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ABSTRACT 

 
 

Deep Learning (DL) techniques leverage the rich data diversity in the modern era of 
Big Data, allowing possibilities of achieving human-level performances in many real-
world problems. However, newly emerged problems such as the ongoing COVID-19 
pandemic have underscored the challenge of acquiring a larger corpus of data 
during the early stages of the pandemic due to the availability of samples, data 
protection policies, labour, and facility resources. Furthermore, the effectiveness of 
existing DL models that are trained on older datasets might be vulnerable to the 
continuous emergence of COVID-19 variants that may potentially result in 
distribution shifts. This research introduces a data synthesisation framework named 
stacked residual dropout generative adversarial network (sRD-GAN), which 
alleviates the problem of data paucity by generating synthetic lung medical images 
that contain precise radiographic feature annotations. The underlying design of 
sRD-GAN is an Image-to-Image translation setting that facilitates instance-level 
diversity via the latent space stochasticity induced by the novel stacked residual 
dropout (sRD) regularization. To this end, experiments show that sRD-GAN 
achieved perceptually significant structural dissimilarities of the ground glass 
opacities (GGO) from diverse COVID-19 CT images without disentangling the 
content-style attributes of the images as in conventional multimodal image 
translation techniques. Since the sRD regularization is a strategic incorporation of 
the conventional dropout regularization, which can be generalized across neural 
network models, the sRD regularization can be easily incorporated into existing 
image synthesizer models without modifying the original setup of these models. In 
addition, a new training loss function known as adaptive pixel consistency loss is 
proposed for effective noise reduction by encouraging structural similarity of the 
invariance features of the images from both domains. Quantitative results show 
that the synthetic COVID-19 CT images achieve a promising Fréchet Inception 
Distance (FID) of 58.68, which is superior to existing GAN baselines such as GAN 
(157.18), CycleGAN (115.14), and One-to-one CycleGAN (94.11). Visual 
examination of the synthetic images also indicates excellent perceptual image 
quality and realism, where synthetic radiographic features of GGO achieve 
consistency with real COVID-19 CT images examined by an experienced radiologist. 
Furthermore, the effectiveness of the proposed sRD-GAN is also validated on 
Community-Acquired Pneumonia (CAP) CT images and COVID-19 X-Ray images, 
which achieved comparable performances with COVID-19 CT images. This suggests 
that the proposed method can be easily extended to other similar applications. 
Lastly, the sRD-GAN is applied to the problem of COVID-19 disease recognition in 
the form of dynamic data augmentation. Empirical results suggest that synthetic 
images can approximate real data distribution for model training purposes. 
Specifically, the VGG19 models achieve the highest accuracy score at 97.54% on 
the test set when training with fully synthetic COVID-19 CT images in 3000-images 
dataset size, contributing to a 12.95% accuracy improvement from training with 
only real image data. 
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ABSTRAK 

 

SINTESIS IMEJ PARU-PARU YANG KEPELBAGAIAN DAN FOTOREALISTIK 
UNTUK PENGECAMAN PENYAKIT PARU PARU-PARU MENGGUNAKAN 

TEKNIK PEMBELAJARAN MENDALAM 
 

Teknik Pembelajaran Dalam (DL) memanfaatkan kepelbagaian data yang kaya 
dalam era moden Data Besar, membolehkan kemungkinan mencapai prestasi 
peringkat manusia dalam banyak masalah dunia sebenar. Namun, masalah yang 
baru timbul seperti pandemik COVID-19 yang berterusan telah menggariskan 
cabaran untuk memperoleh korpus data yang lebih besar semasa peringkat awal 
wabak disebabkan oleh ketersediaan sampel, dasar perlindungan data, tenaga 
buruh, dan sumber kemudahan. Selain itu, keberkesanan model DL sedia ada yang 
dilatih pada set data lama mungkin terdedah kepada kemunculan berterusan varian 
COVID-19 yang berpotensi mengakibatkan anjakan pengedaran. Penyelidikan ini 
memperkenalkan rangka kerja sintesis data yang dinamakan rangkaian adversarial 
generatif stacked residual dropout (sRD-GAN), yang dapat menghasilkan imej 
perubatan paru-paru sintetik yang mengandungi anotasi ciri radiografi yang tepat. 
Reka bentuk asas sRD-GAN ialah Imej-ke-Imej melalui stokastik ruang terpendam 
yang disebabkan oleh regularisasi stacked residual dropout (sRD). Untuk tujuan ini, 
eksperimen menunjukkan bahawa sRD-GAN mencapai ketidaksamaan struktur yang 
ketara secara persepsi bagi kelegapan kaca tanah (GGO) daripada imej CT COVID-
19 yang pelbagai tanpa memerlukan merungkai atribut style-content imej seperti 
dalam teknik terjemahan imej multimodal konvensional. Memandangkan 
regularization sRD ialah penggabungan strategik regularization dropout 
konvensional, regularization sRD boleh dimasukkan ke dalam model sintesis imej 
sedia ada tanpa mengubah suai persediaan asal model ini. Selain itu, fungsi latihan 
baharu yang dikenali sebagai kehilangan ketekalan piksel adaptif dicadangkan 
untuk pengurangan hingar yang berkesan dengan menggalakkan persamaan 
struktur ciri invarian imej daripada kedua-dua domain. Keputusan kuantitatif 
menunjukkan bahawa imej CT COVID-19 sintetik mencapai Fréchet Inception 
Distance (FID) yang menjanjikan sebanyak 58.68, yang lebih baik daripada garis 
dasar GAN sedia ada seperti GAN (157.18), CycleGAN (115.14) dan One-to-one 
CycleGAN (94.11). Pemeriksaan visual imej sintetik juga menunjukkan kualiti imej 
persepsi yang sangat baik dan realisme, di mana ciri radiografi sintetik GGO 
mencapai konsistensi dengan imej CT COVID-19 sebenar yang diperiksa oleh ahli 
radiologi berpengalaman. Selain itu, keberkesanan sRD-GAN yang dicadangkan 
juga disahkan pada imej CT Pneumonia Diperolehi Masyarakat (CAP) dan imej X-
Ray COVID-19, yang mencapai prestasi yang setanding dengan imej CT COVID-19. 
Ini menunjukkan bahawa kaedah yang dicadangkan boleh diperluaskan dengan 
mudah kepada kes lain yang serupa. Akhir sekali, sRD-GAN digunakan dalam 
masalah pengecaman penyakit COVID-19 dalam bentuk penambahan data dinamik. 
Keputusan empirikal menunjukkan bahawa imej sintetik boleh menganggarkan 
pengedaran data sebenar untuk tujuan latihan model. Khususnya, model VGG19 
mencapai skor ketepatan tertinggi pada  97.54% pada set ujian apabila berlatih 
dengan imej CT COVID-19 sintetik sepenuhnya dalam saiz set data 3000 imej, yang 
menyumbang kepada peningkatan ketepatan 12.95% daripada latihan dengan 
hanya data imej sebenar. 



vii 
 

LIST OF CONTENTS 

                 Page 

TITLE i 

DECLARATION ii 

CERTIFICATION iii 

ACKNOWLEDGEMENT iv 

ABSTRACT v 

ABSTRAK vi 

LIST OF CONTENTS vii 

LIST OF TABLES xii 

LIST OF FIGURES xiii 

LIST OF SYMBOLS xvii 

LIST OF ABBREVIATIONS xix 

LIST OF APPENDICES xxi 

CHAPTER 1 :  INTRODUCTION  

1.1 Research Background 1 

1.1.1 Data Augmentation as a Solution to Data Paucity 3 

1.1.2 Generative Modelling  and Generative Data Augmentation 4 

1.2 Problem Statement 6 

1.3 Aim and Objective 7 

1.4 Hypothesis 8 

1.5 Scope of Study 8 

1.6 Thesis Structure 10 

CHAPTER 2 :  LITERATURE REVIEW  

2.1 Chapter Overview 12 

2.2 Radiological examination of COVID-19 12 



viii 
 

2.2.1 Role of Radiology in COVID-19 Diagnosis 13 

2.2.2 Effectiveness of Imaging Modalities in COVID-19 Diagnosis 14 

2.3 Integration of Artificial Intelligence in COVID-19 Diagnosis 15 

2.3.1 Challenges of Medical Imaging in COVID-19 Diagnosis 16 

2.3.2 COVID-19 Diagnosis with Machine Learning Techniques 17 

2.3.3 More Discriminative COVID-19 Classification 19 

2.3.4 Techniques to improve the performance of the Detection 20 
  and Classification Models  

2.4 Data Augmentation as a Solution for Data Paucity 22 

2.4.1 Data Augmentation Techniques 22 

2.4.2      Generative Data Augmentation in COVID-19 Detection 25 
       and Classification  

2.5 Generative Adversarial Networks (GANs) 26 

2.5.1 Advancement of GANs 28 

2.5.2 Application of GANs in Medical Images 31 

2.5.3 Improved Image Quality with Unpaired 36 
  Image-to-Image Translation  

2.6 Diverse Image Synthesisation 41 

2.6.1 Introduction to multimodality and disentangled learning 41 

2.6.2      Regularization Techniques to Facilitate Latent Space 44 
       Stochasticity  

2.6.3 Fine-grained Feature Translation 46 

2.7 Chapter Summary 47 

CHAPTER 3 :  METHODOLOGY  

3.1 Chapter Overview 48 

3.2 Problem Setting and Assumption 48 

3.3 Stacked Residual Dropout (sRD) Mechanism 51 

3.3.1 Building Block of Residual-Convolution Layers 51 

3.3.2 Two-Mode Mechanism 53 

3.4 Stacked Residual Dropout Generative Adversarial Network (sRD-GAN) 56 

3.4.1 Overview of sRD-GAN 56 

3.4.2 Models 58 

3.4.3 Loss Functions 59 



ix 
 

3.5 Datasets 62 

3.6 Performance Evaluation 63 

3.6.1 Radiologist Examination 64 

3.6.2 Learned Perceptual Image Patch Similarity (LPIPS) 64 

3.6.3 Fréchet Inception Distance (FID) 64 

3.6.4 Visualization tools 65 

3.6.5 Other Metrics 66 

3.7 Preliminary Experiment and Hyperparameter Setup 66 

3.7.1 Preliminary Experiment Setup 67 

3.7.2 Preliminary Results and Findings 68 

3.7.3 GANs Training Graph 72 

3.7.4 Hyperparameter Tuning 75 

3.8 Software and Hardware resources 76 

3.9 Chapter Summary 77 

CHAPTER 4 :  EXPERIMENT AND RESULT  

4.1 Chapter Overview 78 

4.2 Experiment 1: sRD-GAN in Training Mode 79 

4.2.1 Experiment Implementation 79 

4.2.2 Result and Analysis 80 

4.3 Experiment 2: Amplification Latent Space Stochasticity in  Inference 85 
 Mode  

4.3.1 Experiment Implementation 86 

4.3.2      Result Interpretation 86 

4.4 Experiment 3: Impact of Different Dropout rates on the Synthetic 94 
 Images  

4.4.1 Experiment Implementation 94 

4.4.2 Result Interpretation 95 

4.5 Experiment 4: Single RD-activation at Different Latent Dimensionality 100 

4.5.1 Experiment Implementation 101 

4.5.2 Result Interpretation 102 

4.6 Experiment 5: Multiple RD-activations 104 

4.6.1 Experiment Implementation 105 



x 
 

4.6.2 Result Interpretation 106 

4.7 Experiment 6: Effectiveness of pixel-consistency constraint for 109 
 Effective Noise Reduction  

4.7.1 Experiment Implementation 109 

4.7.2 Result Interpretation 110 

4.7.3 Validation of Perceptual Realism of the Synthetic Images 115 

4.8 Chapter Summary 120 

CHAPTER 5 :  PERFORMANCE BENCHMARKING, GENERALIZATION, 
                       AND FAILURE ANALYSIS  

5.1 Chapter Overview 122 

5.2 Performance Benchmarking with Existing GANs 122 

5.2.1 Setup 123 

5.2.2 Result Interpretation 124 

5.3 Integration of sRD Regularization on Conventional GANs 127 

5.3.1 Setup 128 

5.3.2 Result Interpretation 128 

5.4 Adaptation of sRD-GAN in External Clinical Cases 131 

5.4.1 Setup 132 

5.4.2 Result Interpretation 132 

5.4.3 Important Findings 135 

5.5 Failure Analysis 1:  Failure of Image Translation 136 

5.5.1 Unpredictable Transfer of Synthetic Features 136 

5.5.2 Image Synthesisation  from Problematic Datasets 140 

5.6 Failure Analysis 2: Inaccurate Quantitative Measurement 142 

5.7 Chapter Summary 146 

CHAPTER 6 :  SIGNIFICANCE OF SYNTHETIC COVID-19 CT 
                        IMAGES ON COVID-19 DETECTION  

6.1 Chapter Overview 147 

6.2 COVID-19 Detection with Data Augmentation 147 

6.2.1 Dataset Structures 148 

6.2.2 Data Augmentation Techniques 149 

6.2.3 Neural Network Architecture 150 



xi 
 

6.2.4 Experiment Implementation 150 

6.2.5 Performance Metrics 151 

6.3 Result and Analysis 152 

6.3.1 Effectiveness of Dataset Expansion Via Data Augmentation 152 

6.3.2 Impact of the DNN architectures on the model’s performance 156 

6.3.3 Performance Validation using Segregated Datasets 159 

6.4 Gradient-Class Activation Map (GradCAM) Analysis 164 

6.4.1 False Positive Predictions 164 

6.4.2 Failure detection of GGO features 167 

6.4.3 Enhanced Attention Annotation with Synthetic Images 169 

6.5 Chapter Summary 170 

CHAPTER 7 :  CONCLUSION  

7.1 Chapter Overview 172 

7.2 Research Summary 172 

7.3 Limitations and Future Work 175 

7.4 Prospective Applications 176 

REFERENCES 177 

APPENDICS                 188



xii 
 

LIST OF TABLES  

 

      

                   Page 

 
 
Table 4.1 : Performance metrics of the sRD-GAN trained with different 81 
                numbers of RD blocks in training and inference mode                        

Table 4.2 : Performance of the sRD-GAN trained with different                          87  
                numbers of RD blocks in training and inference mode                        

Table 5.1 : Configuration of the GANs for performance benchmarking 124 

Table 5.2 : Performance metrics of the images generated by the           124 
                GAN algorithms 

Table 6.1 : Dataset structures from real and synthetic images           148 
 
 

 
 

 

 
 

 

  



xiii 
 

LIST OF FIGURES 

 

                         Page 
 

Figure 1.1     : (a) Image of zebras and transformed into colours of  horses, 5  
(b) Image of oranges and transformed into  

Figure 2.1     : Illustration of the discriminator and the generator model 27 
from the perspective of data space  

Figure 2.2     : Each output vector represents 70 x 70 patches of the 34 
input image for 70 x 70 PatchGAN architecture  

Figure 2.3     : Synthetic COVID-19 CT images generated by the                         35 
I2I algorithm using cGAN  

Figure 2.4     : Illustration of the latent spaces and mapping designs of 37 
CycleGAN and UNIT architectures  

Figure 2.5     : The content and style attributes are disentangled into 42 
separated spaces in (a) and generates diverse output from 
the encoded style attributions in (b)  

Figure 3.1    : A single residual block of the image transformation network 52 

Figure 3.2     : Overview of the sRD Mechanism in two different modes 55 

Figure 3.3     : Overview of sRD-GAN framework 57 

Figure 3.4    : synthetic COVID-19 CT images generated from GAN and 68 
 CycleGAN                                                                                  

Figure 3.5     : FID scores of 100 testing images generated from GAN 70 
at every 10th training epoch                                                        

Figure 3.6     : FID scores of 100 testing images generated from                         70 
CycleGAN (λid=0.5) at every 10th training epoch                           

Figure 3.7     : LPIPS distance of 100 testing images generated from 71 
GAN at every 10th training epoch                                                 

Figure 3.8     : LPIPS distance of 100 testing images generated from 72 
CycleGAN (λid =0.5) at every 10th training epoch                           

Figure 3.9     : Leaning Curve of GAN for 100th epoch 73 

Figure 3.10   : Learning Curve of the Generators of the CycleGAN 74 
(λid=0.5) for 100 epoch                                                              

Figure 3.11  : Learning Curve of the Discriminators of the 74 
CycleGAN (λid=0.5) for 100 epochs                                             

Figure 4.1    : Configuration of the six variations of sRD mechanism 79 
in training mode                                                                        

 



xiv 
 

Figure 4.2      : Synthetic images generated from the sRD-GAN trained with 82 
different number of RD blocks in training mode                             

Figure 4.3     : Image difference between a reference output and second 83 
output generated from the same model for different number of 
RD blocks in training mode                                                          

Figure 4.4     : Images generated from the test set at different training 84 

Figure 4.5     : Comparison of LPIPS distance of the images generated 87 
by the sRD-GAN in training and inference modes                           

Figure 4.6     : Synthetic images generated from the sRD-GANs trained 89 
with different number of RD blocks in inference mode                    

Figure 4.7     : Comparison of FID score of the images generated by 90 
the sRD-GAN in training and inference modes                               

Figure 4.8     : Comparison between the outputs generated from 93 
sRD-GAN trained with24 different number of RD blocks in training 
and inference mode                                                                   

Figure 4.9     :  Configurations of nine variations of sRD mechanism 95 
with different residual dropout rate in inference mode                    

Figure 4.10   : Comparison of the synthetic images generated from 96 
normal dropout rate (0.5) and reduced dropout rate (0.2) of the 
three middle RD blocks of the image transformation network          

Figure 4.11   : LPIPS distance of the synthetic images generated with 97 
different dropout rate for the first three RD-block                          

Figure 4.12   : FID score of the synthetic images generated with 98 
different dropout rate for the first three RD-block                          

Figure 4.13   :  Output images generated by the sRD-GAN with 99 
different dropout rate in the inference mode                                

Figure 4.14   : Diverse outputs generated from the sRD-GAN trained 100 
with the light residual dropout setting and a 0.2 dropout rate in 
the inference mode                                                                    

Figure 4.15   : Configurations of nine variations of sRD mechanism 101 
with different order of single RD-activation in inference mode         

Figure 4.16   : LPIPS distance of the synthetic images generated with 102   
 single RD-activation at diferent orders of residual blocks              

Figure 4.17   : FID score of the synthetic images generated 103 
with single RD-activation at  diferent orders of residual blocks  

Figure 4.18   : Synthetic images generated by the sRD-GAN with a 104  
single RD activation at the 1st, 5th, and 9th residual block  

Figure 4.19   : Configurations of nine variations of sRD mechanism with 105 
different number of RD blocks in inference mode  

Figure 4.20   :  LPIPS distance of the synthetic images generated with 106 



xv 
 

different RD blocks in inference mode                                        

Figure 4.21   : FID score of the synthetic images generated with 107 
different RD blocks in inference mode                                        

Figure 4.22   : Output images generated by the sRD-GAN with 108 
increasing number of RD blocks in the inference mode                 

Figure 4.23   : LPIPS distances of the output images generated 110 
by different setting of pixel consistency loss in three 
different GANs                                                                        

Figure 4.24   : FID scores of the output images generated by 111 
different setting of pixel consistency loss in three different GANs  

Figure 4.25   : Synthetic COVID-19 CT images generated GAN baselines 112 
with and without adaptive pixel consistency los s                        

Figure 4.26   : Synthetic COVID-19 CT images generated by GAN and 114 
CycleGAN with and without pixel consistency loss                       

Figure 4.27   :  Confusion matrix of the Visual Turing Test with 30 images 115 
                     of good image synthesis compared to real COVID-19 and 
                     non-COVID-19 CT                                                                   

Figure 4.28   :  Confusion matrix of the Visual Turing Test with 20 images 116 
                     of bad image synthesis compared to real COVID-19 and 
                     non-COVID-19 CT                                                                  

Figure 4.29   : Samples of synthetic COVID-19 CT images examined 117 
in the Visual Turing Test                                                           

Figure 4.30   : GradCAM saliency maps of a pretrained pneumonia 118 
detection network on the three categories of images 

Figure 4.31   : UMAP (n_neighbours = 2, min_dist = 0) 119 

Figure 4.32   : UMAP (n_neighbours = 200, min_dist = 0.5) 120 

Figure 5.1     : Comparison of the synthetic COVID-19 CT images 126 
generated by different GAN baselines                                        

Figure 5.2     : Synthetic COVID-19 CT images generated from 127 
GAN and three variations of CycleGAN                                       

Figure 5.3     : LPIPS distance of the test sets generated from different 129 
GANs incorporated with sRD regularization                                 

Figure 5.4     : FID Score of the test sets generated from different 129 
    GANs incorporated with sRD regularization                               

Figure 5.5     : Diverse synthetic COVID-19 CT images generated from 131 
different GANs incorporated with sRD mechanism                       

Figure 5.6     : LPIPS distance of the test sets on different clinical cases  133 

Figure 5.7     : Synthetic CAP CT images generated by the sRD-GAN in 134 
interface mode                                                                        



xvi 
 

Figure 5.8     : Synthetic COVID-19 X-ray images generated by the 134 
sRD-GAN in interface mode                                                      

Figure 5.9     : FID score of the test sets on different clinical case 135 

Figure 5.10   : Synthetic COVID-19 CT images generated at different 138 
trainng epochs                                                                        

Figure 5.11   : Samples COVID-19 CT images grouped based on the 139 
significance of the synthetic features of GGO                              

Figure 5.12   : Synthetic samples generated by the three sRD-GANs 140 
that are trained separately                                                        

Figure 5.13   : Synthetic COVID-19 CT images generated from MosMed 141 
Dataset                                                                                    

Figure 5.14   : Synthetic COVID-19 CT images generated from a 141 
unamed dataset from Negin Medical Centre of Iran                     

Figure 5.15   : Histogram of the mean pixel values of three different 142 
tests sets from various sources                                                 

Figure 5.16   : Synthetic COVID-19 CT images with varying conditions 144 
and their corresponding performance metrics                             

Figure 5.17   : Examples of the style-artifacts observed from the 145 
synthetic COVID-19 CT images                                                 

Figure 6.1     : Samples of augmented image with random rotation and 149 
Noise injection                                                                        

Figure 6.2     : Accuracy of the CNNs trained with different number of 153 
images and dataset structures                                                 

Figure 6.3     : Accuracy of the VGG16s trained with different number of 154 
images and dataset structures                                                  

Figure 6.4    : Accuracy of the VGG19s trained with different number of 155 
images and dataset structures                                                  

Figure 6.5     : Accuracy of the DNNs trained with 2000-image datase 157 

Figure 6.6     : Accuracy of the DNNs trained with 3000-image dataset 157 

Figure 6.7     : Performance metrices of different DNNs and number of 160 
images evaluated on images from Negin Medical Center              

Figure 6.8     : Performance metrices of different DNNs and number of  162 
images evaluated on MosMed Dataset                                       

Figure 6.9     : GradCAM of the Non-COVID-19 CT images by the CNNs 166 
trained with different dataset structures and number of images    

Figure 6.10   : GradCAM of the COVID-19 CT images by the CNNs 168 
trained with different dataset structures and number of images    

Figure 6.11   : Comparison of GradCAM generated by the CNNs 169 
trained with basic and generative augmented data                      



xvii 
 

LIST OF SYMBOLS 

 

G()   - Generator model  

D()   - Discriminator model 

z   - Noise input distribution   

Ex   - Expected value from the real data distribution 

f   - input image for a convolution operation 

h   - convolution kernel 

m   - Row index of the result matrix 

n   - Column index of the result matrix 

j   - Row index of the kernel matrix 

k   - Column index of the kernel matrix 

F()   - Reverse generator model of CycleGAN 

x   - Real base image (Real non-COVID-19) 

x’   - Fale base image (Synthetic non-COVID-19) 

y   - Real style image (Real COVID-19) 

y’   - Fake style image (Synthetic COVID-19) 

X   - Real base image domain (Real non-COVID-19) 

X’   - Fake base image domain (Synthetic non-COVID-19) 

Y   - Real style image domain (Real COVID-19) 

Y’   - Fake style image domain (Synthetic COVID-19) 

DX   - Reverse Discriminator model  

DY   - Forward discriminator model  

Τ   - Bound for stability  

ci   - Shared content instance 

C   - Shared content latent space   

si   - Discriminative style instance 

S   - Discriminative style latent space   

resi   - Single residual-convolution process (sub block) 

RESi   - Double residual-convolution process (primary block) 

pi   - Dropout variable 

LGAN   - Adversarial loss 

Lpixel   - Pixel consistency loss 



xviii 
 

Lcycle   - Cycle consistency loss 

Lid   - Identity loss 

L()   - Final objective funtion 

 

 

 

 

 

 

 

 

 



xix 
 

LIST OF ABBREVIATIONS  

 

AI   - Artificial Intelligence  

ACGAN  - Auxiliary Classifier Generative Adversarial Network 

ANN   - Artificial Neural Network  

CAP   - Community Acquired Pneumonia 

cGAN   - Conditional 

CNN   - Convolutional Neural Network  

COVID-19  - Coronavirus Disease 2019 

CT   - Computerized Tomography  

CycleGAN  - Cycle Consistency Generative Adversarial Network 

DA   - Data Augmentation 

DCGAN  - Deep Convolutional Generative Adversarial Network 

DNN   - Deep Neural Network 

DL   - Deep Learning 

EM   - Earth-Mover 

FCL   - Fully Connected Layer 

FID   - Fréchet Inception Distance  

GAN   - Generative Adversarial Network 

GGO   - Ground Glass Opacity  

GMMs   - Gaussian Mixture Models 

GPU   - Graphics Processing Unit 

GradCAM   - Gradient Class Activation Map 

ILD   - Interstitial Lung Disease  

I2I   - Image-to-image 

IS   - Inception Score 

JSD   - Jensen-shannon Divergence 

KL   - Kullback-Leibler  

LPIPS   - Learned Perceptual Image patch Similarity  

ML   - Machine Learning  

MODE   - Multi-objective Differential Evolution 

MSE   - Mean Square Error 



xx 
 

NST   - Neural Style Transfer  

PCA   - Principal Component Analysis 

PSNR   - Peak Signal-to-Noise Ratio 

RD   - Residual Dropout  

RT-PCR  - Real-time Polymerase Chain Reaction 

SOTA   - State-of-the-art 

sRD   - Stacked Residual Dropout  

SSIM   - Structural Similarity Index 

t-SNE   - t-distributed Stochastic Neighbouring Embedding 

UMAP   - Uniform Manifold Approximation and Projection 

VAE   - Variational Auto-encoder  

WGAN   - Wasserstein Generative Adversarial Network 

WHO   - World Health Organization  

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 



xxi 
 

LIST OF APPENDICES  

 

         Page 

Appendix A:   Description of GAN baselines 188

   

Appendix B:   Performance Metrics for Preliminary Experiment   191 

 

Appendix C:   Performance Metrics for Experiment 3  -5 193 

 

Appendix D:   Performance Metrics for Experiment 6                              194 

 

Appendix E:   Synthetic Covid-19 CT Images Generated by sRD-GAN using 195 

           Test Dataset 
 
Appendix F:   Covid-19 CT Images for Visual Turing Test 199 

 

Appendix G:   Description of Neural Network Architectures for 201 

Covid-19 Detection 
 

Appendix H:   Mean Accuracy Scores of Covid-19 Detection Model in 203 

Different Experimental Settings 

 

Appendix I:    List of Publications 204 

 



 
 

CHAPTER 1 

 

 

INTRODUCTION  

 

 

 

1.1 Research Background  

 

The Coronavirus disease 2019 (COVID-19) continues to be devastating since the 

World Health Organization (WHO) declared the official status of the disease on 11 

March 2020 (World Health Organization, 2020). Although the successful 

administration of COVID-19 vaccination at a global scale has deescalated the 

disastrous impact of the disease (Feldscher, 2021), the short- and long-term 

prospects of the disease stay uncertain at present. 

 

 The prolonged and terrifying struggle for the past two years has the high 

vulnerability of humanity against unexpected global-scale catastrophes. The 

continuous emergence of new COVID-19 variants and the escalation of infection 

cases, even after the vaccination programs have been established globally, suggest 

that the COVID-19 pandemic is still far from a complete end. Although there is 

evidence that shows the effectiveness of the approved vaccines in preventing 

severe illness due to the virus (Cevik et al., 2021), human beings are still vulnerable 

to new COVID-19 variants (Person & Steenhuysen, 2021) as there are uncertainties 

about the mutations and more importantly how they will harm the human body.  

 

 While newer generations of vaccines or medications play a crucial role in 

helping humanity to achieve complete immunity against the coronavirus and its 

unforeseeable variants, other crucial aspects within the healthcare systems can be




