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ABSTRACT 

High electron-hole recombination ratio and low surface area have always been the 

major problems of Ti02 thin film. This study focuses on the effect of HKUST-l 

towards photocatalytic efficiency Ti02 thin film. The HKUST-l/Ti02 thin film was 

prepared by dip-coating a Duran glass tube in a Ti02 precursor sol-gel, followed by 

drying in oven at 150°C and calcination at 550 °C. The Ti02 coated Duran glass tube 

was then dipped into a mixture of Ti02 precursor sol-gel and HKUST-l powder to 

form a HKUST-l/Ti02 thin film. Crystal phase of HKUST-l and anatase Ti02 were 

both confirmed by powder XRD. The morphology of HKUST-l/Ti02 thin film showed 

an unevenly distributed HKUST-l powder on the surface of Ti02 thin film. Study of 

photocatalytic performance revealed that HKUST-l/Ti02 thin film layer was able to 

degrade 4.5 % of 5 ppm of methyl orange (MO) solution in 3 hours under the UV-A 

irradiation while the bare Ti02 thin film was able to degrade 49.5 % of MO under 

same condition. The low photodegradation efficiency of HKUST-l/Ti02 thin film may 

due to the absence of anatase Ti02 on the surface of thin film, trapped guest 

molecules in HKUST-l cavities and uneven distribution of HKUST-l on the thin film. 

Besides, terminating species at the surface of HKUST-l might be dominated by the 

BTC3
- that gives rise to the negative surface of HKUST-l. This repels MO molecules 

and therefore hindered the reaction between thin film and MO molecules. 
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SINTESIS DAN PENCIRIAN PENYALUTAN HKUST-l DENGAN FILEM 
TIPIS Ti02 

ABSTRAK 

Penyesatan gabungan semula h+ dan e- yang tinggi dan luas permukaan yang rendah 

sentiasa menjadi masalah utama filem tipis TiD]. Kajian ini member tumpuan 

terhadap kesan HKUST-1 atas kecekapan pemangkinan foto fi(em tipis TiOl . Filem 

tipis HKUST-l/TiDz telah disediakan dengan celup-salut satu tiub kaca Duran dalam 

larutan TiOz sol-gel, kemudian dikeringkan dalam ketuhar pada suhu 150 °C dan 

pengapuran dijalankan pada suhu 550 0c. Tiub kaca Duran dengan lapisan kot TiOz 

telah dicelupkan ke dalam campuran yang mengandungi TiDz sol-gel dan serbuk 

HKUST-l untuk menghasilkan satu filem tipis HKUST-l/TiOz .. Tahap hablur HKUST-l 

dan TiOz fasa anatas kedua-dua telah disahkan dengan XRO. Morfologi filem tipis 

HKUST-1/TiOz menunjukkan taburan serbuk HKUST-1 yang tidak serata atas 

permukaan filem tipis TiOz. Kajian daripada pemangkinan foto menunjukkan bahawa 

filem tipis HKUST-l/TiOz dapat menyingkirkan 4.5 % daripada larutan 5 ppm metal 

oren (MO) yang dijalankan selama 3 jam di bawah penyinaran UV-A manakala filem 

tipis TiDz semata-mata cuma dapat menyingkirkan sebanyak 49.5 % daripada MO 

bawah keadaan yang sama. Kecekapan fotodegradasi filem tipis HKUST-1/TiOz yang 

rendah mungkin disebabkan oleh ketidakhadiran TiDz fasa anatas atas permukaan 

filem tipis, molekul tetamu yang terperangkap dalam kaviti HKUST-1 dan taburan 

HKUST-1 yang tidak serata atas filem tipis. Oi samping itu, sepsis atas permukaan 

HKUST-l mungkin dikuasai oleh BTf:!- yang menghasilkan permukaan negatif 

HKUST-1. Ini akan menyingkirkan molekul MO dan seterusnya menghalang reaksi 

antara filem tipis dan molekul MO. 
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CHAPTER 1 

INTRODUCTION 

1.1 Advanced Oxidation Processes (AOPs) 

Over the past few decades, advanced oxidation processes (AOPs) have attracted 

significant attention as an alternative to conventional methods of water treatments. 

Conventional methods like air stripping, granular activated carbon (GAC) adsorption, 

resin sorption are phase-transfer processes; on the other hand, biological treatment 

is only applicable for biodegradable contaminated wastewater. Unlike those 

processes, AOPs are destructive processes which destroy the contaminants directly in 

the water through chemical transformation instead of simply transferred them from 

liquid phase into a gas phase or solid phase (Kommineni et al., 2000). This makes 

AOPs earned the credit of "water treatment processes of the 21st century" (Munter, 

2001). The principle of AOPs is to mineralize numerous pollutants into ultimately less 

toxic substances like carbon dioxide (C02) and water (H20) or transform non

biodegradable compounds into harmless compounds that could be further 

biodegraded (Munter, 2001; Stasinakis, 2008). Generally, AOPs refer to the processes 

that involve ozone (03), hydrogen peroxide (H20 2), and/or ultraviolet (UV) light. They 

also refer to a more general group of processes which may also involve titanium 

dioxide (Ti02) catalysts, electron beam irradiation and Fenton's reaction (Kommineni 

et al., 2000). All these processes are characterized by same features for example 

production of highly reactive hydroxyl radical (eOH) and superoxide anion (02e-) 

(Han et al., 2009). In this study, Ti02 catalysis with UV is focused. 



1.2 Titanium Dioxide (Ti02) Powder 

In 1970s, heterogeneous photocatalytic oxidation process has been developed as one 

of the novel AOPs (Han et al., 2009). TiOz as an oxide semiconductor catalyst, has 

been proven to be the most widely used in water treatment processes because of the 

strong oxidizing strength, relatively low toxicity, long-term photostability, highly 

oxidizing photogenerated holes and highly potential to produce radicals (Han et al., 

2009; Santhanalakshmi and Komalavalli, 2012). Also, it is relatively inexpensive and 

commercially available (Stasinakis, 2008). TiOJUV light process also caught a lot of 

attention due to ambient conditions required for the operation, lack of mass transfer 

limitation and possible use of solar irradiation (Stasinakis, 2008). 

Even though TiOzpowder seem to be a good candidate for photocatalysis 

oxidation, it has several limitations must be worked out to optimize the performance 

of the techniques (Kalra et al., 2011). First, the wavelength spectrum of TiOz needs 

to be widened for photonic activation. Secondly, the structure in the catalyst 

composition should be stabilized. Next, the hole-electron recombination must be 

reduced and the adsorption of organic molecules must be increased. Hence, 

chemically impregnated (doped) or physically implanted with other materials have 

been developed to improve the photoactivity of TiOz powder (Vogelpohl and Kim, 

2004). Doping of TiOz powder with other elements can narrow the band gap; 

scavenge excited electrons or holes and enhance the specific surface area that will 

then solve the limitations of TiOJUV light process (Stasinakis, 2008). 

TiOz powder catalyst must be stirred during the reaction and it has to be 

separated from treated water after each run. To recover the highly dispersed and 

suspended catalyst, processes like sedimentation, centrifugation and filtration are 

necessary for the system. These separation processes are not only time consuming 

but also become less efficient as the powder size of TiOz diminished. It is because 

when the powder become smaller, they become easier to penetrate through filtration 

materials and stay suspended in the water causing clogging of filter membranes 

(Malato et al., 2003). 
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1.3 Titanium Dioxide (Ti02) Thin Films 

To overcome the problems, immobilization of Ti02 powder has been introduced. Ti02 

powder are bounded on solid supports or form thin solid films (Tennakone et al., 

1997; Kumara et al., 1999; Karches et al., 2002). However, the immobilized Ti02 

largely reduced the surface area that exposed to UV light. This makes the 

photocatalytic effiCiency of Ti02 thin films much lower than the Ti02 powder 

(Arabatzis et al., 2002). Besides the reduced surface area, narrow corresponding 

wavelength range and high electron-hole recombination ratio also further reduce the 

photocatalytic performance of the system of the Ti02 thin films (Arabatzis et al., 

2003). 

In order to improve the efficiency of the material, Ti02 thin films have been 

modified by doping noble metals, transition metals or non-metals on it. The doping 

process has altered both of the surface features and surface chemistry, hinderedthe 

photo-generated electron hole recombination, accelerated the photoexcitation and 

formation of oxidizing species (Arabatzis et al., 2003; Arabatzis et al., 2003). This 

study focuses on enhancing the degradation efficiency of Ti02 thin film by coating 

with nanoporous materials. 

1.4 HKUST-1 

HKUST-1, a three-dimensional nanoporous cubic framework, has also known as Cu

BTC or MOF-199. It was first discovered and synthesis in 1999 (Chui et al., 1999). 

HKUST-1 has caught a significant attention since then. It was popular in catalysis, 

separation and storage application. HKUST-l also shows a great interest in 

preferential adsorption of quadruple molecules as well as heterogeneous catalysis (Li 

et al., 2009). This make the HKUST-1 has a high potential to improve the efficiency 

of Ti02 on photocatalytic degradation process. 

3 



1.5 Objectives 

The objectives of this study are: 

i. to prepare HKUST-l coated TiOzthin film composite. 

ii. to characterize HKUST-l{TiOz thin film using XRD, SEM, TGA and DSC. 

iii. to examine the photocatalytic activity of HKUST-l{TiOz composite toward 

degradation of methyl orange. 

1.6 Scope of study 

This study involves preparation and characterization of HKUST-l{TiOz thin film by 

dip-coating method. It was started with the synthesis of TiOz thin film through the 

sol-gel method followed by calcination at 550°C. The obtained TiOz thin film was 

then dipped into the HKUST-l{TiOz solution in order to obtain the HKUST-l{TiOz 

composites. 

The identification and morphology of HKUST-l{TiOz composites was 

characterized under the x-ray diffractometer (XRD) and scanning electron microscope 

(SEM). Thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) 

were used to characterize the thermal stability of HKUST-l crystals. Photocatalytic 

activity of the prepared composites was tested using 5 ppm methyl orange solution 

for 3 hours. Degree of degradation of methyl orange solution was then studied using 

the UV-Vis spectrophotometer. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Advanced Oxidation Processes (AOPs) 

In 1987, the AOPs concept was established by Glaze et al., he defined AOPs as "near 

ambient temperature and pressure water treatment processes which involve the 

generation of hydroxyl radical (-OH) in sufficient quantity to effect water purification". 

AOPs are generally refer to those aqueous oxidation processes that are based on the 

intermediacy of reactive species such as -OH and superoxide anion (-Oz -) radicals in 

the mechanism, resulting in the almost complete degradation of the target pollution 

compound, including a variety of xenobiotics and micropollutants (Andreozzi et al., 

1999; Esplugas et al., 2002). The radicals react rapidly and non-selectively with 

nearly all electron rich organic compounds. It can completely remove refractory 

organics and reduce the toxicity of effluent (Stasinakis, 2008). 

Several possible mechanisms might happen during the AOPs such as oxygen 

reduction reaction (Equation 2.1 and 2.2) (Shao et al., 2006). 

O2 + 4H+ + 4e --+ 2HzO 

Oz + 2H+ + 2e --+ HZ0 2 

(2.1) 

(2.2) 

The -02- is also able to oxidize many organic compounds via a complicated 

deprotonation-oxidation mechanism. The -Oz - ion is a supernudeophile which can be 

origin of destructive processes initiated by the splitting-off of various carbon-oxygen 

(C-O) and carbon-halogen (C-X) bonds (Equation 2.3 and 2.4) (Zhang et al., 2008). R 

in the equations refers to hydrocarbon chain in the compounds. 



-02- + RX -+ R02- + X-

-02 - + RCOX -+RC(O)02- + X-

(2.3) 

(2.4) 

The common reactions of -OH are hydrogen abstraction (Equation 2.5), radical 

addition (Equation 2.6) and electron transfer (Equation 2.7) (Stasinakis, 2008). 

RH + -OH -+ H20 + -R 

R + -OH -+ ROH 

Rn + -OH -+ Rn
-
1 + H20 

(2.5) 

(2.6) 

(2.7) 

The reaction between molecular oxygen and peroxyl radicals may generate organic 

radicals which initiate chain reactions of oxidative degradation and eventually form 

CO2, H20 and inorganic salts (Equation 2.8). Hydrogen gas (H2) might be produced 

as a by-product when the electron reacts with the proton ion. (Equation 2.9) (Zhang 

et al., 2008). 

O2 + R- -+ ROz- -+-+ H20 + CO2 

2 H+ + e- -+ H2 

(2.8) 

(2.9) 

The ·OH and -02- radical can be produced by using one or more primary 

oxidants like 03f H20 2 or oxygen (02) and/or with the help of energy sources such 

as UV light and electron beam radiation or catalysts such as Ti02 and 

heterogeneous photocatalysts (Kalra et al., 2011). Table 2.1 showed the types of 

AOPs system of established technologies and emerging technologies. Emerging 

technologies stated here as technologies that have very limited full-scale 

applications (Kommineni et al., 2000). 
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Table 2.1: Types of AOPs (Kommineni et al., 2000). 

Established Technologies Emerging Technologies 

Hydrogen Peroxide/Ozone (H2OJ03) 
High Energy Electron Beam Irradiation 

(E-beam) 

Ozone/Ultraviolet Irradiation (03/UV) Sonication/Hydrodynamic Cavitation 

Hydrogen Peroxide/Ultraviolet Irradiation 
Ti02-catalyzed UV Oxidation (TiOJUV) 

(H2OJUV) 

Fenton's Reaction (H20JFe2
+ /UV, 

H2OJFe2+) 

These combinations can highly accelerate the generation of -OH and -02-

radical. In general, the ability to generate -OH and -02- is proportional to the 

effectiveness of an AOP. Thus, many studies are done to find out the most effiCient 

oxidation system choice or design for different industries wastewater (Munter, 2001). 

However, despite all the advantages, AOPs are still much less well 

understood in the complex chemical and physical processes compare to 

conventional methods. There are several limitations and challenges need to be 

overcome and solved in full-scale applications. The knowledge of background water 

quality effects on contaminant removal for AOPs is still very limited (Kommineni et 

al., 2000). Highly reactive and relatively short half-life -OH and -02- radicals made 

it difficult to measure the methods of chemical reactions, spin-trap and direct 

detection (Zhang et al., 2008). Since the oxidation processes are non-selective, 

therefore there is a significant amount of potential interference which is 

unpredictable. To overcome these limitations, higher chemical dosages or more 

energy may be required which may also lead to increase in cost (Kommineni et al., 

2000). 

2.1.1 Ti02-UV Catalyzed Oxidation (Ti02 /UV) 

TiOJUV is a photocatalytic oxidation which the semiconductor is photoexcited 

through absorption of electromagnetic radiation (Munter, 2001). Ti02, as a 

semiconductor, only generates the photoactivated holes (h+) and electrons (el 
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when absorbs light energy more than or equal to energy band gap (See Figure 2.1) 

(Santhanalakshmi and Komalavalli, 2012). 

hv - __ 
........ " 

, , , , , , 
...... ...... 

Catalyst 

__ --Electrophilic molccule 

~~--__________ A 

\ 
Degradation by-products 

w+ow / 
~B 

--____ Nucleophilic: molecule 

Figure 2.1: Photocatalytic oxidation mechanisms of Ti02 (Chong et al., 2010). 

When Ti02 is activated by UV light, the valence band electrons are excited to 

conduction band and electron vacancies, or holes, are created (Equation 2.10) 

(Kommineni et al., 2000). Both photogenerated h+ and e - are assumed to react with 

electrophilic and nucleophilic molecules absorbed on the photocatalyst surface, 

inducing reduction or oxidation respectively, producing activated and unstable 

products (Equation 2.11 and 2.12) (Chong et al., 2010). 

Ti02 + hv -+ h++ e-

e - + electrophilic molecule -+ Activated Product 

h+ + nucleophilic molecule -+ Activated Product 

(2.10) 

(2.11) 

(2.12) 

The excited-state electrons are capable of initiating a wide range of chemical reaction 

and able to interact with surface absorbed oxygen molecules and proton ions to form 

.02- ions (Equation 2.13) and H20 2 molecules (Equation 2.14) (Kommineni et al., 

2000). 

(2.13) 
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