FUNCTION OF TRANSIENT RECEPTOR POTENTIAL CANONICAL 3 - NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 2 INTERACTION IN ATROPHY OF CARDIAC AND SKELETAL MUSCLE CELLS

SUHAINI BINTI SUDI

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

PERPUSTAKAAN INIVERSITI MALAYSIA SABAH

FACULTY OF MEDICINE & HEALTH SCIENCES UNIVERSITI MALAYSIA SABAH 2020

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

- FUNCTION OF TRANSIENT RECEPTOR POTENTIAL CANONICAL 3 -NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 2 INTERACTION IN ATROPHY OF CARDIAC AND SKELETAL MUSLCE CELLS
- IJAZAH DOKTOR FALSAFAH
- BIDANG SAINS PERUBATAN

Saya SUHAINI BINTI SUDI, Sesi 2017-2020, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- Tesis ini adalah hak milik Universiti Malaysia Sabah 1.
- Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan 2 pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran 3. antara institusi pengalian tinggi.
- Sila tandakan (/): 4.

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

(Tandatangan Pustakawan)

DR GAROLINE SUNSGIP Head of Department Biomedical Science papeutics aculty of Medicure Th Sciences Univer BP Maronane Salvaggip) Penyelia Utama

Tarikh : 4 Disember 2020

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, summaries and references which have been duly acknowledged.

17th November 2020

SUHAINI BINTI SUDI DM1711005T

CERTIFICATION

NAME SUHAINI BINTI SUDI

MATRIC NO. : **DM1711005T**

- TITLE : FUNCTION OF TRANSIENT RECEPTOR POTENTIAL CANONICAL 3 - NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 2 INTERACTION IN ATROPHY OF CARDIAC AND SKELETAL MUSCLE CELLS
- DEGREE DOCTOR OF PHILOSOPHY
- FIELD : MEDICAL SCIENCE
- VIVA DATE : 17 NOVEMBER 2020

CERTIFIED BY,

IIVERSI I I MALAYSIA SABAH

Signature

CO-SUPERVISORY

1. MAIN SUPERVISOR Dr. Caroline Sunggip

2. CO-SUPERVISOR

Prof. Dr. Motohiro Nishida

ACKNOWLEDGEMENTS

First of all, I would like to thank God for all His blessings during my doctorate journey. Next, I would like to express my biggest gratitude to both my supervisors, Dr Caroline Sunggip and Prof. Dr Motohiro Nishida for giving me the opportunity to work with them and for their overwhelming support to help me finish my research. Special acknowledgement towards Prof. Nishida's laboratory members for their warm welcome during my research collaboration period at the National Institutes of Physiological Sciences, Okazaki Japan. I would like to mention Assoc. Prof. Dr Takuro Namuga-Tomita, Assoc. Prof. Dr Akiyuki Nishimura, Assoc. Prof. Dr Kazuhiro Nishiyama, Dr Tomohiro Tanaka, Miss Sayaka Oda, Mr Yasuyuki Fujimoto, Mr Kakeru Shimoda, Miss Hiromi Ishihara, Mrs Hitomi Fujimori and Mrs Ayano Nakanishi for their kind help during my collective nine months research collaboration at Prof. Nishida's laboratory.

I would also like to acknowledge the committee at the Centre of Postgraduate Study, Universiti Malaysia Sabah for given me a financial supports throughout my study under the "Skim Bantuan Pascasiswazah" and "UMS Great" programs. I also expressed my gratitude towards the committee members of the Faculty of Medicine and Health Sciences, UMS, for helping my research progression directly and indirectly.

Finally, my deepest appreciation belongs to my family for their patience and understanding. To my parents, Mr Sudi Bongge and Mrs Roslina Landu, I would like to express my special gratitude for always supporting me through thick and thin. I couldn't have imagined how hard my journey would have been without all of them by my side. To my other relatives and friends that always sent prayers and positive vibes, I genuinely appreciate them, and I thank you all for your support.

Suhaini Binti Sudi 17th November 2020

ABSTRACT

Muscle atrophy develops after a long period of inactivity caused by malnutrition, ageing, genetic disorders, and cancer. High protein degradation rate is a hallmark in the muscle atrophy-related diseases that showed increase in reactive oxygen species (ROS) production and severe muscle wasting. The signaling pathways involving the activation of protein degradation systems are complex and regulated by many different mediators, therefore finding a specific target is a major challenge for muscle atrophy. In general, the current study aimed to reveal new key components of the protein degradation pathway involved in muscle cells atrophy. The first part of the study was to determine the involvement of transient receptor potential canonical 3 (TRPC3) and NADPH oxidase 2 (Nox2) complex in cardiac atrophy on a primary culture of neonatal rat cardiomyocytes (NRCMs) using immunostaining, western blot and luciferase assay. High concentration of adenosine triphosphate (ATP) significantly induces NRCMs atrophy through ROS-mediated up-regulation of atrophy marker, muscle atrophy F-box (MAFbx) and reduction in cell size (p<0.05). Gene knockdowns of TRPC3 and Nox2 significantly suppressed ATP-induced NRCM atrophy and ROS production (p < 0.05). The study further revealed that TRPC3 and Nox2 formed an interaction in the presence of ATP through the P2Y₂ receptor in NRCMs atrophy. Furthermore, nutrient depletion (glucose starvation, hypoxia, and amino acid deprivation) displayed a significant increase in extracellular ATP levels that promoted NRCMs shrinkage (p < 0.05). The second part of the study designed to provide direct evidence of TRPC3-Nox2 complex formation in in vivo setting incorporating with human disease models of skeletal muscle atrophy using immunohistology and quantitative polymerase chain reaction (qPCR). Denervation surgery was conducted in the hind limb of wild type (WT) and TRPC3 gene knockout (C3KO) mice to evaluate the effect of immobilization-induced skeletal muscle atrophy on TRPC3-Nox2 complex. Expectedly, 14 days post denervation significantly induces muscle atrophy and ROS overproduction in soleus, gastrocnemius, and tibialis anterior tissue sections. However, the deletion of TRPC3 prevented denervationinduced atrophy only in C3KO soleus. A significant up-regulation of Nox2 protein promotes interaction with TRPC3 protein in denervation-induced soleus atrophy. Finally, transgenic mice carrying a mutant superoxide dismutase 1 gene (SOD1) that mimic Amyotrophic Lateral Sclerosis disease displayed a significant decrease in fibre sizes associated with overproduction of ROS in gastrocnemius and tibialis anterior (p < 0.05) but not in soleus (p > 0.05). Nevertheless, atrophied fibres from transgenic mice failed to demonstrate a significant increase in Nox2 protein up-regulation, which suggests the SOD1-induced atrophy pathway is most likely independent to TRPC3-Nox2 complex-mediated ROS production in soleus atrophy induced by denervation. This study demonstrated the function of TRPC3 and Nox2 complex formation in cardiomyocytes atrophy and skeletal muscle atrophy, specifically in slow oxidative soleus muscle. Furthermore, this study may provide potential therapeutic targets that can delay or counteract muscle atrophy in a specific condition.

ABSTRAK

FUNGSI INTERAKSI TRANSIENT RECEPTOR POTENTIAL CANONICAL 3 - NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 2 DALAM ATROPI SEL OTOT JANTUNG DAN RANGKA

Atrofi otot berkembang setelah lama tidak aktif berpunca dari malnutrisi, penuaan, gangguan genetik, dan kanser. Kadar degradasi protein yang tinggi adalah ciri khas penyakit berkait atrofi otot yang ditunjukkan dengan peningkatan penghasilan spesies oksigen reaktif (ROS) dan pembaziran otot. Laluan isyarat kompleks dalam pengaktifan sistem degradasi protein dikawal atur oleh perantara berbeza menjadi cabaran utama bagi mencari sasaran khusus untuk merawat atrofi otot. Secara umum, kajian ini bertujuan mendedahkan komponen baru pada tapak jalan degradasi protein dalam atrofi sel otot. Bahagian pertama kajian menentukan penglibatan kompleks transient receptor potential canonical 3 (TRPC3) dan NADPH oxidase 2 (Nox2) dalam atrofi jantung kultur primer kardiomiosit tikus neonatal (NRCM) menggunakan immunostaing, pemblotan western dan pengasaian luciferase. Kepekatan tinggi adenosin trifosfat (ATP) secara signifikan mengaruh atrofi NRCMs melalui peningkatan ROS-perantara kenaikan penanda atrofi, muscle atrophy F-box (MAFbx) dan pengurangan saiz sel (p<0.05). Penyahaktifan gen TRPC3 dan Nox2 secara signifikan merencat atrofi NRCM dan penghasilan ROS disebabkan oleh ATP (p<0.05). Kajian seterusnya menunjukkan TRPC3 dan Nox2 membentuk interaksi dengan kehadiran ATP melalui pengaktifan reseptor P2Y₂ pada atrofi NRCM. Kekurangan nutrien (hipoksia, kekurangan glukosa dan asid amino) menunjukkan peningkatan signifikan tahap ATP ekstraselular mendorong pengecutan NRCM (p<0,05). Bahaqian kedua kajian dijalankan bagi membuktikan pembentukan kompleks TRPC3-Nox2 dalam persekitaran in vivo yang menggabungkan model penyakit atrofi otot rangka manusia menggunakan immunohistology dan tindak balas berantai polymerase kuantitatif (gPCR). Pembedahan penyahsaraf dilakukan pada mencit liar (WT) dan terhapus gen TRPC3 (C3KO) untuk menilai kesan kompleks TRPC3-Nox2 terhadap atrofi otot rangka yang disebabkan imobilisasi. Selepas 14 hari, penyahsaraf mendorong atrofi otot dan penghasilan berlebihan ROS signifikan pada bahagian tisu soleus, gastrocnemius dan tibialis anterior. Tetapi, penghapusan gen TRPC3 dapat mencegah atrofi disebabkan oleh penyahsaraf hanya pada soleus C3KO. Pengaktifan protein Nox2 mendorong interaksi dengan protein TRPC3 dalam atrofi soleus ternyahsaraf. Seterusnya, mencit transgenik bermutasi gen superoxide dismutase 1 (SOD1) digunakan bagi menggambarkan penyakit Amyotrophic Lateral Sclerosis menunjukkan penurunan ketara dalam saiz fiber yang disebabkan oleh pengeluaran ROS berlebihan pada gastrocnemius dan tibialis anterior (p<0.05) tetapi tidak pada soleus (p>0.05). Akan tetapi, atrofi fiber dari mencit transgenik gagal menunjukkan peningkatan signifikan dalam pengaktifan protein Nox2, menunjukkan bahawa tapak jalan atrofi disebabkan oleh mutasi SOD1 kemungkinan besar bukan melalui pembentukan kompleks TRPC3-Nox2 seperti yang ditunjukkan pada atrofi soleus ternyahsaraf. Kajian ini menjelaskan fungsi pembentukan kompleks TRPC3 dan Nox2 dalam atrofi kardiomiosit dan otot rangka, khususnya pada otot slow oxidative soleus. Selanjutnya, kajian ini memberikan potensi sasaran terapi yang dapat melambatkan atau mengatasi atrofi otot dalam kondisi tertentu.

TABLE OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	vii-xi
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	xxii
UNIVERSITI MALAYSIA SABAH	
CHAPTER 1: INTRODUCTION	1
1.1 Background of Research	1
1.2 Problem Statement	4
1.3 Research Questions	6
1.4 Hypothesis of the Study	6
1.5 Significance of the Research	7
1.6 Objectives	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 Cardiac and Skeletal Muscle Atrophy	8

	2.1.1	Sarcopenia-induced Muscle Wasting	9
	2.1.2	Cancer-associated Cachexia	11
	2.1.3	Genetic Mutation-induced Atrophy	13
2.2	Molecular I	Mechanism Underlying Muscle Wasting Disease	14
	2.2.1	Inhibition of Protein Synthesis in Muscle Atrophy	15
	2.2.2	The ATP-dependent Ubiquitin-proteasome Pathway	17
	2.2.3	The Autophagy-lysosome System	20
	2.2.4	The Cytosolic Calcium-dependent Calpain System	22
	2.2.5	The Apoptosis Protease System	24
2.3	Calcium-R0	DS Interplay in Muscle Atrophy	26
	2.3.1	The Role of Extracellular Nucleotide Adenosine Triphosphate	27
	2.3.2	Transient Receptor Potential Canonical (TRPC) Channels	30
	2.3.3	Membrane-bound Nicotinamide Adenosine Dinucleotide Phosphate (NADPH) Oxidase 2 (Nox2) Proteins	35
	2.3.4	TRPC3-Nox2 Complex Formation	38
СНА	PTER 3: M	ETHODOLOGY	42
3.1	Materials		42
	3.1.1	Animal for Cardiomyocyte and Skeletal Muscle Atrophy	43
	3.1.2	Cell Culture, Transfection and Drug Treatments	43
	3.1.3	General Chemicals for Buffer and Protein Analysis	44
	3.1.4	Chemicals for Immunocytochemistry and immunohistochemistry	45
	3.1.5	Antibodies for Protein Detection	45
	3.1.6	Kits for Gene Expression	46
3.2	The study	of TRPC3-Nox2 Interaction in Cardiomyocytes Atrophy	46

	3.2.1	Isolation and Culture of Neonatal Rat Cardiomyocytes (NRCM)	47
	3.2.2	a-actinin Staining for Cell Size Analysis	50
	3.2.3	Dihydroethidium Staining for Reactive Oxygen Species (ROS) Analysis	50
	3.2.4	a-ATP Synthase Staining for Mitochondria Staining	51
	3.2.5	Proximity Ligation Assay for TRPC3-Nox2 Complex Detection	51
	3.2.6	Cell Count and LDH assay for Cell Viability	52
	3.2.7	Western Blot Analysis for Protein Detection	53
	3.2.8	Extracellular Adenosine Triphosphate (ATP) Assay	54
	3.2.9	TRPC3-Nox2 Complex Detection in HEK293 cells	55
3.3	The study	of TRPC3-Nox2 Interaction in Skeletal Muscle Atrophy	56
	3.3.1	Denervation Surgery	56
	3.3.2	Preparation of Amyotrophic Lateral Sclerosis model using SOD1 ^{G93A} transgenic mice	58
	3.3.3	Preparation of Skeletal Muscle Tissues Sections	58
	3.3.4	Immunohistochemistry Staining of Skeletal Muscle Tissues	59
	3.3.5	Gene Expression study of skeletal muscle tissues	61
CHA CAR	APTER 4: TI	HE FUNCTION OF TRPC3-NOX2 INTERACTION IN OPHY	63
4.1	Extracellula Cardiomyo	ar Adenosine Triphosphate (ATP) Promotes Neonatal Rat cytes (NRCMs) Atrophy	64
	4.1.1	High ATP treatment reduces NRCMs size through activation of atrophy marker without causing cell death	65
	4.1.2	ATP treatment evokes reactive oxygen species (ROS) production	70
4.2	ATP Media Receptor ii	tes TRPC3-Nox2 Complex Formation through P2Y2 n NRCMs	73

ix

	4.2.1	ATP up-regulates Nox2 protein abundance	73
	4.2.2	TRPC3 and Nox2 mediate ATP-induced ROS production	75
	4.2.3	TRPC3-Nox2 coupling mediates ATP-induced NRCMs atrophy	77
	4.2.4	ATP induces interaction and formation of TRPC3-Nox2 complex	80
	4.2.5	Inhibition of P2Y2 receptor attenuates ATP-induced ROS production and atrophy	84
4.3	Nutrient D Atrophy th	eficiency-induced ATP Release Leads to Cardiomyocyte rough TRPC3-Nox2 Axis	88
	4.3.1	Nutritional deficiency promotes cell atrophy through TRPC3-Nox2 coupling	88
	4.3.2	NRCMs releases ATP in response to nutritional deficiency	92
4.4	Discussion		95
	4.4.1	Extracellular Adenosine Triphosphate (ATP) is One of the Key Modulator of Cardiomyocyte Atrophy in vitro	95
	4.4.2	ATP induces TRPC3-Nox2 Functional Coupling in Nutritional Deficiency-induced Cardiomyocyte Atrophy	96
		UNIVERSITI MALAYSIA SABAH	
CHA SKE	APTER 5: T	HE FUNCTION OF TRPC3-NOX2 INTERACTION IN SCLE ATROPHY	101
5.1	Skeletal M	uscle Denervation Model of Disuse Atrophy	101
	5.1.1	Denervation induces Skeletal Muscle Atrophy	102
	5.1.2	TRPC3 involves in Denervation-induced ROS Production in Soleus Muscle Atrophy	119
	5.1.3	Nox2 Activation in Denervation-induced Soleus Atrophy	126
	5.1.4	Denervation Increases TRPC3 Gene Expression Level during Soleus Atrophy	128
	5.1.5	Denervation-induced Soleus Atrophy Recruits TRPC3-Nox2 Complex Formation	132

5.2	Skeletal Muscle Atrophy in an Experimental Model of Amyotrophic Lateral Sclerosis (ALS) Expressing Mutant SOD1 ^{G93A} Transgene			
	5.2.1	Superoxide Dismutase 1 (SOD1) Mutation Mediates Fast Type Muscles Atrophy	135	
	5.2.2	SOD1 ^{G93A} induces Oxidative Stress in Skeletal Muscle Atrophy	142	
	5.2.3	Involvement of TRPC3 and Nox2 in SOD1 ^{G93A} -induced Skeletal Muscle Atrophy	145	
5.3	Discussion		147	
СНА	PTER 6: G	ENERAL DISCUSSION	152	
CHAPTER 7: CONCLUSIONS			157	
REFERENCES 160				
APP	ENDICES		206	
		UNIVERSITI MALAYSIA SABAH		

LIST OF TABLES

			Page
Table 5.1	:	Effect of denervation on skeletal muscle weight	106
Table 5.2	;	Effect of SOD1 mutation on skeletal muscle weight	136

LIST OF FIGURES

			Page
Figure 2.1	•	The ATP-dependent ubiquitin-proteasome pathway of protein degradation	18
Figure 2.2 :	:	The autophagy-lysosome system of protein degradation	20
Figure 2.3	:	The cytosolic calcium-dependent calpain system of protein degradation	23
Figure 2.4	;	The purinergic receptor subfamilies	28
Figure 2.5	¢	The functionally active Nox2	36
Figure 2.6	:	Schematic diagram of Nox2 complex and activated proteins that modulate enzyme activity	37
Figure 2.7	:	The involvement of TRPC3 in the activation of Nox2	40
Figure 2.8	TI	High production of ROS by TRPC3-Nox2 complex	41
Figure 3.1		Neonatal rat heart dissection	47
Figure 3.2		Surgical denervation of mouse lower hind limb	57
Figure 3.3	A Tes	Skeletal muscle tissues collection ALAYSIA SABAH	57
Figure 4.1	:	High ATP treatment induces cell shrinkage	66
Figure 4.2	:	High ATP treatment causes a decrease in the cell area	66
Figure 4.3	:	High ATP treatment induces atrophy marker, MAFbx activation	67
Figure 4.4	:	High ATP treatment causes an increase in the MAFbx up- regulation	68
Figure 4.5	;	ATP does not induce cell death as measured with LDH assay	69
Figure 4.6	;	ATP does not affect cell viability measured with cell counting assay	70
Figure 4.7	:	High ATP treatment induces ROS production	71
Figure 4.8	1	High ATP treatment causes an increase in ROS production	71

Figure 4.9	1	Treatment of ATP shows no sign of mitochondria fission	72
Figure 4.10	:	Suppression of TRPC3 and Nox2 genes attenuate Nox2 activation in response to ATP treatment	74
Figure 4.11	:	TRPC3 and Nox2 gene knockdowns attenuate Nox2- upregulation in response to ATP treatment	75
Figure 4.12	:	Suppression of TRPC3 and Nox2 genes attenuate ROS overproduction in response to ATP treatment	76
Figure 4.13	:	TRPC3 and Nox2 gene knockdowns inhibit ROS overproduction in response to ATP treatment	77
Figure 4.14	:	Suppression of TRPC3 and Nox2 genes attenuate NRCMs shrinkage in response to ATP treatment	78
Figure 4.15	:	TRPC3 and Nox2 gene knockdowns suppress NRCM shrinkage in response to ATP treatment	78
Figure 4.16	:	Suppression of TRPC3 and Nox2 genes inhibit MAFbx activation in response to ATP treatment	79
Figure 4.17		TRPC3 and Nox2 gene knockdowns suppress MAFbx up- regulation in response to ATP treatment	80
Figure 4.18	:	ATP induces TRPC3-Nox2 interaction in HEK293 cells	81
Figure 4.19		ATP increases TRPC3-Nox2 interaction in HEK293 cells	81
Figure 4.20	:	ATP treatment induces TRPC3-Nox2 formation in atrophied NRCM	83
Figure 4.21	:	ATP-induced NRCMs atrophy increases TRPC3-Nox2 interaction	84
Figure 4.22	:	Inhibition of $P2Y_2$ receptors attenuates ATP-induced NRCMs atrophy	85
Figure 4.23	:	Inhibition of $P2Y_2$ receptors suppresses ATP-induced NRCMs atrophy	86
Figure 4.24	:	Inhibition of $P2Y_2$ receptors suppresses ATP-induced ROS overproduction in NRCMs	87
Figure 4.25	Ŀ	Inhibition of $P2Y_2$ receptors attenuates ATP-induced ROS overproduction in NRCMs	87
Figure 4.26	:	Suppression of TRPC3 and Nox2 genes attenuate glucose starvation-induced NRCM shrinkage	89

Figure 4.27	:	TRPC3 and Nox2 gene knockdowns suppress NRCM shrinkage in response to glucose starvation	89
Figure 4.28	:	Suppression of TRPC3 and Nox2 genes attenuate hypoxia- induced NRCM shrinkage	90
Figure 4.29	:	TRPC3 and Nox2 gene knockdowns suppress NRCM shrinkage in response to a hypoxic condition	90
Figure 4.30	:	Suppression of TRPC3 and Nox2 genes attenuate amino acids deprivation-induced NRCM shrinkage	91
Figure 4.31	:	TRPC3 and Nox2 gene knockdowns suppress NRCM shrinkage in response to amino acids deprivation	92
Figure 4.32	:	TRPC3 and Nox2 gene knockdowns attenuate glucose starvation-induced ATP release	93
Figure 4.33	:	TRPC3 and Nox2 gene knockdowns attenuate hypoxia- induced ATP release	93
Figure 4.34	:	TRPC3 and Nox2 gene knockdowns attenuate amino acid deprivation-induced ATP release	94
Figure 4.35		Schematic diagram of the proposed mechanism mediating cardiomyocytes atrophy	100
Figure 5.1		Deletion of TRPC3 attenuates soleus muscle wasting in response to denervation	103
Figure 5.2	:	Deletion of TRPC3 sustains gastrocnemius muscle wasting in response to denervation	104
Figure 5.3	:	Deletion of TRPC3 sustains <i>tibialis anterior</i> muscle wasting in response to denervation	105
Figure 5.4	:	Deletion of TRPC3 suppresses reduction of soleus fibre in response to denervation	108
Figure 5.5	:	TRPC3 deletion recovers fibre loss in denervated soleus	108
Figure 5.6	:	Denervation induces accumulation of smaller fibres in WT soleus	109
Figure 5.7	:	Deletion of TRPC3 attenuates the accumulation of smaller fibres in denervated soleus	109
Figure 5.8	:	Deletion of TRPC3 suppresses smaller fibres accumulation in response to denervation	110

Figure 5.9	:	Deletion of TRPC3 retains reduction of gastrocnemius fibre in response to denervation	111
Figure 5.10	:	Fibre loss sustains in denervated gastrocnemius with TRPC3 gene deletion	112
Figure 5.11	:	Denervation induces accumulation of smaller fibres in WT gastrocnemius	112
Figure 5.12	÷	Deletion of TRPC3 sustains the accumulation of smaller fibres in denervated gastrocnemius	113
Figure 5.13	:	Smaller fibre distribution is sustained in response to TRPC3 deletion in denervated gastrocnemius	113
Figure 5.14	:	Deletion of TRPC3 retains reduction of <i>tibialis anterior</i> fibre in response to denervation	115
Figure 5.15	:	Fibre loss sustains in denervated <i>tibialis anterior</i> with TRPC3 gene deletion	115
Figure 5.16	:	Denervation induces accumulation of smaller fibres in WT <i>tibialis anterior</i>	116
Figure 5.17		Deletion of TRPC3 sustains the accumulation of smaller fibres in denervated <i>tibialis anterior</i>	116
Figure 5.18		Smaller fibre distribution is sustained in response to TRPC3 deletion in denervated <i>tibialis anterior</i>	117
Figure 5.19	•	Absence of TRPC3 inhibits denervation-induced ROS overproduction in soleus	120
Figure 5.20	:	TRPC3 deletion attenuates ROS overproduction in denervated soleus	121
Figure 5.21	:	No change of ROS overproduction in response to TRPC3 deletion in gastrocnemius	122
Figure 5.22	:	TRPC3 deletion retains ROS overproduction in denervated gastrocnemius	123
Figure 5.23	:	No change of ROS overproduction in response to TRPC3 deletion in <i>tibialis anterior</i>	124
Figure 5.24	:	TRPC3 deletion retains ROS overproduction in denervated tibialis anterior	125
Figure 5.25	:	Denervation-induced Nox2 activation attenuates in the absence of TRPC3 in soleus	127

Figure 5.26	:	Denervation induces TRPC3 and MURF-1 gene expressions in WT soleus	130
Figure 5.27	:	Denervation induces TRPC3-Nox2 interaction in soleus	133
Figure 5.28	*	Increase interaction of TRPC3 and Nox2 in denervated soleus	134
Figure 5.29	:	SOD1 gene mutation causes muscle loss in fast type muscles	137
Figure 5.30	:	SOD1 gene mutation induces fibre loss in fast type muscle	138
Figure 5.31	;	SOD1 gene mutation-induced fibre loss in fast type muscle	139
Figure 5.32	:	SOD1 mutation failed to induce the accumulation of smaller fibres in soleus	140
Figure 5.33	:	SOD1 mutation promotes the accumulation of smaller fibres in gastrocnemius	140
Figure 5.34	i S	SOD1 mutation causes the accumulation of smaller fibres in <i>tibialis anterior</i>	141
Figure 5.35	:	Mutation of SOD1 gene promotes ROS overproduction in fast type muscle	143
Figure 5.36		Increase of ROS production in fast type muscle carrying mutant SOD1 gene	144
Figure 5.37	:	SOD1 mutation-induced fast type atrophy failed to promote Nox2 activation	145
Figure 5.38	:	SOD1 mutation did not increase TRPC3 gene expression	147
Figure 5.39	:	Schematic diagram of the proposed mechanism mediating soleus atrophy	151

LIST OF ABBREVIATIONS

β-ΜΕ	-	β-mercaptoethanol
μCL	-	Ubiquitous µ-calpain
ACE	-	Angiotensin-converting enzyme
ActRIIB	-	Activin A via activin A receptor type IIB
ADP	-	Adenosine diphosphate
AKT	-	Protein kinase B
ALS	-	Amyotrophic lateral sclerosis
AMP	-	Adenosine monophosphate
АМРК	-	Adenosine monophosphate-activated protein kinase
AngII	-	Angiotensin II
Apaf-1	-	Apoptosis protease-activating factor-1
ARB	-	Angiotensin II receptor blockers
Atg	-	Autophagy-related protein
ATP	-	Adenosine triphosphate
BAX	-	Bcl-2-associated X
Bcl-2	-	B-cell lymphoma 2
BSA	50	Bovine serine albumin
СЗКО	1	TRPC3 knock out
Ca ²⁺	-	Calcium
CaMK	-	Ca ²⁺ /calmodulin-dependent kinase
CAMP	-	Cyclic adenosine monophosphate
CAPS	-5	N-cyclohexyl-3-aminopropanesulfonic acid
cDNA	-	Complementary deoxyribonucleic acid
cGMP	-	cyclic guanosine monophosphate
CPNS1	-	Calpain small subunit 1
CSA	-	Cross-section area
Cu, Zn-SOD		Copper-zinc superoxide dismutase
DAG	-	Diacylglycerol
DAMPS	-	Danger-associated molecular patterns
DAPC	-	Dystrophin-associated protein complex
DAPI	-	4',6-diamidino-2-phenylindole
DEPTOR	-	DEP domain-containing mTOR-interacting protein
DHE	-	Dihydroethidium
DHPR	-	Dihydropyridine receptors
DMD	-	Duchenne muscular dystrophy
DMEM	-	Dulbecco's Modified Eagle Media
DNA	-	Deoxyribonucleic acid
DOX	-	Doxorubicin
DUOX	-	Dual oxidase

xviii

E214K	- 14-kDa ubiquitin-conjugating E2 enzyme
ECL	- enhanced chemiluminescence
EDTA	- Ethylenediaminetetraacetic acid
EGFP	- Enhanced green fluorescent protein
eNOS	- Endothelial nitric oxide synthase
ERK1/2	- Extracellular signal-regulated kinase 1/2
ERR	- Estrogen-related receptor
FBS	- Fetal bovine serum
Fn14	- Fibroblast growth inducible 14
FoxO	- Forkhead box protein
FUS	- Fused in sarcoma (protein)
GAPDH	- Glyceraldehyde 3-phosphate dehydrogenase
GEF-H1	- Guanine nucleotide exchange factor
GFP	- Green fluorescent protein
GPCR	- G protein-coupled receptor
H ₂ O ₂	- Hydrogen peroxide
HIF1a	- Hypoxia-inducible factor 1-alpha
HRP	- Horseradish peroxidase
IEGs	- Immediate-early genes
IFN-γ	- Interferon gamma
IGF1	- Insulin-like growth factor 1
IgG	- Immunoglobulin G
IL-1	- Interleukin 1
iNOS	- inducible nitric oxide synthase
IP ₃	- Inositol triphosphate
IP₃R	- Inositol triphosphate receptor MALAYSIA SABAH
IRS1	- Insulin receptor substrate 1
ΙκΒ	- Inhibitor of κB
K +	- Potassium
LDH	- Lactate dehydrogenase
LVAD	- Left ventricular assist device
MAFbx	- Muscle atrophy F box
МАРК	- Mitogen-activated protein kinase
mCL	- Ubiquitous m-calpain
MG29	- Mitsugumin 29
MgCl	- Magnesium chloride
MLST8	- Mammalian lethal with SEC13 protein 8
Mn-SOD	- Manganese superoxide dismutase
mRNA	- Messenger ribonucleic acid
mTOR	- mammalian target of rapamycin
MuRF1	- Muscle Ring Finger 1
MyoD	- Myoblast determination protein 1

Na ⁺	-	Sodium
NaCl	-	Sodium chloride
NADPH	-	Nicotinamide adenine dinucleotide phosphate
NEMO	-	NF-kappa-B essential modulator
NFAT	-	Nuclear factor of activated T
NF-κB	н	Nuclear factor κB
NO	-	Nitric oxide
Nox	-	Nicotinamide adenine dinucleotide phosphate oxidase
NRCF	-	Neonatal rat fibroblast
NRCM	-	Neonatal rat cardiomyocyte
NRF	-	Nuclear receptor factor
Nrf2	-	Nuclear factor erythroid 2-related factor
NRROS	-	Negative Regulator of Reactive Oxygen Species
OCT	-	Optimal Cutting Temperature
P120	-	Postnatal 120 days
PBS	-	Phosphate-buffered saline
PDE	-	Phosphodiesterase
PFA	-	Paraformaldehyde
PGC1a	-	Peroxisome-proliferator-activated receptor y coactivator 1 a
PI3K	-	Phosphoinositide 3-kinase
PIP ₂		Phosphatidylinositol-4, 5-bisphosphate
PKA	-	Protein kinase A
РКС	-	Protein kinase C
PLA	-	Proximity ligation assay
PLC	Ð	Phospholipase C
PPAR	8	Peroxisome-proliferator-activated receptor A SABAH
PRAS	-	Proline-rich Akt1 substrate 1
PVDF	-	Polyvinylidene difluoride
Pyr3	-	Pyrazole compound
Rac	-	Rho family of GTPase enzyme
Raptor	-	Regulatory-associated protein of mTOR
RNS	-	Reactive nitrogen species
ROCE	-	Receptor-operated Ca ²⁺ entry
ROS	-	Reactive oxygen species
RT-qPCR	-	Real-time quantitative Polymerase Chain Reaction
RyR	-	Ryanodine receptor
SDS-PAGE	-	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SEM	-	Standard error
SERCA	-	Sarco/endoplasmic reticulum ATPase
SH3	-	Src-homology 3
siRNA	-	short interfering ribonucleic acid
SMAD	-	Small Mothers Against Decapentaplegic

SOCE	-	Store-operated Ca ²⁺ entry
SOD	-	Superoxide dismutase
SOD1 ^{G93A}	-	SOD1 gene point mutation located at position 93, glycine to alanine
Src	-	Proto-oncogene tyrosine-protein kinase
TBST	-	Tris-buffered saline, 0.1% Tween 20
TDP43	-	TAR DNA binding protein 43
Tfam	-	Mitochondrial transcription factor A
TGFβ	-	Transforming growth factor β
TNFa	-	Tumour necrosis factor a
TNFR1	-	Tumour necrosis factor receptor 1
TRAF6	-	TNF-associated factor 6
TRAIL	-	TNF-related apoptosis-inducing ligand
TRAIL-R1	-	TNF-related apoptosis-inducing ligand receptor 1
TRAIL-R2	-	TNF-related apoptosis-inducing ligand receptor 2
TRIM32	-	Tripartite motif-containing protein 32
Tris-HCI	-	Tris hydrochloride
TRPC	-	Transient receptor potential canonical
TWEAK	-	TNF-like weak inducer of apoptosis
ULK1	-	Unc-51 like autophagy activating kinase 1
VEGF	37	Vascular endothelial growth factor
WGA	+	Wheat germ agglutinin
WT	-	Wild type
xo	-	Xanthine oxide
		UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

			Page
Appendix A	:	Experimental design for function of TRPC3-Nox2 interaction in cardiomyocytes atrophy	206
Appendix B	:	Experimental design for function of TRPC3-Nox2 interaction in skeletal muscle atrophy	207
Appendix C	:	Animal ethic approval by National Ethics Committee of National Institutes of Natural Sciences, Okazaki Japan	208
Appendix D	:	Neonatal rat cardiomyocytes (NRCMs) collection protocol	210
Appendix E	:	Preparation of short interfering RNA (siRNA) transfection mixture	211
Appendix F	;	Bio-Rad DC protein assay protocol	212
Appendix G	://	Preparation of electrophoresis gel for SDS-PAGE	213
Appendix H	Ĭ	Preparation of HEK293 cells transfection mixture	214
Appendix I	ŀ	Preparation of RAS buffer for co-immunoprecipitation	215
Appendix J		Example of RNA concentration calculation for cDNA preparation	216
Appendix K	:	Example of cDNA Master Mix preparation for qPCR	217
Appendix L	:	List of primers used in RT-qPCR	218
Appendix M	2	Gene knockdown efficiency	219
Appendix N	:	Full-length blots for co-immunoprecipitation	220
Appendix O	;	Cardiomyocytes atrophy induced by nutritional deficiency is attenuated by inhibition of $P2Y_2$ receptor	221
Appendix P	:	Publications	222
Appendix Q	:	Proceedings	224
Appendix R	:	Conference	225

CHAPTER 1

INTRODUCTION

1.1 Background of Research

The muscular system is an organ system that enables humans to move, maintain posture, and circulate blood throughout the body. The system consists mainly of muscle cells or myocytes, a highly specialised cell which makes up the muscle tissue that produces tension for the generation of force. Cardiac and skeletal muscles are two important muscle cells that share many physiological similarities and are the major cell that made up the heart and musculoskeletal system. The primary function of both types of cell is a contraction which is triggered by a typical rush of ions across the sarcolemma. The action potential then activates muscle contraction by increasing the calcium (Ca^{2+}) concentration inside the cytosol (Stehle *et al.,* 2009). Action potential involves an influx of both sodium (Na^+) and Ca^{2+} ions.

Transient receptor potential canonical (TRPC) channels are widely recognised as a critical Ca²⁺ entry regulator in excitation-contraction coupling in muscle cells (Falcon *et al.*, 2019; Numaga-Tomita *et al.*, 2019). TRPC channel mediates the increase of intracellular Ca²⁺ concentration, which is induced following physical and chemical stimulations by directly conducting Ca²⁺ entry or prompting Ca²⁺ entry secondary to membrane depolarisation (Wu *et al.*, 2010). The