt stumped and for always being there for me. Finally, I gratefully acknowledge the funding received towards my Master of Science program from the Ministry of Higher Education under grant FRG0371-ST-1/2014. Hevenney Vianie Heroney 21 May 2020 ### **ABSTRACT** Cassava (Manihot esculenta Crantz) is one of the most important staple crops worldwide. It has been processed into many products, and there are still emerging new products from cassava. However, cassava flour needs to meet the high-quality requirements in terms of physicochemical characteristics to be widely accepted by the food industry. In the present study, the enzymatic modification was carried out on cassava flours using crude enzyme of α -amylase and cellulase derived from Bacillus subtilis var. natto culture, at 37°C over 24 hours. The enzyme-modified cassava flours were further investigated for their physicochemical properties after the addition of crude poly- γ -glutamic acid (γ -PGA) at different levels (10%, 20%, 30%, 40%, and 50%; v/w). The chemical, functional, and pasting properties of flours were performed using standard methods, and native cassava flour was used as control. Increasing γ -PGA content resulted in a significant (p<0.05) increase in protein (ranged from 1.19 to 2.32%) and fat (ranged from 0.11 to 0.40%) content. In contrast, there were decreases in moisture (varied from 5.91 to 6.80%), ash (ranged from 1.25 to 1.36%), and amylose (ranged from 20.28 to 21.51%) content. All flour samples showed no significant (p>0.05) differences in terms of lightness (L*), while the greenness to redness (a*) of native flours were significantly (p<0.05) higher than modified flours with γ -PGA. There were significant (p<0.05) differences in the swelling power and solubility measured at various temperatures. Water and oil absorption capacities of native flour were significantly (p<0.05) higher than cassava flour with γ -PGA blends. From scanning electron microscopy (SEM), after the modification process of native cassava flours, the surfaces of hydrolysed starch granules were extensively eroded indicates of enzyme attack. From the pasting profiles, there were significant (p<0.05) increases in peak viscosity, final viscosity, and pasting temperature of cassava flours due to the addition of y-PGA. High pasting values were recorded for the modified cassava flour fortified with 30% y-PGA compared to other flour blends. In conclusion, up to 30% of γ-PGA addition in modified cassava flour is considered desirable as pasting properties is essential in determining the texture, digestibility, and end-use of starch-based food products. This information can be utilised in the preparation of textured products with a potential for industrialisation. ## **ABSTRAK** ## SIFAT FIZIKOKIMIA TEPUNG UBI KAYU TERUBAHSUAI DIPERKUAT DENGAN ASID POLIGLUTAMIK Ubi kayu (Manihot esculenta Crantz) merupakan salah satu tanaman ruji yang penting. Ia telah diproses kepada pelbagai ienis produk dan masih terdapat produk baharu yang terhasil daripada ubi kayu. Walau bagaimanapun, tepung ubi haruslah memenuhi kehendak industri makanan seperti kualiti yang tinggi dari segi ciri-ciri fizikokimia supaya dapat diterima secara meluas dalam industri makanan. Dalam kaiian ini, ubahsuai secara enzimatik telah diialankan ke atas tepung ubi kavu dengan menggunakan enzim kasar amilase dan selulase daripada kultur Bacillus subtilis var. natto pada suhu 37°C selama 24 jam. Tepung ubi kayu terubahsuai dikaji secara mendalam terhadap sifat-sifat fizikokimia setelah ditambah dengan asid poliglutamik (y -PGA) pada tahap yang berbeza (10%, 20%, 30%, 40% dan 50%; v/w). Sifat-sifat kimia, berfungsi dan pempesan tepung dijalankan menggunakan kaedah piawai dan tepung ubi kayu asli digunakan sebagai kawalan. Peningkatan keatas tahap kandungan γ-PGA menyebabkan penambahan yang signifikan (p<0.05) dalam kandungan protein (1.19 to 2.32%) dan lemak (0.11 to 0.40%). Manakala, terdapat penurunan yang signifikan (p<0.05) dalam kandungan kelembapan (5.91 to 6.80%), abu (1.25 to 1.36%) dan amilosa (20.28 to 21.51%). Semua sampel tepung tidak menunjukkan perbezaaan yang signifikan (p>0.05) dari segi kecerahan (L*), manakala kehijauan ke kemerahan (a*) dalam tepung ubi kayu asli adalah lebih tinggi secara signifikan (p<0.05) berbanding tepung ubi kayu terubahsuai ditambah dengan γ -PGA. Terdapat perbezaan yang signifikan (p<0.05) dalam kuasa pembengkakan dan keterlarutan pada suhu yang berbeza. Tepung ubi kayu asli menunjukkan kapasiti penyerapan air and minyak yang lebih tinggi (p<0.05) berbanding tepung ubi terubahsuai yang ditambah dengan γ-PGA. Pemerhatian menggunakan mikroskop pengimbasan elektron (SEM) mendapati, selepas proses terubahsuai ke atas tepung ubi kayu asli, retakan yang ketara pada permukaan granul kanji dapat diperhatikan akibat daripada tindakan enzim. Profil pempesan menunjukkan terdapat peningkatan yang signifikan (p<0.05) dalam kelikatan puncak, kelikatan akhir dan suhu pempesan kesan daripada penambahan γ-PGA. Tepung ubi kayu terubahsuai yang ditambah dengan 30% γ-PGA menunjukkan profil pempesan yang lebih tinggi berbanding sampel yang lain. Kesimpulannya, penambahan sebanyak 30% γ-PGA ke dalam tepung ubi kayu terubahsuai adalah dianggap wajar kerana sifat-sifat pempesan adalah penting bagi menentukan tekstur, penghadaman dan penggunaan akhir sesuatu produk makanan berasaskan kanji. Maklumat ini dapat digunakan dalam penyediaan produk tekstur yang berpotensi untuk dipasarkan. ## **LIST OF CONTENTS** | | F | age | |------|--|-------------------------| | TITL | E | i | | DECL | ARATION | ii | | CERT | TIFICATION | iii | | ACKI | NOWLEDGEMENT | iv | | ABST | TRACT | ٧ | | ABS7 | TRAK | vi | | LIST | OF CONTENTS | vii | | LIST | OF TABLES | Х | | LIST | OF FIGURES | хi | | LIST | OF ABBREVIATIONS/SYMBOLS | xii | | LIST | OF APPENDICES | xiii | | | | | | CHAF | PTER 1: INTRODUCTION | 1 | | 1.2 | Background of Study Problem Statement Justification of Study Objectives of Study | 1
5
5
6 | | CHAF | PTER 2: LITERATURE REVIEW_RSITI MALAYSIA SABAH | 7 | | 2.1 | Cassava (<i>Manihot esculenta</i> Crantz) 2.1.1 Origin and Morphology 2.1.2 Nutritional Value 2.1.3 Food Safety Aspect 2.1.4 Processing and Utilisation | 7
7
9
11
13 | | 2.2 | Starch Chemistry 2.2.1 Amylose 2.2.2 Amylopectin 2.2.3 Cassava Starch | 16
17
17
18 | | 2.3 | Bacillus subtilis | 18 | | 2.4 | 2.3.1 Bacillus subtilis var. natto Microbial Enzyme 2.4.1 α-amylase 2.4.2 Cellulase | 19
20
20
22 | | 2.5 | Modification of Flour/Starch 2.5.1 Enzymatic Modification of Flour/Starch | 24
25 | | 2.6 | Soybean | 26 | | 2.7 | 2.6.1 Fermentation of Soybean Poly-γ-glutamic Acid (γ-PGA) 2.7.1 Structural Characteristics of γ-PGA | 27
29
30 | | | 2.7.2 | Biological Synthesis of γ-PGA | 30 | |--------------|----------|-----------------------------------------------------------------|-------------------| | 2.8 | | al Production of γ-PGA | 33 | | 2.9 | | tion of γ-PGA in Food Industries | 33 | | | 2.9.1 | · | 34 | | | 2.9.2 | Cryoprotectant | 35 | | | 2.9.3 | Texture Enhancer | 36 | | | 2.9.4 | Oil-reducing Agent | 37 | | | | | | | CHA | PTER 3: | : MATERIALS AND METHODS | 38 | | 3.1 | | als and Equipment | 38 | | | 3.1.1 | Raw Materials | 38 | | | 3.1.2 | Chemicals | 38 | | | 3.1.3 | Equipment/Labware | 39 | | 3.2 | Experin | nental Design | 41 | | 3.3 | Microor | ganism and Inoculum Preparation | 42 | | 3.4 | Product | tion of Enzyme Starter Culture | 42 | | | 3.4.1 | Assay of α-amylase Activity | 43 | | | 3.4.2 | Assay of Cellulase Activity | 44 | | 3.5 | Dextros | se Equivalent | 44 | | 3.6 | | ng Electron Microscopy (SEM) | 45 | | 3.7 | | tion of γ-PGA | 45 | | | | Solid-state Fermentation of Soybean | 45 | | | | Extraction of γ-PGA | 46 | | | 3.7.3 | Plate Count of Bacteria | 46 | | | 3.7.4 | Determination of Dry Cell Weight | 47 | | 12 | | Quantification of γ-PGA by Spectrophotometer | 47 | | 3.8 | | ation of Cassava Flour | 47 | | 3.0 | 381 | Native Cassava Flour | 47 | | | 3.8.2 | Enzyme Modified Cassava Flour MALAYSIA SABAF | 48 | | | 3.8.3 | Modified Cassava Flour Fortified with γ-PGA | 48 | | 3.9 | | ate Analysis | 49 | | 5.5 | 3.9.1 | Determination of Moisture Content | 49 | | | | Determination of Ash | 49 | | | | Determination of Crude Protein | 50 | | | | Determination of Crude Fat | 50 | | | 3.9.5 | Determination of Crude Fat Determination of Total Carbohydrate | 51 | | 3 10 | | ochemical Analysis | 51 | | 5.10 | • | Determination of pH and Titratable Acidity | 51 | | | | Determination of Amylose Content | 51 | | | | Determination of Colour Values | 52 | | 2 11 | | onal Properties | 53 | | 3.11 | | | 53 | | | | Swelling Power and Solubility Water and Oil Absorption Capacity | 53 | | | | Water and Oil Absorption Capacity | 54 | | | | Emulsion Capacity | 54 | | | | Least Gelation Concentration | 54 | | | | Bulk Density | 5 4 55 | | 2 42 | | Pasting Properties | | | 3.1 2 | Statisti | ical Analysis | 55 | | CHAI | PTER 4: RESULTS AND DISCUSSION | 56 | |------|------------------------------------------------------------|-----| | 4.1 | Production of Enzyme Starter Culture | 56 | | | 4.1.1 α -amylase Activity | 57 | | | 4.1.2 Cellulase Activity | 58 | | 4.2 | Dextrose Equivalent | 58 | | 4.3 | Scanning Electron Microscopy (SEM) | 60 | | 4.4 | Production of Poly-γ-glutamic Acid (γ-PGA) | 62 | | | 4.4.1 Time Course of Fermentation | 64 | | | 4.4.2 UV spectral of γ-PGA | 65 | | 4.5 | Proximate Composition | 66 | | 4.6 | Physicochemical Properties | 69 | | | 4.6.1 pH and Titratable Acidity | 69 | | | 4.6.2 Amylose Content | 70 | | | 4.6.3 Colour Values | 72 | | 4.7 | Functional Properties | 75 | | | 4.7.1 Swelling Power and Solubility | 75 | | | 4.7.2 Water and Oil Absorption Capacity | 78 | | | 4.7.3 Emulsion Capacity | 79 | | | 5.7.4 Least Gelation Concentration | 80 | | | 4.7.5 Bulk Density | 82 | | | 4.7.6 Pasting Properties | 83 | | | | | | CHAI | PTE <mark>R 5: CON</mark> CLUSIONS AND RECOMMENDATIONS FOR | 87 | | | FUTURE RESEARCH | | | 5.1 | Conclusions | 87 | | 5.2 | Recommendations for Future Research | 89 | | | UNIVERSITI MALAYSIA SABAH | | | REFE | ERENCES | 90 | | APPE | ENDICES | 110 | ## **LIST OF TABLES** | | | Page | |------------|--------------------------------------------------------------------------------------------------------|------| | Table 2.1 | : Nutritional composition of raw cassava tubers | 9 | | Table 2.2 | : Some traditional foods processed from cassava roots in different regions | 15 | | Table 2.3 | : Principle reason for starch modification | 24 | | Table 2.4 | : Bacterial fermented soybean products | 28 | | Table 2.5 | : Fungal fermented soybean products | 28 | | Table 3.1 | : Solvents and chemicals | 38 | | Table 3.2 | : Equipment/Labware | 39 | | Table 4.1 | : Extraction yield, dry cell weight and total yield of $\gamma\text{-PGA}$ obtained after fermentation | 63 | | Table 4.2 | : Proximate composition of cassava flour and γ-PGA blends | 67 | | Table 4.3 | : pH and titratable acidity of native, modified and fortified cassava flour | 70 | | Table 4.4 | : Colour determination of native, modified and fortified cassava flour | 72 | | Table 4.5 | : Swelling power (g/g) of native, modified and fortified cassava flour | 76 | | Table 4.6 | : Solubility (%) of native, modified and fortified cassava flour | 77 | | Table 4.7 | : Water and oil absorption capacity of native, modified and fortified cassava flour | 78 | | Table 4.8 | : Least gelation concentration of native, modified and fortified cassava flour | 81 | | Table 4.9 | : Bulk density of native, modified and fortified cassava flour | 82 | | Table 4.10 | : Pasting properties of native, modified and fortified cassava flour | 85 | ## **LIST OF FIGURES** | | | | Page | |-------------|---|----------------------------------------------------------------------------------------------------|------| | Figure 2.1 | : | Cassava roots | 8 | | Figure 2.2 | : | The release of hydrogen cyanide in plant | 12 | | Figure 2.3 | : | Post-harvest physiological deterioration of cassava roots | 14 | | Figure 2.4 | : | Basic structural design of glucose units, amylose and amylopectin | 16 | | Figure 2.5 | : | Structure of α -amylase | 21 | | Figure 2.6 | : | Structure of cellulase | 23 | | Figure 2.7 | : | Methods of starch modification | 25 | | Figure 2.8 | : | Structure of γ-PGA | 29 | | Figure 2.9 | : | Genetic elements for γ-PGA synthesis | 31 | | Figure 2.10 | : | Biochemical pathway of the glutamate synthesis by Bacillus subtilis IFO 3335 | 32 | | Figure 3.1 | 9 | Flow chart of research methodology | 41 | | Figure 4.1 | В | Hydrolysis profile of native cassava flour at 37°C for 24h | 59 | | Figure 4.2 | : | SEM image of starch granules (x5000) of native cassava flour | 60 | | Figure 4.3 | : | SEM image of starch granules (x5000) of modified cassava flour | 61 | | Figure 4.4 | : | Time course of $\gamma\text{-PGA}$ yield and number of viable cells under solid-state fermentation | 64 | | Figure 4.5 | : | UV spectral of γ-PGA | 65 | | Figure 4.6 | : | Amylose content of native, modified and fortified cassava flour | 71 | | Figure 4.7 | : | Physical appearances of cassava flour | 74 | | Figure 4.8 | : | Emulsion capacity of native, modified and fortified cassava flour | 80 | ## LIST OF ABBREVIATIONS/SYMBOLS **ANOVA** - Analysis of variance **AOAC** - Association of Official Analytical Chemists **CFU** - Colony forming units **DE** - Dextrose equivalent **DNS** - 3, 5-dinitrosalicylic acid **FAO** - Food and Agriculture Organization **HCN** - Hydrogen cyanide **HPLC** - High performance liquid chromatography **kDa** - Kilodalton NDA - National Department of Agency **PGA** - Polyglutamic acid **RVA** - Rapid Visco Analyser **RVU** - Rapid visco unit **SEM** - Scanning electron microscopy **SmF** - Submerged fermentation **SSF** - Solid-state fermentation **γ-PGA** - Poly-γ-glutamic acid α - Alpha β - Beta γ - Gamma NIVERSITI MALAYSIA SABAH ## **LIST OF APPENDICES** | | | Page | |------------|-------------------------------------------|------| | Appendix A | : Production of Enzymatic Starter Culture | 110 | | Appendix B | : Production of Poly-γ-glutamic Acid | 111 | ## **CHAPTER 1** ## **INTRODUCTION** ## 1.1 Background of Study Cassava (Manihot esculenta Crantz), also known as tapioca, yucca, or manioc, is a woody shrub with tuberous roots belonging to the family Euphorbiaceae (Alves, 2002). During the 16th century, the Portuguese distributed this perennial woody shrub to Africa, which was believed to be originated from South America (El-Sharkawy, 2012). Now, the cultivation of cassava is widely practiced in tropical and subtropical regions of Africa, Asia, and Latin America. Cassava is considered the third most crucial carbohydrate source in tropics, after maize and rice (FAO, 2014). While cassava was once considered as the "food for the poor," now it has become significant world agriculture and provides a multipurpose utilisation in developing countries, become a global trend economically, and a challenge towards climate change (Howeler et al., 2013). The outstanding characteristics of the cassava crop, such as its tolerance and high resistance to soil with a lack of nutrients make cassava one of the crops that contribute to the economic importance (Poonsrisawat et al., 2014). The main nutritional values in cassava are water (60 g 100 g⁻¹) and carbohydrates (38 g 100 g⁻¹). Meanwhile, the contents of fibre, protein, and fat are limited (1.4, 1.8, and 0.28 g 100 g^{-1} , respectively) (NDA, 2013). The values mentioned above are only approximations as varieties of cassava cultivars exists (Aryee *et al.*, 2006). Currently, cassava has been produced globally over 103 countries, with a total production of approximately 270 million tons (FAOstat, 2014), which covered 25 million hectares worldwide (Parmar et al., 2017). Major producing countries of cassava are Thailand, Central and West Africa (Nigeria and Ghana), Indonesia, and northern Brazil, where half of the world production is from Africa. It is estimated that 800 million people consumed cassava as a primary foodstuff, especially those that live in the least industrialised regions (Parmar et al., 2017). In terms of cassava consumption, approximately 65% of its productions were made for human consumptions, while 25% is for utilisation in various industries, and finally 10% is considered waste (Fish & Trim, 1993). Cassava is a traditional food security crop, often processed into a variety of traditional food products. Extensive efforts were made to utilise the uses of cassava fully. The most common way is by processing the fresh cassava tubers into the flour and applied in a broad range of new products to these developing countries with rapid urbanising societies. Due to its limited functionalities, perishable, and bulky, proper strategies and technologies are required to overcome these limitations. Besides, although native flour is demanded industrial applications, the industries require modified flour with improved functionality as direct application of native flour is quite challenging. In the last few decades, various methods have been developed for starch modification to achieve suitable functional properties for utilisation in various industries. Generally, there are four modification methods, namely physical, chemical, enzymatic and genetically, or their combinations (Kaur et al., 2012). Modification of starch has been extensively studied to overcome the functional limitations of native starch and increase the importance of starch for industrial applications (Kaur *et al.*, 2012). Apart from reducing gelling tendencies, retrogradation of gel/paste texture, film formation, and adhesion of native starches (Kaur *et al.*, 2012), stabilisation of starch granule can be achieved through modification (Ashogbon & Akintayo, 2014). Briefly, modification often leads to few changes towards the starch polymer, thus increasing its flexibility and change its physical, functional, and structural properties to enhance its usefulness for food and non-food industries (Lopez *et al.*, 2010). Enzymatic modifications have been studied, partly replacing the chemical and physical methods over recent decades. This is due to enzymes that are safer, healthier, and mild than the chemical method to the environment and food consumers (Park *et al.*, 2018). In an enzymatic modification, hydrolysing enzymes are mainly used for starch modification, and its products are either high fructose corn syrup or glucose syrup (Kaur *et al.*, 2012). Enzymatic modification has several advantages, such as more specific hydrolysis products, fewer by-products, and high yield. Moreover, the process and its end products can be controlled by selecting an individual enzyme to modify a specific or particular property of the starch or flour (Dura *et al.*, 2014). Starch is a polysaccharide consists of two fractions – amylose, composed of α -(1-4) D-glucopyranosyl units and amylopectin, composed of many short chains linked together by a α -(1-6) linkage (Biliaderis, 1998). Amylose constitutes about 20-25% of the starch molecule, while amylopectin constitutes about 75-80%. There are abundant enzymes used to modify starch structure and achieve the desired functional properties, such as α -amylase and cellulase. α -Amylase is one of the hydrolase enzymes that catalyse the hydrolysis of α -1, 4-glycosidic linkages in starch to produce products such as maltose, glucose, and dextrin while retaining the α -anomeric configuration of the products (Gupta *et al.*, 2003). Hence, the importance of α-amylase is crucial due to its starch hydrolysis activity (Sundarram & Murthy, 2014). Meanwhile, cellulases are grouped into glycoside hydrolases (GH) family and often used to catalyse the hydrolysis of glycosidic linkages depolymerising cellulose to fermentable sugars (Juturu & Wu, 2014). Moreover, cellulose can be broken down by employing cellulases to hydrolyse β-1,4 glycosidic bonds of the cellulose polymer (Behera et al., 2017). Bacteria have been widely explored for α -amylase and cellulase production. Among them, *Bacillus sp.* has become the dominant bacteria due to its ability to produce and secrete large quantities of extracellular enzymes (Rastogi et al., 2009). In this research, cassava flours are hydrolysed by enzymatic culture containing α -amylase and cellulase synthesised from non-pathogenic microorganisms of bacterial species, which is Bacillus subtilis var. natto. Poly- γ -glutamic acid (γ -PGA) is a water-soluble and biodegradable biopolymer consisting of D and L-glutamic acid units, connected by amide linkages between α -amino and γ -carboxyl groups produced by bacteria for various applications. γ -PGA is edible and is present abundantly in the traditional Japanese dish called *natto*, made by fermenting soybean with *Bacillus* strains. To date, there are four methods to produce γ-PGA, which are chemical synthesis, peptide synthesis, biotransformation, and microbial fermentation (Sanda et al., 2001). Among these methods, microbial fermentation is deemed the most cost-effective, including inexpensive raw materials, minimal environmental pollution, mild reaction conditions, and high natural product purity (Luo et al., 2016). In microbial fermentation, submerged fermentation (SmF) technology remains challenging due to limited oxygen supply during the fermentation process, high expenditure of raw materials, and rigorous laboratory equipment (Xu et al., 2014). Unlike SmF, solidstate fermentation (SSF) is more advantageous, including lower production costs, more straightforward equipment, and reduced contamination risks (Pandey, 2003). Thus, SSF was chosen for γ -PGA production in this study. The γ -PGA characteristics, which are being edible and non-toxic to humans and environments, allow its application to several industries (Bajai & Singhal, 2011). In the food industry, y-PGA is used as a thickener, bitterness relieving agent, cryoprotectant, encapsulation, water adsorbent, and as a nutrition supplement (Shih & Van, 2001). Therefore, it may be suggested that γ -PGA as a food additive can improve the physicochemical properties of native flour. In this research, microbial γ-PGA is chosen to overcome the limitation of physicochemical properties in cassava. To date, there is only one research regarding the utilisation of γ -PGA in modified cassava flour (Soetikno *et al.*, 2017). However, the previous study is different from the current study in terms of cassava flour modification, and γ -PGA production and application. The study was undertaken to modify cassava flour using microbial starter culture derived from the culture of *A. Oryzae* and *B. natto* and further fortified with fermented product containing γ -PGA. In this study, γ -PGA was isolated and extracted from the solid-state fermentation of soybean to produce an aqueous γ -PGA solution. After that, different levels (10 – 50%) of γ -PGA was incorporated into modified cassava flour. Therefore, this current study was the first attempt to utilise γ -PGA in cassava flour to improve its nutritional composition and physicochemical properties. #### 1.2 Problem Statement Recently, the increasing population and urbanisation, as well as changes in food habits, have led to an increased demand for wheat-based foods in many developing countries (Eriksson et al., 2014). However, the local climate condition in Malaysia is not suitable for profitable wheat production. Thus, cassava flour has been one way of addressing this need as cassava flour has been extensively studied as a local alternative to wheat flour (Alvarenga et al., 2011). However, the utilisation of starchy tubers instead of wheat flour in food depends on their physical and chemical properties. For example, the properties of starch granules influence the behaviour of flour in food systems, such as viscosity and gelatinisation, which affect the texture of the end product (Eriksson et al., 2014). Most native starches are limited for direct application because they are unstable to changes in temperature and shear forces. Besides, native starches have a strong tendency for decomposition and retrogradation (Berski et al., 2011). Moreover, some starch granules are inert, insoluble in water at room temperature, highly resistant to enzymatic hydrolysis and thus lack functional properties (Alcazar-Alay & Meireles, 2015). Therefore, native starch needs to undergo a modification of its starches to meet the high-quality requirements in terms of physicochemical characteristics so that these flours can be accepted widely by the food and non-food industries (Eriksson *et al.*, 2014). ## 1.3 Justification of Study Specific properties of cassava flour, such as physical, chemical, and pasting parameters are essential to be considered as useful in food industries. Moreover, some functional characteristics, such as swelling power and viscosity, are positively correlated with the qualities of the products (Ponzio *et al.*, 2008; Linlaud *et al.*, 2009). For example, starch granules characteristics of milled flours may affect the rate of hydration and swelling capacity during food processing (Hatcher *et al.*, 2009). Besides, the quality of colour determines the visual appearance and eye appeal of the finished product (MacDougall, 2002), while water binding and absorption capacities, swelling power, and solubility have a strong influence on carbohydrate quality, which affect the viscosity and gelling ability of flour/starch (Oladunmoye $et\ al.$, 2004). Therefore, with the increasing interest in utilising cassava flour and starch in the development of food products, mostly new or novel products, the availability of their physicochemical properties would ease the processing protocol for the development of various value-added food products. Besides, through this research, fundamental knowledge can be obtained regarding the effect of γ -PGA fortification on the physicochemical properties of cassava. At present, there are very few studies documentation on the application of γ -PGA either in flour or its products. Some of the previous studies investigated the effect of γ -PGA on rheology and thermal properties of wheat dough (Shyu $et\ al.$, 2008), emulsion and foam activity of sponge cake paste (Shun & Sung, 2010) as well as oil uptake and moisture loss in doughnut products (Lim $et\ al.$, 2012). Hence, this study is expected to provide new information on the addition of γ -PGA in cassava flour so that other scientific studies may be done in the future. Hopefully, this research could increase the utilisation of local cassava flour with value-added ingredients. ## 1.4 Objectives of Study The objective of this study was to fortify enzyme-modified cassava flour by incorporating microbial poly- γ -glutamic acid (γ -PGA). Studies on physicochemical properties of the modified flour were carried out using instrumental methods and chemical analysis. The specific objectives of this study were: - 1.4.1 To determine the capability of microbial enzymes dealing with modification of cassava flour. - 1.4.2 To produce microbial poly- γ -glutamic acid through solid-state fermentation of soybean using *Bacillus subtilis* var. natto. - 1.4.3 To determine the proximate composition and physicochemical properties of modified cassava flour fortified with poly-γ-glutamic acid. ## **CHAPTER 2** ## LITERATURE REVIEW ## 2.1 Cassava (*Manihot esculenta* Crantz) ## 2.1.1 Origin and Morphology Cassava (*Manihot esculenta* Crantz) is one of some 100 species of trees, shrubs, and herbs belonging to the genus *Manihot* (Howeler *et al.*, 2013). The word cassava comes from the word *Casavi* or *Cazabi*, which means bread as translated from *Arawak* (the language of the first indigenous people who lived in the Greater Antilles). It is also known as *yucca* (Spanish), *manioc* (French), *mandioc* (Portuguese), *cassave* (Dutch) and *manioc* (German) in certain regions of the world. After the discovery of this crop by the Europeans, cassava was taken to Africa and eventually become one of the useful food crops. These crops were later taken to Asia and cultivated as food security crops and starch extraction (Balgbrough *et al.*, 2010; Akinpelu *et al.*, 2011). Cassava was first introduced into Malaysia in 1836 through Jakarta, Indonesia, as a potential replacement of sago (Burkill, 1936). Cassava is a dicotyledonous plant belonging to the family Euphorbiaceae that can grow for years. It has lateral subterranean storage organs in the form of starchy roots (Parmar *et al.*, 2017). Botanically, cassava is a woody perennial shrub, with a mature height of 2 to 4 meters, and is mainly cultivated for its starchy roots. The cassava root is long and tapered (Figure 2.1), with a firm homogenous flesh covered in a tough outer skin of about 1 mm thick, brown and coarse on the outside. The roots can be 5 to 10 cm in diameter at the middle, and 50 to 80 cm long. A woody cordon runs along the root's axis, while the flesh can be chalk-white or yellowish (Anyanwu *et al.*, 2015). The cassava shoot consists of stems, leaves, inflorescences and root systems made up of fibrous and tuberous roots. The edible starchy root (the internal white/yellow flesh) can be harvested within 8 to 24 months of planting, depending on cultivar and climate. Mature cassava roots can be measured between 15 and 100 cm in length and 0.5 to 2.0 kg in weight, depends on the species and growing conditions. The edible root is circular in cross-section, where it is fattest at the centre and narrowed gently towards the end. Crosswise a cassava root consists of three principal areas namely, the periderm, which comprises the outermost layer of the root, the cortex that is located below the periderm and the starchy flesh located at the middle portion of the root (Anyanwu *et al.*, 2015). Figure 2.1 : Cassava roots Source : Anyanwu *et al.* (2015) In terms of the morphological characteristics of cassava, a high degree of interspecific hybridisation can be observed, which indicates the crossing between different species of the same genus (Jovanka, 2004). The morphological and agronomic properties are usually used to determine the type of cassava. From the morphology of cassava, the following was defined as the minimum or fundamental factors that should be considered during identification of the cultivar: apical leaf colour, apical leaf pubescence, central lobe shape, petiole colour, stem exterior colour, phyllotaxis length, root peduncle presence, external root colour, root cortex colour, root pulp colour, root epidermis texture and flowering. However, morphological descriptors become difficult due to the wide range of cassava genotypes and the environmental conditions that affect the morphology of cassava (Hillocks *et al.*, 2002). #### 2.1.2 Nutritional Value The nutrient composition of cassava depends on its specific tissue, such as the root and leaf, and factors such as geographic location, variety, age of the plant, and growing conditions. The roots and leaves, which constitute 50% and 6% of the mature cassava plant, are the nutritionally valuable parts of cassava (Tewe & Lutaladio, 2004). The nutritional values of cassava roots are essential as they are the central part of the plant consumed in developing countries (Montagnac *et al.*, 2009). In general, cassava is often considered inferior to maize and wheat because of low protein levels, vitamins and minerals. Table 2.1: Nutritional composition of raw cassava tubers | Per 100g | | |----------------|--| | | | | 59.68 | | | 160 | | | LAYSIA S1.36AH | | | 0.28 | | | 1.8 | | | 1.7 | | | 38.06 | | | | | | 20.6 | | | 0.087 | | | 0.048 | | | 0.854 | | | 0.088 | | | Not detected | | | 27 | | | | | (continued)