HYDROGEOCHEMISTRY OF ROCK-WATER INTERACTION AND WATER QUALITY AROUND BUKIT MANTRI, BALUNG, TAWAU, SABAH

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2023

HYDROGEOCHEMISTRY OF ROCK-WATER INTERACTION AND WATER QUALITY AROUND BUKIT MANTRI, BALUNG, TAWAU, SABAH

MOHD SHAFREEN BIN MAD ISA

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2023

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : HYDROGEOCHEMISTRY OF ROCK-WATER INTERACTION AND WATER QUALITY AROUND BUKIT MANTRI, BALUNG, TAWAU, SABAH

- IJAZAH : SARJANA
- BIDANG : **GEOLOGI**

Saya **MOHD SHAFREEN BIN MAD ISA**, Sesi **2017-2023**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

MOHD SHAFREEN BIN MAD ISA MS1621082T

ANITA BINTI ARSAD

Disahkan Oleh,

- PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

PROFESOR DR. BABA MUSTA Programme Of Geology Faculty Of Science and Natural Resources UNIVERSITI MALAYSIA SABAH

(Nama Penyelia) Penyelia Utama

Tarikh : 15 September 2023

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries and references, which have been duly acknowledged.

18 JANUARI 2023

Mohd Shafreen bin Mad Isa MS1621082T

CERTIFICATION

- NAME : MOHD SHAFREEN BIN MAD ISA
- MATRIC NO. : **MS1621082T**
- TITLE : HYDROGEOCHEMISTRY OF ROCK WATER INTERACTION AND WATER QUALITY AROUND BUKIT MANTRI, BALUNG, TAWAU, SABAH

Signature

- DEGREE : MASTER OF SCIENCE
- FIELD : **GEOLOGY**
- VIVA DATE : 18 JANUARI 2023

Prof. Dr. Baba bin Musta

2. CO-SUPERVISOR

Dr. Sanudin bin Tahir

ACKNOWLEDGEMENT

I am thankful to Allah S.W.T. for the innumerable blessings and encouragement bestowed by Him. I could not have completed this study without His will.

Countless people supported my efforts throughout this study. Without them, more difficulties might be encountered, disrupting the completion of the research and leading to the failure to graduate.

Firstly, I thank Professor Dr Baba Musta, who provided invaluable feedback on my analyses and his support in continuing and finishing the study. He understood the challenges I faced as a part-time student who also had to prioritise his official duties.

Most importantly, my entire family is entitled to receive my infinite gratitude, especially my wife and daughters, Adila binti Ishak and Abyatina Nursofya, for their unconditional support and inspiration. No success is perfect without the two of you. In the words of my beloved late mother, it's more important to take on bigger challenges and work hard to reach the goal than it is to simply complete the study. Becoming a better person is a lifelong endeavour.

I would like to thank the management of the Department of Mineral and Geosciences Malaysia, fellow officers and colleagues at the Department of Minerals and Geosciences Malaysia Sabah, the Mineral Research Center and the Geochemical Laboratory Section of the Technical Service Division, especially En. Mohd Yusop bin Ramli, Tn. Hj. Nurul Huda bin Romli, En. Azhari bin Ahmad, En. Abdullah bin Sulaiman, En. Morius bin Bantas, En. Jainih bin Linggi, Dr Rashita binti Abd Rashid, Ms Norin Safrina binti Mustaffa Kamal, and En Sharizan bin Ibrahim for the approval, and permission to carry out this study utilising in-house laboratory facilities, technical supports and assistances throughout the study.

I am grateful to the management of Southsea Gold Sdn Bhd, especially Datuk Lo Fui Min, En Shamsul Arif Haruna, En. Edwin James, En. Sze To Han Suon and the rest of the team, for their huge contribution and assistance especially during fieldwork. Lastly, I could also not forget the technical assistance offered by Mr Muhammad Hafiz Zakaria and the team from Malamet Sdn. Bhd.

Mohd Shafreen bin Mad Isa

18 January 2023

ABSTRACT

A study was carried out to characterise the geology, geochemistry, and mineralogy of hydrothermally altered andesite host to a gold mineralization system in Bukit Mantri area, Balung, Tawau. The main objective is to determine the hydrogeochemical composition, the status of water quality in waters draining the area; and to evaluate the potential of environmental degradation of mining. Geology of the study area is mainly delineated by the andesite country rocks. The andesite has been hydrothermally altered, and among the alteration profiles are argillic, propylic, silisic, and sulfuric. Geochemical analysis shows that SiO₂ concentration is relatively higher in silicified andesite, K₂O in propylitized andesite, and SO₃ in sulfidized andesite. Moreover, the hydrothermal alterations also increased the concentration of trace elements in the andesite, such as As, Cu, Pb and Zn. As, Pb and Zn also found enriched in the volcanic breccia. Analyses on mineralogy show that quartz is the predominant mineral, followed by pyrite, and the hydrothermal fluids have introduced and enriched chlorite and K-feldspar in propylitized andesite, while acid leaching has caused the formation of clay minerals such as kaolinite and introduced muscovite in the argilized andesite. Pyrite found in the altered andesite strongly correlates with the concentration of SO₃, implying higher acidity generation potential. On the other hand, analyses of the waters suggest that the water quality in the area is fresh, circumneutral, and has low redox potential, electrical conductivity, and dissolved solids. In the waters, the major cations and anions according to their dominancy order are Ca2+>Mg2+>K+>Na+, and SO42+>HCO3->Cl-, respectively, whereas $Na_+>K_+$ and $HCO_3->SO_4^{2-}$ are observed when under the influence of precipitation. Waters are classified into Ca-SO4 and mix types in mineralised sources drainages of Bukit Mantri andesite, and in Sungai Mantri, respectively. However, both are in CaMg-HCO₃ type owing to weathering and excess of silicate minerals. The hydrogeochemistry of these waters is mainly attributed to the weathering of sulphides such as sulphide minerals, which intensifies closer to the mineralized area. The weathering of silicate minerals provides a sufficient buffer in these waters and retains them within circumneutral pH. The solubility of constituents is relatively low, in the descending order of Fe > AI > Mn > Zn > Aq > Ba > Pb > Cr> Cu > Co > Ni > Cd > As. Substantial changes in the solubility of these metals have been observed for Fe, Al, Mn, and Zn, associated with the relatively higher concentration in country rocks in the Bukit Mantri area and under the influence of mine development activities. The geoenvironmental model highlights the rock-water interaction and the result shows a possible deterioration of the water body due to increased acidity and higher metal constituents following mining activity if no mitigation measures are in place.

ABSTRAK

HIDROGEOKIMIA INTERAKSI BATUAN-AIR DAN KUALITI AIR SEKITAR BUKIT MANTRI, BALUNG, TAWAU, SABAH

Kajian telah dijalankan untuk mencirikan geologi, geokimia dan mineralogi batuan perumah andesit yang terubah secara hidroterma yang dikaitkan dengan pemineralan emas dan batuan piroklas di kawasan Bukit Mantri, Balung, Tawau. Objectif utama kajian ini ialah menentukan komposisi hidrogeokimia, status kualiti air saliran di kawasan tersebut; dan menilai hubung kait interaksi batu-air dan menilai potensi degradasi alam sekitar kesan aktiviti perlombongan. Geologi kawasan kajian terdiri daripada batuan perumah andesit. Batuan andesit ini telah berubah secara hidroterma dan antara perubahan pada profil ialah argilik, propilik, silisik dan sulfidik. Analisis geokimia menunjukkan bahawa kepekatan SiO₂ secara relatifnya lebih tinggi dalam andesit tersilisik, K₂O dalam andesit terpropil, dan SO₃ dalam andesit tersulfida. Selain itu, perubahan hidroterma juga meningkatkan kepekatan unsur surih dalam andesit, seperti As, Cu, Pb dan Zn. Unsur As, Pb dan Zn juga didapati signifikan dalam batuan volkanik. Analisis mineralogi menunjukkan bahawa kuarza adalah mineral utama diikuti oleh pirit, dan cecair hidroterma telah menghasilkan dan memperkayakan klorit dan Kfeldspar dalam batuan andesit terpropil, manakala pelarutan asid menyebabkan pembentukan mineral lempung seperti kaolinit dan memperkenalkan muskovit dalam andesit terargilik. Mineral pirit yang terdapat dalam andesit yang terubah berkorelasi dengan kepekatan SO₃, menunjukkan potensi penjanaan keasidan yang lebih tinggi. Sebaliknya, analisis ke atas saliran menunjukkan bahawa, kualiti air di kawasan tersebut adalah segar, hampir neutral dan mempunyai potensi tindak balas redoks, kekonduksian elektrik dan pepejal terlarut yang rendah. Dalam saliran, kation dan anion utama mengikut susunan dominasinya ialah Ca2+>Mg2+>K+>Na+, and SO42->HCO3->Cl-, manakala Na+>K+ dan HCO3->SQ4²⁻ diperhatikan apabila berada di bawah pengaruh kerpasan. Saliran dikelaskan kepada Ca-SO4 dan jenis campuran dalam saliran daripada batuan andesit yang dipengaruhi pemineralan di Bukit Mantri, dan di Sungai Mantri, masing masing. Walau bagaimanapun, kedua-duanya adalah dalam jenis CaMg-HCO₃ disebabkan oleh luluhawa dan lebihan mineral silikat. Hidrogeokimia saliran ini terutamanya luluhawa sulfida seperti mineral sulfida meningkat lebih dekat dengan kawasan pemineralan. Namun, luluhawa mineral silikat menyediakan penampan yang mencukupi di saliran ini dan mengekalkannya dalam pH hampir neutral. Keterlarutan unsur surih adalah agak rendah, dan dalam tertib menurun Fe > AI > Mn > Zn > Aq > Ba > Pb > Cr > Cu > Co > Ni > Cd > As. Perubahanketara dalam keterlarutan unsur-unsur surih ini telah diperhatikan ke atas Fe, Al, Mn dan Zn, yang dikaitkan dengan konsentrasinya yang tinggi dalam batuan perumah andesit di kawasan Bukit Mantri dan di bawah pengaruh aktiviti pembangunan lombong. Model geosekitaran menggambarkan interaksi batuanair dan dapatan kajian menunjukkan kemungkinan berlakunya kemerosotan kualiti saliran disebabkan peningkatan keasidan dan unsur unsur surih yang lebih tinggi berikutan aktiviti perlombongan jika tiada langkah mitigasi dilaksanakan.

LIST OF CONTENTS

		Page
TITLE	E	i
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	IOWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vi
LIST	OF CONTENTS	vii
LIST	OF TABLES	xii
LIST	OF FIGURES	xiii
LIST	OF PHOTOGRAPHS	xvii
LIST	OF ABBREVIATIONS	xviii
LIST	OF APPENDICES	xx
P		
CHAP	TER 1 : INTRODUCTION	1
1.1	Introduction UNIVERSITEMALATSIA SAD/	-1-1
1.2	Objectives	2
1.3	Background of the Study Area	2
	1.3.1 Location and Accessibility	2
	1.3.2 Topography and Drainage System	3
	1.3.3 Climate	6
1.4	Problem Statements	7
1.5	Scope of Study	8
1.6	Limitation of the Study	9
1.7	Significant of Study	9
Chap	ter 2 : LITERATURE REVIEW	11
2.1	Introduction	11

2.2	Geolog	and Mineralisation	11
	2.2.1	General Geology	12
	2.2.2	The Mineralisation	14
	2.2.3	Hydrothermal Alteration	16
	2.2.4	The Mineral Resources Estimation	17
2.3	The Ir	fluence of Water-Rock Interaction to the Characteristics	18
	of Dra	inages	
	2.3.1	Geochemistry of Host Rocks	19
	2.3.2	Major Ionic Species	20
	2.3.3	Minor and Trace Elements	22
2.4	Geolog	gic Control on Drainages Chemistry	22
	2.4.1	The Weathering of Sulfide Minerals	23
	2.4.2	The Carbonate Dissolution	25
	2.4.3	The Weathering of Silicates	26
la	2.4.4	The Influence of Hydrothermal Alterations	27
2.5	Other	Hydrogeochemical Processes and Its Potential	28
Z	Influe	nces on Drainage Chemistry	
	2.5.1	Adsorption and Ion-Exchange	28
	2.5.2	Evaporation UNIVERSITI MALAYSIA SABA	28

CHAP	CHAPTER 3 : METHODOLOGY				
3.1	Introd	Introduction			
3.2	Prelim	inary Study	32		
3.3	Fieldw	ork	32		
	3.3.1	The Measurement of In-Situ Physical Properties of Water	33		
	3.3.2	The Sampling of Rocks and Soils	33		
	3.3.3	The Sampling of Drainages	38		
	3.3.4	In-Situ Water Quality Study	44		
3.4	Metho	ds of Sampling	47		
	3.4.1	Sampling of Rocks and Soils	47		
	3.4.2	Sampling of Surface Water	49		
	3.4.3	Sample Preservation and Storage	50		
		viii			

	3.4.4	Labelling	50
3.5	Geoch	emical and Hydrogeochemical Analyses	50
	3.5.1	Preparation of Samples	51
	3.5.2	Inductively Coupled Plasma Optical Emission Spectrum	53
	3.5.3	Titrimetric	54
	3.5.4	Turbidimetric	54
	3.5.5	X-Ray Fluorescence	54
	3.5.6	Gravimetry	55
3.6	Minera	alogical Study	56
	3.6.1	Preparation of Samples	56
	3.6.2	X-Ray Diffraction	57
	3.6.3	Thin Section Microscopy	58
3.7	Hydro	geochemistry Data Interpretation	58
	3.7.1	Gibbs Diagram	58
	3.7.2	Piper Diagram	60
E	3.7.3	Source-Rock Deduction	63
Z	3.7.4	Ficklin Diagram	64
3.8	Compl	iance Standard of Mine Drainages	65
	VD	UNIVERSITI MALAYSIA SABA	ιH
CHAP	TER 4	: RESULTS	67
4.1	Introd	uction	67
4.2	Geolog	gic Observations and Geochemical Analyses	67
	4.2.1	Geologic Observations	67
	4.2.2	Major Elements Geochemistry	72
	4.2.3	Trace Elements Geochemistry	74
4.3	Minera	alogical Study	77
	4.3.1	Thin Section Study	77
	4.3.2	The X-Ray Diffractogram	79
	4.3.3	Major Minerals	89
4.4	Water	Quality Study	92
	4.4.1	Physical-Chemical Properties of Water During March 2018	95
	4.4.2	Physical-Chemical Properties of Water During May 2018	96

4.5	Hydrogeochemical Analyses			
	4.5.1	Major Cations and Anions	97	
	4.5.2	Trace Metals Concentrations	99	
CHAP	TER 5	: DISCUSSIONS	105	
5.1	Introd	uction	105	
5.2	The H	ydrogeochemical Classification of Water and the	105	
	Contro	ol of Drainages Chemistry		
	5.2.1	The Hydrogeochemical Classification of Water	105	
	5.2.2	The Control of the Drainage Chemistry	107	
5.3	The Fe	eatures of Drainages in Bukit Mantri and Sungai Mantri	109	
	5.3.1	The Variation of pH, Dissolved Solids and Sulphate	109	
	5.3.2	Metal Constituents in Drainages	112	
	5.3.3	The Influence of Climate	117	
	5.3.4	The Geoenvironmental Model of Drainages	117	
5.4	Hydro	geochemical Processes	119	
Z	5.4.1	Sulphide Weathering and Generation of Near-neutral	119	
		Drainages		
	5.4.2	Natural Attenuation of The Drainages by Silicates	120	
		Weathering		
5.5	The So	ources of Major and Trace Elements in Drainages	124	
5.6	The E	nvironmental Consideration During Mining	125	
	5.6.1	The Risk of Environmental Impacts	125	
	5.6.2	The Pre-Mining Condition and Probable Remediation	126	
		Goals		
CHAP	TER 6	: CONCLUSION AND RECOMMENDATIONS	128	
6.1	Introd	luction	128	
6.2	Geolog	gy, Geochemistry and Mineralogical Background of Bukit	128	
	Mantri	i Mineralisation Area		
6.3	Water	Quality and Hydrogeochemical Condition	129	
6.4	The Ir	nfluence of Rock-Water Interaction and the Potential of	130	

APPENDICES		
REFERENCES		
6.5	Recommendations	131
	Environmental Degradation of Mining	

LIST OF TABLES

			Page
Table 2.1	:	Type of Hydrothermal Alteration Presented in the	16
		Study Area, Their Mineralogical Contents and	
		Alteration Descriptions	
Table 2.2	:	Chemical Analyses of Some Representative	20
		Igneous Rocks (In Percentage - %)	
Table 3.1	:	Description of Rock and Soil Samples	34
Table 3.2	:	Description of Water Samples	38
Table 3.3	:	Mechanisms Controlling the Chemistry of Water	59
Table 3.4	:	The Classification of Water Types and Their	62
		Descriptions	
Table 3.5		The Source Rock Deduction Analysis	63
Table 3.6		The Parameter and Limit of Effluent as Prescribed	65
E		Under The Mineral Development Regulations	
B		(Effluent) 2016	
Table 4.1	Your and	Geologic Observations and Sample Descriptions	67
Table 4.2	ABAN	The Major Elements Geochemistry of the Host	73
		Rocks in Bukit Mantri Area	
Table 4.3	:	Trace Elements Geochemistry of the Host Rocks	75
		in Bukit Mantri Area	
Table 4.4	:	The Breakdown of the Minerals Found in the	79
		Samples by XRD	
Table 4.5	:	The Summary of the Mineralogical Study	90
Table 4.6	:	The in-situ Measurement Results of the Drainages	94
Table 4.7	:	General Statistics of Physical Properties of the	95
		Drainages	
Table 4.8	:	The Concentration of Major Cations and Anions in	98
		the Drainages	
Table 4.9	:	Trace Metals Concentrations in the Drainages	100

LIST OF FIGURES

			Page
Figure 1.1	:	The Location of the Study Area in Bukit Mantri,	3
		Gunung Wullersdorf, Tawau, Sabah	
Figure 1.2	:	The Topographical Profile of the Study Area	5
Figure 1.3	:	Annual Precipitation and Minimum - Maximum	6
		Temperature in the District of Tawau, Year	
		2010 - 2019	
Figure 2.1	:	Geological Map of Sabah	12
Figure 2.2	:	The Geology Map of Bukit Mantri Area, northwest	13
		Of Gunung Wullersdorf	
Figure 2.3	:	Typical Altered and Oxidised Andesite Outcrop in	14
1 Th		South-Eastern Part of Bukit Mantri	
Figure 2.4		The Generalised Description of Low- and	15
ET -		High-Sulfidation Epithermal Gold and Its Relative	
BX		Modes	
Figure 3.1	. int	The Comprehensive Research Design of the Study	31
Figure 3.2	B.A.S	The Distribution of Geochemical Sampling	37
		Points	
Figure 3.3	:	The Distribution of Drainage Sampling Points	41
Figure 3.4	:	The Gibbs's Diagram Used to Identify the Factors	60
		Controlling Water Chemistry	
Figure 3.5	:	The Piper Diagram (Piper, 1944) Classifies The	61
		Water Into Its Types and Characters	
Figure 3.6	:	A Ficklin Diagram Demonstrates The Classification	64
		of Water Draining Both Natural- (Open Circle) And	
		Mine- (Closed Circle) Drainages Into Several	
		Different Compositions from Diverse Mineral	
		Deposit Types	
Figure 4.1	:	Outcrops of Some Hydrothermally Altered and	71

		Oxidised Andesite: A - Moderate To Highly Argilised	1,		
Whitish to Purplish Weathered Andesite; B –					
	Sulphidised, Argilised and Oxidised, Greenish to				
	Whitish Light Grey Andesite; C – Propylitic, Slightly				
		Weathered Greenish Grey Andesite; and D –			
		Sample of Highly Weathered Yellowish to Reddish			
		Brown Volcanic Breccia			
Figure 4.2	:	Thin Section Microscopy Image of an Argilised	77		
		Andesite Sample, (A) Under Plane-Polarised Light,			
		(B) Under Cross-Polarised Light			
Figure 4.3	:	Thin Section Microscopy Image of an Argilised	77		
		Andesite Sample, (A) Under Plane-Polarised Light,			
		(B) Under Cross-Polarised Light			
Figure 4.4	-	Thin Section Microscopy Image of a Propylitic	78		
- A	-4	Andesite Sample, (A) Under Plane-Polarised Light,			
		(B) Under Cross-Polarised Light			
Figure 4.5	a h	XRD Diffractogram of Sample JMG-01	80		
Figure 4.6	the for	XRD Diffractogram of Sample JMG-02	81		
Figure 4.7	B: AS	XRD Diffractogram of Sample JMG-03 A SABA	81		
Figure 4.8	:	XRD Diffractogram of Sample JMG-04	82		
Figure 4.9	:	XRD Diffractogram of Sample JMG-05	82		
Figure 4.10	:	XRD Diffractogram of Sample JMG-06	83		
Figure 4.11	:	XRD Diffractogram of Sample JMG-07	83		
Figure 4.12	:	XRD Diffractogram of Sample JMG-08	84		
Figure 4.13	:	XRD Diffractogram of Sample JMG-09	85		
Figure 4.14	:	XRD Diffractogram of Sample JMG-11	85		
Figure 4.15	:	XRD Diffractogram of Sample JMG-11	86		
Figure 4.16	:	XRD Diffractogram of Sample JMG-12	86		
Figure 4.17	:	XRD Diffractogram of Sample JMG-13	87		
Figure 4.18	:	XRD Diffractogram of Sample JMG-14	87		
Figure 4.19	:	XRD Diffractogram of Sample JMG-15	88		
Figure 4.20	:	XRD Diffractogram of Sample JMG-16	88		

Figure 4.2	1 :	XRD Diffractogram of Sample JMG-17	89
Figure 5.1	:	Piper Diagram Shows the Water Types Identified	107
		in Bukit Mantri	
Figure 5.2	:	The Gibbs Diagram of Na/Nacl Against TDS	108
		Showing the Rock-Water Interaction Dominating	
		the Water Chemistry in Bukit Mantri	
Figure 5.3	:	The Gibbs Diagram of Cl/Cl-HCO₃ Against TDS	108
		Showing the Rock-Water Interaction Governing	
		the Water Chemistry in Bukit Mantri	
Figure 5.4	:	The pH Variation with Total Dissolved Solids in	109
		Waters Draining Bukit Mantri Mineralisation and	
		Sungai Mantri	
Figure 5.5	:	The Sulphate - pH Variation in Draining Waters	110
		from Bukit Mantri and Sungai Mantri	
Figure 5.6		The Concentration of Ca ²⁺ Against the	111
EX .		Concentration of SO42- Plot in Bukit Mantri	
Figure 5.7		The Concentrations of Trace Elements in the	113
11		Samples of Water Draining Sungai Mantri and	
- E	ABAD	Bukit Mantri Mineralisation Area AVSIA SABA	H
Figure 5.8	:	The Concentrations of Fe, Al and Mn Over the pH	114
		Range Observed in Bukit Mantri and Sungai Mantri	
		in March 2018 and May 2018	
Figure 5.9	:	The Concentration of Cu, Zn and Pb Over the pH	114
		Range Observed in Bukit Mantri and Sungai Mantri	
		in March 2018 and May 2018	
Figure 5.1	D :	The Concentration of Other Metal Species Over	115
		the pH Range Observed in Bukit Mantri and Sungai	
		Mantri in March 2018 and May 2018	
Figure 5.1	1 :	Ficklin Diagram Plotting the pH and the Dissolved	118
		Sum of Base Metals (Zn, Cu, Cd, Co, Pb and Ni)	
		in Waters Draining Bukit Mantri Mineralised Area	
		and in Sungai Mantri	

Figure 5.12	:	The Plagioclase Weathering Likely Contributed to	122
		The Water Chemistry Draining Bukit Mantri and	
		Sungai Mantri	
Figure 5.13	:	The Na/(Na+Cl) Against TDS Shows the Source of	123
		Na in The Water in Bukit Mantri	
Figure 5.14	:	The Ca/(Ca+SO4) Against pH Plot of Waters	123
		Draining in Bukit Mantri	

LIST OF PHOTOGRAPHS

			Page
Photograph 3.1	:	Measuring Physical Parameters of	44
		Drainages for Water Quality Study at	
		Location No. 11 (N04°29.7129';	
		E118°06.2122′	
Photograph 3.2	:	Collecting Sample of Fresh Rocks and	48
		Soils from the Exposed Outcrop at	
		Location JMG – 12 (N04.5094°; E118.1153°	
Photograph 3.3	:	Samples and Label on Plastic Container.	48
		Example of Sample JMG – 06, Propylitic	
		Andesite, N04.51065°; E118.1084°	
Photograph 3.4	÷	Example of Sampling of Water Sample	49
	Q	from Stream Water in Location 13 Draining	
		from a Valley between Bukit Mantri and	
AOA	H	Bukit Tundong, N04°29.6576'; E118°06.942	3
Photograph 3.5	.]	Drying of Samples	51
ABAN		Samples (Right) Sealed in Plastic	
		Containers With Labels	
Photograph 3.6	:	Oven-drying of Wet Samples	52
Photograph 3.7	:	Fused Beads Samples Preparation	53
Photograph 3.8	:	The PANAnalytical Zetium XRF	55
		Spectrometer	
Photograph 3.9	:	The Bruker's D8 Advance in an XRD	57
		Laboratory Facility	

LIST OF ABBREVIATIONS

На	-	Hectare
m	-	Meter
a.m.s.l.	-	Above Mean Sea Level
DID	-	Department of Irrigation and Drainage
AMD	-	Acid Mine Drainage
₩НΟ	-	World Health Organization
DOE-WQI	-	Department of Environment – Water Quality Index
g/t	-	Gramme per Tonne
mg/L	-	Milligram per Litre
EC	-	Electrical Conductivity
Eh	-	Oxidation-Reduction Potential
DO	-	Dissolved Oxygen
TDS	ð.	Total Dissolved Solids
°C	13	Degree Celcius
°F	H	Degree Fahrengeit
°K	-/	Degree Kelvin
°R	-	Degree Rankine
µS/cm	-	Mircosiemens per Centimetre
mV	-	Milivolts
SEIA	-	Special Environmental Impact Assessment
GPS	-	Global Positioning System
DSLR	-	Digital Single-Lens Reflect
LLC	-	Limited Liability Company
HNO ₃	-	Nitric Acid
ICP-OES	-	Inductively Coupled Plasma Optical Emission Spectrum
ppm	-	Parts per Million, pp48
μm	-	Micrometer
ΑΡΗΑ	-	American Public Health Association
HCL	-	Hydrochloric Acid

XRF	-	X-Ray Fluorescence
wt%	-	Weight Per Cent
XRD	-	X-Ray Diffraction
JCPDS	-	Joint Committee on Powder Diffraction Standards
INWQS	-	Interim National Water Quality Standard pp64
NTU	-	Nephelometric Turbidity Units
ID	-	Identification Number
Alt	-	Altitude
FeO [⊤]	-	Total Iron as FeO
LOI	-	Loss of Ignition
n.m.	-	Not Measured
n.d.	-	Not Detected
DIC	-	Dissolved Organic Carbon

LIST OF APPENDICES

- Page Appendix A : Figures and Photographs of Field Geologic 145 and Hydrologic Observations, Preparation of Samples, and Analyses
- Appendix B
 :
 Publication in Borneo Science Journal, Paper
 154

 Entitle "Mineralogical and Geochemical Study
 Of Andesite Alteration Zone in Bukit Mantri
 Gold Mine, Balung, Tawau", Volume 44, Issue 1,

 April 2023
 April 2023

CHAPTER 1

INTRODUCTION

1.1 Introduction

Mineral resource extraction has begun in Bukit Mantri, Tawau, Sabah, within 946.4 hectares (Ha) in Gunung Wullersdorf Forest Reserve and Ulu Kalumpang Forest Reserve with the approval of the respective authorities. The lease for the mining was issued for thirty-five years, primarily for gold, in 2013. The associated metal ores are copper and silver.

While economic mineral deposits are typically thought to be exploited, contributing to the supply of raw materials to various industries, employment creation, encouraging infrastructure development, support services, and economic opportunities, the experience and lessons learned from other mining activities have provided some insights into the need to consider the possibility of environmental degradation caused by mineral resources extraction.

Before the start of mining activities in Bukit Mantri, the only mine that ever operated in Sabah was copper mining in Mamut, near Ranau. This mine was forced to close about two decades ago due to uneconomic operations resulting from lower metal prices and landslide occurrences (Shin, 2000). What is known is that this former mine, along with other abandoned and still-in-operation mines elsewhere in Malaysia, have been reported to be the source of various environmental issues, particularly with water bodies.

Since mining activity constantly exposes and discards nonvaluable minerals such as pyrite and various metal-bearing minerals, the weathering processes may cause environmental degradation. Thus, in this study, the concept of rock-water interaction is applied to assess the potential for environmental degradation during and after mining, particularly in water bodies near Bukit Mantri area. In this regard, the study will investigate the geology and mineralisation occurrence in the area, the geochemistry and mineralogy of the host rock and the hydrogeochemical characteristics of the water bodies. Understanding the rock-water interaction in Bukit Mantri mineralised area is crucial for predicting environmental degradation caused by mining activities and developing effective mitigation strategies.

1.2 Objectives

The study intends to –

- a) Identify geological background and mineralisation occurrence in the study area, as well as characterise geochemical composition and mineralogy of the hydrothermally altered country rocks;
- b) Characterise hydrogeochemical composition of the waters draining in the study area.
- c) evaluate the influence of the rock-water relationship on the hydrogeochemical status of waters and the potential environmental degradation of mining.

1.3 Background of Study Area

1.3.1 Location of the Study Area

Bukit Mantri mineral deposit and the mining lease area are surrounded by Gunung Wullersdorf and Ulu Kalumpang Forest Reserves, near Balung, District of Tawau, Sabah. Geographically, the mine is situated at 4°29'48.58"N and 118° 6'15.11"E, some 37 kilometres northeast of Tawau. The location of the mineralised area is shown in Figure 1.1.