PROPERTIES OF GLUE-LAMINATED TIMBER MANUFACTURED FROM VISCOELASTIC-THERMAL COMPRESSION MODIFIED Paraserianthes falcataria LAMINAS

FACULTY OF TROPICAL FORESTRY UNIVERSITI MALAYSIA SABAH 2022

PROPERTIES OF GLUE-LAMINATED TIMBER MANUFACTURED FROM VISCOELASTIC-THERMAL COMPRESSION MODIFIED Paraserianthes falcataria LAMINAS

CHARLES MICHAEL ALBERT

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF TROPICAL FORESTRY UNIVERSITI MALAYSIA SABAH 2022

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

- JUDUL : PROPERTIES OF GLUE-LAMINATED TIMBER MANUFACTURED FROM VISCOELASTIC-THERMAL COMPRESSION MODIFIED Paraserianthes falcataria LAMINAS
- IJAZAH : SARJANA SAINS
- BIDANG : **PERHUTANAN**

Saya **CHARLES MICHAEL ALBERT**, Sesi **2019-2022**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

_

TIDAK TERHAD

Disahkan Oleh,

CHARLES MICHAEL ALBERT MS1811010T

(Tandatangan Pustakawan)

Tarikh : 16 Mei 2022

⁽Prof. Madya. Ts. Dr. Liew Kang Chiang) Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for equations, summaries and references, which have been duly acknowledged.

17 February 2022

Charles Michael Albert MS1811010T

CERTIFICATION

- NAME : CHARLES MICHAEL ALBERT
- MATRIC NO : MS1811010T
- TITLE : PROPERTIES OF GLUE-LAMINATED TIMBER MANUFACTURED FROM VISCOELASTIC-THERMAL COMPRESSION MODIFIED Paraserianthes falcataria LAMINAS
- DEGREE : MASTER OF SCIENCE
- FIELD : FORESTRY
- VIVA DATE : 17 FEBRUARY 2022

SUPERVISOR

Assoc. Prof. Ts. Dr. Liew Kang Chiang

ACKNOWLEDGEMENTS

First of all, I would like to thank God for His blessings, wisdom, and knowledge given to me. I would never complete this research without His presence and help.

I want to express my gratitude to my supervisor, Assoc. Prof. Ts. Dr. Liew Kang Chiang for the support, guidance, and motivation given to me during my study. I could never do it without his supervision.

I want to say thanks to Universiti Malaysia Sabah (UMS) for providing UMS Grant (GUG0313-1/2019) and Skim Bantuan Pascasiswazah (SBP), which helped to fund my research. A special thank is also expressed to Sapulut Forest Development Sdn. Bhd. for providing raw material supply for this study.

I am very thankful to my family, especially my mother, Nora Bandasa, and siblings, for the moral and financial support throughout my years as a postgraduate student. They were the source of motivation for me to kept striving for success.

I want to express my gratefulness to all my friends, especially Tan Yu Feng and Vinodini A/P Raman, for their endless support and guidance. Besides that, I also want to express my gratitude to Mr. Azli Sulid & Mr. Rizan Ghulam for their help and guidance throughout the data collection process. I wish to extend my special thanks to Wenda Riona Lamiri for the encouragement and moral support during this journey. I am also thankful to my church members for always keeping me in their prayers.

Charles Michael Albert 17 February 2022 UNIVERSITI MALAYSIA SABAH

ABSTRACT

Shortage in timber supply is a major concern for wood-based industry since the last two decades, where the existing medium-heavy hardwood have long rotation age. Paraserianthes falcataria is a fast-growing tree species that have short-rotation age, but possessed poor physical and mechanical characteristics, which limits its range of application. However, these properties can be improved by densification. Previous studies reported that densification technology had enhanced the density and mechanical strength of wood. Therefore, in this study, laminas from *Paraserianthes* falcataria underwent viscoelastic-thermal compression (VTC). This study evaluated (1) the physical and anatomy properties of the VTC modified laminas, (2) the physical and mechanical properties of glulam manufactured from VTC modified laminas, and (3) the relationship between properties of the VTC modified laminas and glulam. During VTC treatment, the laminas were pre-steamed, compressed with heat, and underwent cooling phase. Five different parameters, including control, were applied, denoted as S1/D (10 minutes pre-steamed, densified), S2/D (20 minutes presteamed, densified), S3/D (30 minutes pre-steamed, densified), NS/D (non-presteamed, densified), and control (NS/ND: non-pre-steamed, non-densified). VTC modified laminas were also processed to make glulam panels. The outcome from lamina tests showed that S1/D had the highest density (density: 623.30 kg/m^3 , density profile: 590.22 kg/m³) whilst having the lowest moisture content (7.64%) and springback rate (0.71%). Besides that, S1/D also achieved the lowest contact angle (water: 11.78°, polyvinyl acetate: 74.72°), which indicated good wettability for bonding purpose. In contrast, morphological analysis revealed that S3/D had the highest rate of cell lumen deformation (39.61 µm²), which is supposed to be indicative of higher density and contact angle. As for the physical properties of glulam, S2/D acquired the highest water absorption and thickness swelling with values of 106.49% and 50.87%, respectively. On the other hand, S3/D had the lowest values in those tests, and obtained the highest delamination rate (73.97%). In relation to morphological analysis, a higher rate of cell lumen deformation reduced the water absorption and decrease the bonding efficiency. Despite of having poor physical properties, the alulam of S3/D obtained the highest resistance against elastic deformation and rupture, as indicated by the findings from static bending and compression tests. S1/D, on the other hand, have the highest shearing strength (2.89 N/mm²) and hardness (radial: 1986.00 N, longitudinal: 2953.20 N). The correlation analysis showed that the MOE (edgewise) and density profile of lamina of S3/D have a significant, highly strong positive relationship. In summary, VTC treatment enhanced the physical properties of *Paraserianthes falcataria* laminas by 49.16%, while physical and mechanical properties of glulam were also improved by 45.71% and 50.08%. The treatment also reduced the cell lumen area by 49.51%. 10 minutes of pre-steaming was the ideal duration to increase the physical properties of laminas and glulam, while 30 minutes of pre-steaming have remarkably enhanced the mechanical properties. The correlation analysis indicated that increase in density of lamina enhanced the mechanical strength of glulam, where 30 minutes of presteaming showed a significant positive relationship.

ABSTRAK

CIRI-CIRI GLULAM DIHASILKAN DARIPADA LAMINA Paraserianthes falcataria YANG DIMODIFIKASI MELALUI RAWATAN PEMAMPATAN VISKOELASTIK-TERMAL

Kekurangan bekalan kayu ialah kebimbangan utama untuk industri berasaskan kayu sejak dua dekad lalu, yang mana kayu keras sederhana-berat sedia ada mempunyai tempoh kitaran yang panjang. Paraserianthes falcataria ialah spesies pokok cepat tumbuh yang mempunyai tempoh kitaran pendek, tetapi mempunyai ciri-ciri fizikal dan mekanikal yang lemah. Namun, ciri-ciri tersebut mampu dipertingkatkan dengan pemampatan. Kajian terdahulu melaporkan bahawa teknologi pemampatan telah meningkatkan ketumpatan dan kekuatan mekanikal pelbagai spesies kayu. Oleh itu, dalam kajian ini, lamina dari Paraserianthes falcataria telah menjalani rawatan pemampatan viskoelastik (VTC). Kajian ini menilai (1) ciri-ciri fizikal dan anatomi lamina dimodifikasi melalui VTC; (2) ciri-ciri fizikal dan mekanikal glulam dihasilkan dari lamina dimodifikasi melalui VTC, dan (3) hubungan antara lamina dimodifikasi melalui VTC dan qlulam. Semasa rawatan VTC, lamina telah dikukus, dimampatkan dengan haba, dan menjalani fasa penyejukan. Lima parameter berbeza, termasuk kawalan, diaplikasikan dan dilabelkan sebagai S1/D (dikukus 10 minit, dimampatkan, S2/D (dikukus 20 minit, dimampatkan), S3/D (dikukus 30 minit, dimampatkan), NS/D (tidak dikukus, dimampatkan), dan kawalan (NS/ND: tidak dikukus, tidak dimampatkan). Lamina dimodifikasi melalui VTC juga telah diproses untuk membuat panel glulam. Hasil dari ujikaji lamina menunjukkan bahawa S1/D mempunyai ketumpatan tertinggi (ketumpatan: 623.30 kg/m³, profil ketumpatan: 590.22 kg/m³), di samping mempunyai kandungan lembapan (7.64%) dan kadar pemulihan (0.71%) terendah. Selain itu, S1/D juga mencapai sudut kontak terendah (air: 11.78°, polivinil asetat: 74.72°), yang menunjukkan kebolehbasahan yang baik untuk tujuan perekatan. Sebaliknya, analisis morfologi mendedahkan bahawa S3/D mempunyai kadar deformasi sel lumen tertinggi (39.61 µm²), yang sepatutnya menunjukkan ketumpatan dan sudut kontak yang lebih tinggi. Untuk ciri-ciri fizikal glulam, S2/D masing-masing memperoleh penverapan air, dan pembengkakan ketebalan tertinggi iaitu 106.49% and 50.87%. Sebaliknya, S3/D mempunyai nilai terendah dalam ujianujian tersebut, dan mendapat kadar delaminasi tertinggi (73.97%). Berhubung dengan analisis morfologi, kadar deformasi sel lumen yang lebih tinggi akan mengurangkan penyerapan air dan kecekapan perekatan. Walaupun mempunyai ciri fizikal lemah, glulam S3/D memperoleh rintangan tertinggi terhadap ubah bentuk elastik dan kepecahan, seperti yang ditunjukkan oleh penemuan daripada ujian lenturan statik dan pemampatan. S1/D pula mempunyai kekuatan ricih (2.89 N/mm²) dan kekerasan yang paling tinggi (jejari: 1986.00 N, membujur: 2953.20 N). Analisis korelasi menunjukkan bahawa MOE (tepi) dan profil ketumpatan lamina S3/D mempunyai hubungan positif yang sangat kuat dan signifikan. Secara ringkasnya, rawatan VTC meningkatkan sifat fizikal lamina Paraserianthes falcataria sebanyak 49.16%, manakala sifat fizikal dan mekanikal glulam juga meningkat sebanyak 45.71% dan 50.08%. Rawatan tersebut juga telah mengurangkan keluasan sel lumen sebanyak 49.51%. Pengukusan selama 10 minit jalah durasi ideal untuk meningkatkan sifat fizikal lamina dan glulam, manakala pengukusan selama 30 minit telah meningkatkan sifat mekanikal glulam. Analisis korelasi menunjukkan bahawa peningkatan ketumpatan lamina meningkatkan kekuatan mekanikal glulam, yang mana pengukusan selama 30 minit menunjukkan hubungan positif yang signifikan.

LIST OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	VII
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xix
LIST OF APPENDICES	xxi
CHAPTER 1: INTRODUCTION	1
1.1 Research Background UNIVERSITI MALAYSIA SABAH	1
1.2 Justification	3
1.3 Objectives	6
CHAPTER 2: LITERATURE REVIEW	7
2.1 Wood Densification	7
2.1.1 Different Methods in Densification Technology	7
2.1.2 Influence of Heat and Steam in Densification Treatment	12
2.1.3 Effect of Densification on Springback of Wood	14
2.1.4 Wettability of Wood	16
2.1.5 Application of Densified Wood	20
2.2 Fast-Growing Plantation Species	21
2.2.1 History of Forest Plantation in Malaysia	22
2.2.2 Demand of Fast-Growing Species	23
2.2.3 Paraserianthes falcataria	24

CHAPTER 3: MATERIALS AND METHODS	28
3.1 Preparation of Raw Materials	28
3.2 Viscoelastic-Thermal-Compression (VTC) Treatment	31
3.2.1 Preliminary Study	31
3.2.2 Pre-Steaming	33
3.2.3 Compression (Hot-Pressing)	34
3.3 Physical and Anatomical Properties of densified Paraserianthes falcataria	37
Laminas	
3.3.1 Moisture Content	37
3.3.2 Density	39
3.3.3 Density Profile	39
3.3.4 Springback Rate Measurement	41
3.3.5 Contact Angle Measurement	42
3.3.6 Cell Lumen Area Measurement	45
3.4 Glue-Laminated Timber (Glulam) Manufacturing Process	49
3.4.1 Trimming and Sanding	49
3.4.2 Finger-Joint Teeth Manufacturing	49
3.4.3 Finger-Joint, Edges and Surfaces Bonding	50
3.5 Test Piece Preparation	53
3.6 Physical and Mechanical Properties (Glue-Laminated Timber)	55
3.6.1 Physical Properties UNIVERSITIMALAYSIA SABAH	55
3.6.2 Mechanical Properties	64
3.7 Data Analysis	79
CHAPTER 4: RESULTS AND DISCUSSION	80
4.1 Overview	80
4.2 Physical and Anatomical Properties of Lamina	81
4.2.1 Moisture Content	82
4.2.2 Density	84
4.2.3 Density Profile	86
4.2.4 Springback Rate Measurement	89
4.2.5 Contact Angle Measurement	91
4.2.6 Cell Lumen Area Measurement	97
4.3 Glue-Laminated Timber Properties	103
4.3.1 Physical Properties of Glulam	103
4.3.2 Mechanical Properties of Glulam	120

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	159
5.1 Conclusions	159
5.2 Recommendations	160
REFERENCES	161
APPENDICES	171

LIST OF TABLES

			Page
Table 2.1	:	Different types of densification treatment and their properties	8
Table 2.2		Physical and mechanical properties of VTC modified wood	11
Table 2.2	:	Taxonomy of <i>Paraserianthes falcataria</i>	25
Table 2.5	:	Anatomy properties of air-dried Paraserianthes falcataria	25
Table 2.4	:	Physical and mechanical properties of air-dried	20
	•	Paraserianthes falcataria	27
Table 3.1	:	Different settings for viscoelastic-thermal compression (VTC) treatment	35
Table 3.2	:	Glulam test piece dimension for physical and mechanical tests	53
Table 3.3		Correlation strength based on the scale of Pearson	79
	•	correlation coefficient	, ,
l able 4.1	:	Pearson's correlation between contact angle (water) and cell lumen area for VTC modified <i>Paraserianthes</i>	96
		<i>falcataria</i> laminas	
Table 4.2	:	Pearson's correlation between contact angle (PVAc) and	96
all.		cell lumen area for VTC modified <i>Paraserianthes falcataria</i> laminas	
Table 4.3	-	Pearson's correlation between density profile (lamina)	102
IST 💻		and cell lumen area for VTC modified Paraserianthes	
		falcataria laminas	
Table 4.4	1011	Pearson's correlation between density profile and	109
1100		moisture content for VTC modified <i>Paraserianthes</i>	
1 Mar		falcataria glue-laminated timber	
Table 4.5	B A	Pearson's correlation between delamination rate for glue-	112
		laminated timber and contact angle (PVAc) for lamina	
Table 4.6		Pearson's correlation between delamination rate for glue-	113
	•	laminated timber and cell lumen area of lamina	110
Table 4 7	-	Pearson's correlation between thickness swelling for	115
	•	alue-laminated timber and contact angle (water) for	115
Table 1 9		Depresente correlation between thickness swelling for	116
Table 4.0	•	elus laminated timber and cell lumon area for lamina	110
Table 10	_	giue-idifinitateu tittibel ditu cell luttien died for idifinita	110
Table 4.9		Pearson's correlation between water absorption for glue-	119
TIL 440		laminated timber and contact angle (water) for lamina	
Table 4.10	:	Pearson's correlation between water absorption for glue-	119
		laminated timber and cell lumen area for lamina	
Table 4.11	:	Pearson's correlation between hardness for glue-	123
		laminated timber and density profile for lamina	
Table 4.12	:	Pearson's correlation between hardness and density	124
		profile for glue-laminated timber	
Table 4.13	:	Pearson's correlation between shearing strength for glue-	127
		laminated timber and contact angle (Polyvinyl acetate)	
		for lamina	
Table 4.14	:	Pearson's correlation between shearing strength for glue-	128
		laminated timber and density profile for lamina	

Table 4.15	:	Pearson's correlation between shearing strength and density profile for glue-laminated timber	128
Table 4.16	:	Pearson's correlation between Modulus of Elasticity (flatwise) for glulam and density profile for lamina	139
Table 4.17	:	Pearson's correlation between Modulus of Elasticity (edgewise) for glulam and density profile for lamina	140
Table 4.18	:	Pearson's correlation between Modulus of Elasticity (flatwise) and density profile for glue-laminated timber	141
Table 4.19	:	Pearson's correlation between Modulus of Elasticity (edgewise) and density profile for glue-laminated timber	141
Table 4.20	:	Pearson's correlation between Modulus of Rupture (flatwise) for glue-laminated timber and density profile for lamina	142
Table 4.21	:	Pearson's correlation between Modulus of Rupture (edgewise) for glue-laminated timber and density profile for lamina	142
Table 4.22	:	Pearson's correlation between Modulus of Rupture (flatwise) and density profile for glue-laminated timber	143
Table 4.23	:	Pearson's correlation between Modulus of Rupture (edgewise) and density profile for glue-laminated timber	144
Table 4.24		Pearson's correlation between compressive strength (compression parallel to grain) for glue-laminated timber and density profile for lamina	155
Table 4.25	×	Pearson's correlation between compressive strength (compression perpendicular to grain) for glue-laminated timber and density profile for lamina	155
Table 4.26		Pearson's correlation between compressive strength (compression parallel to grain) and density profile for glue-laminated timber	156
Table 4.27	в А	Pearson's correlation between compressive strength (compression perpendicular to grain) and density profile for glue-laminated timber	156
Table 4.28	:	Pearson's correlation between elastic modulus (compression parallel to grain) for glue-laminated timber and density profile for lamina	157
Table 4.29	:	Pearson's correlation between elastic modulus (compression perpendicular to grain) for glue-laminated timber and density profile for lamina	157
Table 4.30	:	Pearson's correlation between elastic modulus (compression parallel to grain) and density profile for glue-laminated timber	158
Table 4.31	:	Pearson's correlation between elastic modulus (compression perpendicular to grain) and density profile for glue-laminated timber	158

LIST OF FIGURES

			Page
Figure 2.1	:	Adhesive wetting on a porous surface of material	17
Figure 2.2	:	Differences in wettability properties between substrate (a) smooth surface, (b) rough surface	19
Figure 3.1	:	Experimental design	28
Figure 3.2	:	Experimental flowchart	29
Figure 3.3	:	Defects on lamina (a) knot, (b) pinholes	30
Figure 3.4	:	Conditioning process	30
Figure 3.5	:	Mechanosorp effect and embrittlement on laminas using different pressing temperatures (a) 170°C, (b) 150°C, (c) 130°C, (d) 115°C	32
Figure 3.6	:	Laminas were placed inside steamer machine (brand: KCE KC-900)	33
Figure 3.7	: 39	Compression by using hot-press machine	34
Figure 3.8		Difference in thickness of <i>Paraserianthes falcataria</i> laminas (a) prior to viscoelastic-thermal compression (VTC) treatment with 20 mm thickness and (b) after the treatment with target thickness of 10 mm	36
Figure 3.9	1	Moisture content was measured (a) specific measuring points on lamina, (b) moisture content identification by using a moisture content meter (brand and model no.: Wagner MMC 220 Moisture Meter)	38
Figure 3.10	:	X-ray densitometer (brand and model no.: GreCon Densitometer DA-X 500)	40
Figure 3.11	:	Density profile of the laminas was measured (a) X-ray shooting point was directed on tangential surface, (b) the test pieces were positioned inside the densitometer	40
Figure 3.12	:	Density profile graph was displayed on computer upon the completion of density profile measurement by using X-ray densitometer	41
Figure 3.13	:	Thickness measurement points of laminas of <i>Paraserianthes falcataria</i>	42
Figure 3.14	:	Test pieces preparation for contact angle measurement (a) each test piece had different liquid drop point, (b) precise measurement of liquid drop point location	43
Figure 3.15	:	Experimental setup for contact angle image capture	44

Figure 3.16	:	Contact angle measurement by using Low Bond Axisymmetric Drop Shape Analysis (LBADSA) plugin in ImageJ software	45
Figure 3.17	:	Sputter coater (brand and model no.: Emitech K550X) used for coating the test pieces	46
Figure 3.18	:	Live view of cell lumens image on Smart SEM software	47
Figure 3.19	:	Cell lumen area measurement by using ImageJ (a) image was converted into 8-bit color, (b) threshold to increase visibility of cell lumen, (c) taking cell lumen area readings using ROI manager	48
Figure 3.20	:	Finger-joint teeth was manufactured (a) finger-joint shaper machine, (b) finger-joint tooth on butt end of the lamina	50
Figure 3.21	:	Finger-joint sticks	51
Figure 3.22	:	Single layer of glulam panel with random finger joints arrangement assembled from six finger-joint sticks	51
Figure 3.23	2	Glulam panel manufacturing (a) single layers of glulam were assembled and clamped together, (b) polyvinyl acetate (PVAc) adhesive was spread on surface of glulam layer, (c) glulam layers were surface-glued and clamped to form a glulam panel with three layers	52
Figure 3.24		Cutting patterns of glulam panel	54
Figure 3.25		Glulam panel cutting process (a) panel positioned properly on mini bandsaw, (b) panel cut into small test pieces	54
Figure 3.26	:	Test piece dimension for moisture content test (T: tangential, R: radial, L: longitudinal)	56
Figure 3.27	:	Test piece dimension for density profile (T: tangential, R: radial, L: longitudinal)	57
Figure 3.28	:	Preparation of glulam test pieces prior to density profile measurement (a) width measurement, (b) length measurement, (c) thickness measurement, (d) mass determination	58
Figure 3.29	:	Density profile measurement (a) X-ray scan was directed to tangential plane of the test-piece, (b) test piece was positioned properly on X-ray densitometer	59
Figure 3.30	:	Dimension of test piece for immersion delamination test (T: tangential, R: radial, L: longitudinal)	60
Figure 3.31	:	Immersion of glulam test pieces inside water	60
Figure 3.32	:	Thickness gauge was inserted in between the delaminated layers	61

Figure 3.33	:	Specific thickness measurement points guide for glulam test pieces	62
Figure 3.34	:	Glulam test piece dimension for hardness test (T: tangential, R: radial, L: longitudinal)	64
Figure 3.35	:	Polished steel ball for indentation purpose	65
Figure 3.36	:	Specific position of steel ball penetration points (a) tangential surface, (b) radial surface, (c) longitudinal surface	66
Figure 3.37	:	Steel ball attached on upper steel plate that installed onto universal testing machine (a) tangential plane, (b) radial plane, (c) longitudinal plane	67
Figure 3.38	:	Test piece dimension for block shear test (T: tangential, R: radial, L: longitudinal)	68
Figure 3.39	:	Block shear test was conducted (a) position of load during the test, (b) test piece was positioned in block shear jig	69
Figure 3.40	:	Dimension of test piece for static bending test (a) flatwise, (b) edgewise	71
Figure 3.41	2	Typical static bending test setup (L_{tp} : length of test piece (mm), h: depth of test piece (mm), l: span length (mm)	72
Figure 3.42		Load was applied on the centre of test piece (a) flatwise, (b) edgewise	72
Figure 3.43		Test piece dimension for compression test (a) parallel to grain, (b) perpendicular to grain	75
Figure 3.44	:	Compression parallel to grain was performed (a) load direction on longitudinal surface of the test piece (b) the test was conducted using universal testing machine equipped with steel plates	76
Figure 3.45	:	Compression perpendicular to grain was performed (a) load direction on tangential surface of the test piece (b) the test was conducted using universal testing machine equipped with steel plates	77
Figure 4.1	:	Seven consecutive days observation of moisture content for viscoelastic-thermal compression (VTC) modified laminas	82
Figure 4.2	:	Seven consecutive days observation of density for viscoelastic-thermal compression (VTC) modified laminas	84
Figure 4.3	:	Density of viscoelastic-thermal compression (VTC) modified laminas obtained from density profile measurement	87

- Figure 4.4 : Variation of density throughout the thickness for 87 viscoelastic-thermal compression (VTC) modified laminas
- Figure 4.5 : Springback rate of viscoelastic-thermal compression 89 (VTC) modified *Paraserianthes falcataria* laminas
- Figure 4.6 : Contact angles of viscoelastic-thermal compression 91 (VTC) modified *Paraserianthes falcataria* laminas (a) water, (b) polyvinyl acetate
- Figure 4.7 : Observation of variations in contact angles within 30 92 seconds (a) water, (b) polyvinyl acetate
- Figure 4.8 : The effect of different pre-steaming durations on the cell 97 lumen areas for viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas
- Figure 4.9 : Observation on cell lumen areas for different 98 magnifications (a) control (NS/ND), (b) NS/D, (c) S1/D, (d) S2/D, (e) S3/D
- Figure 4.10 : Moisture content of glue-laminated timber 104 manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas

Figure 4.11 Density of glue-laminated timber manufactured from 106 viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas

Figure 4.12 : Variation of density throughout the thickness in density 107 profile for glue-laminated timber manufactured from viscoelastic-thermal compression (VTC) *Paraserianthes falcataria* laminas

- Figure 4.13 : Delamination rate of glue-laminated timber 110 manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas
- Figure 4.14 : Thickness swelling rate of glue-laminated timber 113 manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas
- Figure 4.15 : Water absorption rate of glue-laminated timber 117 manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas
- Figure 4.16 : Hardness in tangential (T), radial (R) and longitudinal 120 (L) surfaces of glue-laminated timber manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas
- Figure 4.17 : Shearing strength of glue-laminated timber 125 manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas

- Figure 4.18 : Result of static bending tests using glue-laminated 129 timber manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas (a) Modulus of Elasticity, (b) Modulus of Rupture
- Figure 4.19 : Type of failures found in three-point static bending test 133 pieces of glue-laminated timber manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas (a) flatwise, (b) edgewise
- Figure 4.20 : Compressive strength of glue-laminated timber 144 manufactured from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas (a) compression parallel to grain, (b) perpendicular to grain
- Figure 4.21 : Elastic modulus of glue-laminated timber manufactured 145 from viscoelastic-thermal compression (VTC) modified *Paraserianthes falcataria* laminas (a) compression parallel to grain, (b) perpendicular to grain
- Figure 4.22 : Failure patterns found in viscoelastic-thermal 149 compression (VTC) modified glue-laminated timber test pieces after being subjected to compression test (a) parallel to grain, (b) compression perpendicular to grain

UNIVERSITI MALAYSIA SABAH

LIST OF ABBREVIATIONS

ANOVA	-	Analysis of Variance
ANSI	-	American National Standards Institute
ASTM	-	American Society for Testing and Materials
cm	-	Centimeter
сР	-	Centipoise
CR	-	Compression ratio
D	-	Density
DR	-	Delamination rate
e.g.	-	Exempli gratia
FESEM	-	Field Emission Scanning Electron Microscope
ft	-	Feet
g	-	Gram
JAS	Z	Japanese Agricultural Standard
к	X	Constant Contact Angle Rate
kN	-):	Kilo Newton
L V	A	Longitudinal
LBDSA	S	Low Bond Axisymmetric Drop Shape Analysis
LSD	-	Least Significant Difference
MC	-	Moisture content
mm	-	Millimeter
mm/min	-	Millimeter per minute
MOE	-	Modulus of Elasticity
MOR	-	Modulus of Rupture
MPa	-	Megapascal
Ν	-	Newton
ND	-	Non-densified
NS	-	Non-pre-steamed
PRF	-	Phenol-Resorcinol Formaldehyde
PVAc	-	Polyvinyl Acetate
R	-	Radial

ROI	-	Region of Interest
S	-	Second
S/G	-	Shi & Gardner model
S1	-	Pre-steamed for 10 minutes
S2	-	Pre-steamed for 20 minutes
S 3	-	Pre-steamed for 30 minutes
SEM	-	Scanning Electron Microscope
т	-	Tangential
тн	-	Thermo-Hydro
тнм	-	Thermo-Hydro Mechanical
TS	-	Thickness Swelling
UTM	-	Universal Testing Machine
VTC	-	Viscoelastic-Thermal Compression
WA	~	Water Absorption
	Ĵ	UNIVERSION
XABA	di anti-	UNIVERSITI MALAYSIA SABAH

LIST OF SYMBOLS

% Percentage _ o Degree °C **Degree Celsius** ± **Plus-Minus** Δ Increment of test piece's neutral axis _ deflection, measured at midspan over distance and corresponding load ≤ Equal or less than Microliter μL _ μm² **Micrometer Square** _ A Cross-section area b Width of test piece Elastic modulus for compression parallel to Ec,0 grain Ec,90 Elastic modulus for compression perpendicular to grain Increment of load on straight line portion of $F_2 - F_1$ load-deformation curve Increment of load on straight line portion of F40-F10 load-deformation curve; F_{40} was 40% and F_{10} was 10% of F_{c,90,max} Compressive strength for compression parallel **f**_{c,0} to grain Maximum load **F**_{max} g/m2 Gram per meter square _ h Depth of test piece _ Gauge length H₀ _ kΝ **Kilo Newton** -L Span length _ 11 Maximum load _ Ltp Length of test piece m² Meter square mm² Millimeter square

n	-	Total number of test pieces
N/mm ²	-	Newton per milimeter square
no/mm²	-	Number per milimeter square
Ρ	-	Increment of load applied below proportional limit
P _{max}	-	Maximum load
R _{wf}	-	Wood failure
W ₂ - W ₁	-	Increment of deformation corresponded to $F_2\text{-}F_1$
W 40 -W 10	-	Increment of deformation corresponded to F_{40} - F_{10}

LIST OF APPENDICES

			Page
Appendix A	:	Adhesive Calculation for Glue-Laminated Timber Manufacturing Process	171
Appendix B	:	Comparison and Analysis with Means and Standard Deviations	175
Appendix C	:	Correlation Graphs	185

CHAPTER 1

INTRODUCTION

1.1 Research Background

Wood is widely known as an excellent material that possesses good properties such as good mechanical properties and excellent workability (Popescu *et al.*, 2014). Nowadays, big companies in the wood industry demand a more comprehensive range of utilizations of various wood species to reduce waste and enhance their competitiveness in domestic and global markets. In general, medium-heavy hardwood species exhibit better density than light hardwood species. However, denser wood species require a longer time to grow before being harvested, while low-density wood species often grow fast and can be harvested in a shorter time.

High-density wood species are often utilized for heavy-duty purposes, e.g., structural beams and trusses. In contrast, low-density wood species are commonly applied for light-medium duty purposes such as indoor furniture components. Low-density wood species are also frequently associated with good pulping characteristics, whereby they are further processed into paper (Cabi, no yr.). Low-density wood species can be densified by undergoing a densification process to enhance their mechanical strength, thus replacing high-density wood species to be utilized in the structural application (Hansmann *et al.*, 2005).