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ABSTRACT 

 
Shortage in timber supply is a major concern for wood-based industry since the last 
two decades, where the existing medium-heavy hardwood have long rotation age. 
Paraserianthes falcataria is a fast-growing tree species that have short-rotation age, 
but possessed poor physical and mechanical characteristics, which limits its range of 
application. However, these properties can be improved by densification. Previous 
studies reported that densification technology had enhanced the density and 
mechanical strength of wood. Therefore, in this study, laminas from Paraserianthes 
falcataria underwent viscoelastic-thermal compression (VTC). This study evaluated 
(1) the physical and anatomy properties of the VTC modified laminas, (2) the physical 
and mechanical properties of glulam manufactured from VTC modified laminas, and 
(3) the relationship between properties of the VTC modified laminas and glulam. 
During VTC treatment, the laminas were pre-steamed, compressed with heat, and 
underwent cooling phase. Five different parameters, including control, were applied, 
denoted as S1/D (10 minutes pre-steamed, densified), S2/D (20 minutes pre-
steamed, densified), S3/D (30 minutes pre-steamed, densified), NS/D (non-pre-
steamed, densified), and control (NS/ND: non-pre-steamed, non-densified). VTC 
modified laminas were also processed to make glulam panels. The outcome from 
lamina tests showed that S1/D had the highest density (density: 623.30 kg/m3, 
density profile: 590.22 kg/m3) whilst having the lowest moisture content (7.64%) 
and springback rate (0.71%). Besides that, S1/D also achieved the lowest contact 
angle (water: 11.78˚, polyvinyl acetate: 74.72˚), which indicated good wettability 
for bonding purpose. In contrast, morphological analysis revealed that S3/D had the 
highest rate of cell lumen deformation (39.61 µm2), which is supposed to be 
indicative of higher density and contact angle. As for the physical properties of 
glulam, S2/D acquired the highest water absorption and thickness swelling with 
values of 106.49% and 50.87%, respectively. On the other hand, S3/D had the 
lowest values in those tests, and obtained the highest delamination rate (73.97%). 
In relation to morphological analysis, a higher rate of cell lumen deformation reduced 
the water absorption and decrease the bonding efficiency. Despite of having poor 
physical properties, the glulam of S3/D obtained the highest resistance against elastic 
deformation and rupture, as indicated by the findings from static bending and 
compression tests. S1/D, on the other hand, have the highest shearing strength (2.89 
N/mm2) and hardness (radial: 1986.00 N, longitudinal: 2953.20 N). The correlation 
analysis showed that the MOE (edgewise) and density profile of lamina of S3/D have 
a significant, highly strong positive relationship. In summary, VTC treatment 
enhanced the physical properties of Paraserianthes falcataria laminas by 49.16%, 
while physical and mechanical properties of glulam were also improved by 45.71% 
and 50.08%. The treatment also reduced the cell lumen area by 49.51%. 10 minutes 
of pre-steaming was the ideal duration to increase the physical properties of laminas 
and glulam, while 30 minutes of pre-steaming have remarkably enhanced the 
mechanical properties. The correlation analysis indicated that increase in density of 
lamina enhanced the mechanical strength of glulam, where 30 minutes of pre-
steaming showed a significant positive relationship.
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ABSTRAK 

 
CIRI-CIRI GLULAM DIHASILKAN DARIPADA LAMINA Paraserianthes 
falcataria YANG DIMODIFIKASI MELALUI RAWATAN PEMAMPATAN 

VISKOELASTIK-TERMAL  
 

Kekurangan bekalan kayu ialah kebimbangan utama untuk industri berasaskan kayu 
sejak dua dekad lalu, yang mana kayu keras sederhana-berat sedia ada mempunyai 
tempoh kitaran yang panjang. Paraserianthes falcataria ialah spesies pokok cepat 
tumbuh yang mempunyai tempoh kitaran pendek, tetapi mempunyai ciri-ciri fizikal 
dan mekanikal yang lemah. Namun, ciri-ciri tersebut mampu dipertingkatkan dengan 
pemampatan. Kajian terdahulu melaporkan bahawa teknologi pemampatan telah 
meningkatkan ketumpatan dan kekuatan mekanikal pelbagai spesies kayu. Oleh itu, 
dalam kajian ini, lamina dari Paraserianthes falcataria telah menjalani rawatan 
pemampatan viskoelastik (VTC). Kajian ini menilai (1) ciri-ciri fizikal dan anatomi 
lamina dimodifikasi melalui VTC; (2) ciri-ciri fizikal dan mekanikal glulam dihasilkan 
dari lamina dimodifikasi melalui VTC, dan (3) hubungan antara lamina dimodifikasi 
melalui VTC dan glulam. Semasa rawatan VTC, lamina telah dikukus, dimampatkan 
dengan haba, dan menjalani fasa penyejukan. Lima parameter berbeza, termasuk 
kawalan, diaplikasikan dan dilabelkan sebagai S1/D (dikukus 10 minit, dimampatkan, 
S2/D (dikukus 20 minit, dimampatkan), S3/D (dikukus 30 minit, dimampatkan), NS/D 
(tidak dikukus, dimampatkan), dan kawalan (NS/ND: tidak dikukus, tidak 
dimampatkan). Lamina dimodifikasi melalui VTC juga telah diproses untuk membuat 
panel glulam. Hasil dari ujikaji lamina menunjukkan bahawa S1/D mempunyai 
ketumpatan tertinggi (ketumpatan: 623.30 kg/m3, profil ketumpatan: 590.22 kg/m3), 
di samping mempunyai kandungan lembapan (7.64%) dan kadar pemulihan (0.71%) 
terendah.  Selain itu, S1/D juga mencapai sudut kontak terendah (air: 11.78˚, 
polivinil asetat: 74.72˚), yang menunjukkan kebolehbasahan yang baik untuk tujuan 
perekatan. Sebaliknya, analisis morfologi mendedahkan bahawa S3/D mempunyai 
kadar deformasi sel lumen tertinggi (39.61 µm2), yang sepatutnya menunjukkan 
ketumpatan dan sudut kontak yang lebih tinggi. Untuk ciri-ciri fizikal glulam, S2/D  
masing-masing memperoleh penyerapan air, dan pembengkakan ketebalan tertinggi 
iaitu 106.49% and 50.87%. Sebaliknya, S3/D mempunyai nilai terendah dalam ujian-
ujian tersebut, dan mendapat kadar delaminasi tertinggi (73.97%). Berhubung 
dengan analisis morfologi, kadar deformasi sel lumen yang lebih tinggi akan 
mengurangkan penyerapan air dan kecekapan perekatan. Walaupun mempunyai ciri 
fizikal lemah, glulam S3/D memperoleh rintangan tertinggi terhadap ubah bentuk 
elastik dan kepecahan, seperti yang ditunjukkan oleh penemuan daripada ujian 
lenturan statik dan pemampatan. S1/D pula mempunyai kekuatan ricih (2.89 N/mm2) 
dan kekerasan yang paling tinggi (jejari: 1986.00 N, membujur: 2953.20 N). Analisis 
korelasi menunjukkan bahawa MOE (tepi) dan profil ketumpatan lamina S3/D 
mempunyai hubungan positif yang sangat kuat dan signifikan. Secara ringkasnya, 
rawatan VTC meningkatkan sifat fizikal lamina Paraserianthes falcataria sebanyak 
49.16%, manakala sifat fizikal dan mekanikal glulam juga meningkat sebanyak 
45.71% dan 50.08%. Rawatan tersebut juga telah mengurangkan keluasan sel 
lumen sebanyak 49.51%.  Pengukusan selama 10 minit ialah durasi ideal untuk 
meningkatkan sifat fizikal lamina dan glulam, manakala pengukusan selama 30 minit 
telah meningkatkan sifat mekanikal glulam. Analisis korelasi menunjukkan bahawa 
peningkatan ketumpatan lamina meningkatkan kekuatan mekanikal glulam, yang 
mana pengukusan selama 30 minit menunjukkan hubungan positif yang signifikan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

Wood is widely known as an excellent material that possesses good properties such 

as good mechanical properties and excellent workability (Popescu et al., 2014). 

Nowadays, big companies in the wood industry demand a more comprehensive range 

of utilizations of various wood species to reduce waste and enhance their 

competitiveness in domestic and global markets. In general, medium-heavy 

hardwood species exhibit better density than light hardwood species. However, 

denser wood species require a longer time to grow before being harvested, while 

low-density wood species often grow fast and can be harvested in a shorter time.  

High-density wood species are often utilized for heavy-duty purposes, e.g., 

structural beams and trusses. In contrast, low-density wood species are commonly 

applied for light-medium duty purposes such as indoor furniture components. Low-

density wood species are also frequently associated with good pulping 

characteristics, whereby they are further processed into paper (Cabi, no yr.). Low-

density wood species can be densified by undergoing a densification process to 

enhance their mechanical strength, thus replacing high-density wood species to be 

utilized in the structural application (Hansmann et al., 2005).


