KESAN GEMPA BUMI KE ATAS KESTABILAN CERUN GRAVEL PINOUSUK DI KAWASAN TANAH TINGGI MESILOU, KUNDASANG, SABAH

HENNIE FITRIA WULANDARY BINTI SOEHADY ERFEN

TESIS INI DIKEMUKAKAN UNTUK MEMENUHI SYARAT MEMPEROLEHI IJAZAH DOKTOR FALSAFAH

FAKULTI SAINS DAN SUMBER ALAM UNIVERSITI MALAYSIA SABAH 2020

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: KESAN GEMPA BUMI KE ATAS KESTABILAN CERUN GRAVEL PINOUSUK DI KAWASAN TANAH TINGGI MESILOU, KUNDASANG, SABAH

IJAZAH: DOKTOR FALSAFAH (GEOLOGI)

Saya **HENNIE FITRIA WULANDARY SOEHADY ERFEN**, Sesi **2015-2020**, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

HENNIE FITRIA WULANDARY BINTI SOEHADY ERFEN DS1511005T

(Tandatangan Pustakawan)

Tarikh : 6 Februari 2020

(Prof. Dr. Baba Musta) Penyelia

PENGAKUAN

Saya mengaku bahawa Tesis Doktor Falsafah ini merupakan hasil usaha dan kerja saya sendiri melainkan petikan dan ringkasan yang setiap satunya saya telah jelaskan sumbernya.

6 November 2019

HENNIE FITRIA WULANDARY BINTI SOEHADY ERFEN DS1511005T

PENGESAHAN

- NAMA : HENNIE FITRIA WULANDARY BINTI SOEHADY ERFEN
- NO. MATRIKS : DS1511005T
- TAJUK:KESAN GEMPA BUMI KE ATAS KESTABILAN
CERUN GRAVEL PINOUSUK DI KAWASAN
TANAH TINGGI MESILOU, KUNDASANG, SABAH
- IJAZAH : DOKTOR FALSAFAH (GEOLOGI)
- TARIKH VIVA:6 NOVEMBER 2019

DISAHKAN OLEH;

PENGHARGAAN

Alhamdulillah, dengan penuh rasa kesyukuran dipanjatkan kepada Yang Maha Esa dengan keizinanNya tesis ini dapat disiapkan. Semua yang baik datang daripadaNya.

Setinggi-tinggi perhargaan dan terima kasih diucapkan kepada penyelia hebat yang sangat saya hormati, Prof. Dr. Baba Musta, akan bimbingan dan ilmu bermanfaat yang diberikan di sepanjang tempoh kajian dan penulisan tesis ini. Terima kasih juga diberikan kepada para pemeriksa dalaman dan luaran untuk komen yang baik bagi tujuan penambahbaikan tesis ini.

Tidak dilupai untuk semua para pensyarah Program Geologi: Prof. Dr. Sanudin Hj. Tahir, Prof. Dr. Shariff AK Omang, Prof. Dr. Felix Tongkul, Prof. Madya Dr. Rodeano Roslee, Dr. Ismail Abd. Rahim, Dr. Zulherry Isnain serta rakan seperjuangan Dr. Junaidi Asis dan En. Mohamed Ali Yusof bin Husin.

Penghargaan tertinggi untuk doa ibu bapa tersayang: Capt. Hj. Soehady Erfen Athmo Haris dan Hjh. Norliyen Abd. Rahman, dan kesabaran anak semata wayang; Hestie Dwi Adiny binti Emran, yang sentiasa di sisi di sepanjang perjuangan ini. Untuk suami, Konst. Emran bin Raga, sesungguhnya dalam setiap ujian yang ditempuh, pasti ada sinar yang menanti di hujungnya, walaupun ujian itu terlalu melukakan.

Ribuan terima kasih juga diucapkan kepada Kementerian Pendidikan Tinggi atas biasiswa MyBrain15 yang diberikan, serta Universiti Malaysia Sabah kerana memberikan ruang untuk melanjutkan pengajian dan bantuan geran penyelidikan SBK0276-2016.

Untuk semua yang membantu secara langsung atau tidak: Dr. Darmesah Gabda, Mizan Syazwani Ahmad, Ahmad Zarif Kaldan, Nur Asmira Irwan, Mohd Shahrul Akmal Jamaludin, Mohd Nor Azmi Mohamad, para pensyarah FSSA, para kakitangan Pusat Pengajian Pascasiswazah UMS terutamanya Pn. Zaiahsheila Sidek, para pembantu makmal Program Geologi, rakan-rakan terutamanya Dr. Kuo Chun-Hsiang di NCREE dan Prof. Chang Wen-Yen dari National Dong Hwa University (Taiwan) dan semua yang sentiasa memberikan nasihat dan dorongan di kala perjalanan PhD ini terlalu melelahkan, TERIMA KASIH.

'Kejayaan dan kebahagiaan akan hadir jika kita sabar menghadapi ujian dan rintangan yang diberikan'

Hennie Fitria Wulandary Soehady Erfen 6 November 2019

ABSTRAK

Kajian ini terletak di kawasan Mesilou, Kundasang pada ketinggian 1400 meter hingga 2200 meter dari aras laut. Fokus kajian adalah cerun Unit Gravel Pinousuk berusia Pleistosen Akhir. Penentuan ragam kegagalan cerun dibuat menggunakan kaedah meja gegar bagi simulasi gempa bumi terhadap bahan tanah dan kaedah komputasi perisian 'Rocfall' untuk bahan batuan cerun. Lima cerun dipilih dan dijalankan analisis sifat kejuruteraan, analisis pembelauan sinar-X untuk mineralogi tanah dan analisis kestabilan cerun menggunakan kaedah hirisan biasa. Hasil cerapan lapangan mendapati terdapat tiga Unit Gravel Pinousuk iaitu Unit Batuan Bercampur iaitu campuran batuan ultramafik dan batu pasir, Unit Dominasi Ultramafik dan Unit Dominasi Granodiorit. Analisis petrografi menunjukkan batuan ultramafik adalah jenis Iherzolit, batuan granodiorit mengandungi mineral plagioklas feldspar yang dicirikan oleh kembaran albit, penzonan dan bersaiz kasar, manakala batu pasir Formasi Crocker adalah jenis greiwak litik. Analisis pembelauan sinar-X menunjukkan kehadiran antigorit (A), maghemit (Mg) dan hematit (H) bagi sampel C1, C2 dan C3, manakala dominasi kuarza (Q), montmorilonit (M) dan ilit (I) bagi sampel C4 dan C5. Faktor keselamatan tertinggi (FOS) adalah pada cerun C2 dengan nilai 2.63 dan diikuti oleh cerun C4 bernilai 2.23. FOS bagi cerun C1, C3 dan C5 berjulat antara 1.15 hingga 1.53. Cerun C3 menunjukkan kebarangkalian kegagalan (POF) antara 15% hingga 20%. Cerun C1 dan C5 mempunyai POF antara 5% hingga 10%, manakala cerun C2 dan C4 mempunyai POF di bawah 5%. Kestabilan cerun kajian ini dipengaruhi oleh indeks keplastikan (3.28% - 30.48), kandungan kelembapan (23.09% - 61.74%), kejelekitan (1.5 kN - 2.8 kN), sudut geseran (16° - 22.5°) dan sudut muka cerun (55° - 82°). Hasil analisis meja gegar menunjukkan jarak pergerakan bahan cerun akan semakin menjauh dengan pertambahan tempoh masa gegaran gempa bumi dan peningkatan sudut cerun. Cerun-cerun kajian memerlukan 28 saat hingga 110 saat untuk jarak pergerakan tanah daripada 1.6 meter hingga 22.1 meter dan 0.2 meter hingga 5.8 meter untuk jarak pergerakan batuan cerun. Lokasi struktur penghalang yang dicadangkan adalah di antara 1 meter hingga 4 meter dari kaki cerun dengan keupayaan menahan kekuatan tenaga kinetik antara 100 J hingga 1600 J. Hasil analisis simulasi menunjukkan kelima-lima cerun kajian adalah mendatangkan impak bahaya kepada kawasan penempatan di Kg. Mesilou tetapi 60% hingga 87% daripada bilangan responden masih ingin menetap di kawasan tersebut. Walau bagaimanapun, 74% hingga 84% responden adalah bersedia untuk berpindah sekiranya diberikan petempatan baharu yang bebas risiko bencana.

ABSTRACT

EFFECT OF EARTHQUAKE ON SLOPE STABILITY OF PINOUSUK GRAVEL ON HIGHLAND AREA OF MESILOU, KUNDASANG, SABAH

The research is located at Mesilou, Kundasang area at 1400 meters to 2000 meters from the sea level. It focuses on slopes of Late Pleistocene Pinousuk Gravel Unit. The determination of slope failure behavior is conducted using shaking table method for earthquake simulation on soil material, and Rocfall software computational method for rock material of slopes. Five slopes were choses and conducted of engineering properties analysis, x-ray diffraction analysis for soil mineralogy and slope stability analysis using ordinary slicing method. Field observation shows three Units of Pinousuk Gravel namely Mixed Rocks Unit consists of ultramafic rocks and sandstones, Ultramafic Dominant Unit and Granodiorite Dominant Unit. Petrography analysis shows Iherzolite type for ultramafic rocks, granodiorite which consists of albite twinning, zoning and coarse-sized plagioclase feldspar, while lithic greywacke type for Crocker Formation sandstones. X-ray diffraction analysis shows the appearance of antigorite (A), maghemite (Mg) and hematite (H) for C1, C2 and C3, while domination of quartz (O), montmorillonite (M) and illite (I) in C4 and C5. Highest safety factor (FOS) is shown by C2 with 2.63, followed by C4 with 2.23. Safety factor for C1, C3 and C5 are range from 1.15 to 1.53. C3 has failure potential (POF) between 15% to 20%. C1 and C5 with POF are between 5% to 10%, whereas C2 and C4 have POF less than 5%. Research slope stability is influenced by plasticity index (3.28% - 30.48%), moisture content (23.09% - 61.74%), cohesion (1.5 kN - 2.8 kN), friction angle (16° - 22.5°) and slope face gradient (55° - 82°). Shaking table analysis shows the run-out distance of slope's materials will be farther with the increase of earthquake shaking's duration and slope angle. The slopes need 28 seconds to 110 seconds for soil runout distance from 1.6 meter to 22.1 meter and rock endpoints from 0.2 meter to 5.8 meter. The location of the proposed barriers are range from 1 meter to 4 meter from the toe of the slope with ability to withstand strength of kinetic energy from 100 J to 1600 J. Simulation analysis shows that all slopes have detrimental impact of the settlement area of Kq. Mesilou but 60% to 87% of respondents are still staying in the area. However, 74% to 84% of respondents are willingly to relocate if given new disaster-free settlements.

ISI KANDUNGAN

Halaman

ТАЈИК		i
PENGAK	UAN	ii
PENGES/	AHAN	iii
PENGHA	RGAAN	iv
ABSTRA	٢	v
ABSTRA	CT	vi
ISI KANI	DUNGAN	vii
SENARA	I JADUAL	xi
SENARA	I RAJAH	xiii
SENARA	FOTO	xviii
SENARA	FOTOMIKRO	xxi
SENARA		xxii
BAB 1:	PENGENALAN UNIVERSITI MALAYSIA SABAH	
1.1	Pendahuluan	1
1.2	Gempa Bumi Ranau 2015	4
1.3	Geologi Am Kawasan Kajian	6
1.4	Pernyataan Masalah Kajian	7
1.5	Objektif Kajian	9
1.6	Hasil Yang Diharapkan	9
1.7	Limitasi Kajian	9
BAB 2:	ULASAN LITERATUR	
2.1	Pendahuluan	10
2.2	Latarbelakang Gravel Pinousuk	10
2.3	Bencana Gempa Bumi di Sabah	11
2.4	Kesan Gegaran Gempa Bumi ke atas Kestabilan Cerun	15
2.5	Simulasi Gegaran Gempa Bumi	18
2.6	Simulasi Kestabilan Cerun	20
2.7	Pelan Persediaan dan Kesedaran Menghadapi Gempa Bumi	21

BAB 3:	METODOLOGI KAJIAN	
3.1	Pendahuluan	25
3.2	Kerjalapangan dan Persampelan	25
3.3	Pemilihan Cerun Kajian	26
	3.3.1 Cerun 1 (C1)	27
	3.3.2 Cerun 2 (C2)	29
	3.3.3 Cerun 3 (C3)	31
	3.3.4 Cerun 4 (C4)	32
	3.3.5 Cerun 5 (C5)	34
3.4	Analisis Makmal	36
	3.4.1 Analisis Kandungan Kelembapan, Bahan Organik dan pH Tanah	36
	3.4.2 Analisis Taburan Saiz Butiran	36
	3.4.3 Had-had Atterberg	37
	a. Had Plastik (PL)	37
	b. Had Cecair (LL)	37
	c. Indeks Keplastikan (PI)	38
	3.4.4 Analisis Ujian Ricih Terus	39
	3.4.5 Analisis Pembelauan Sinar-X	40
AS)	3.4.6 Analisis Petrografi	40
13/	3.4.7 Analisis Meja Gegar	40
ET .	a. Simulasi Gegaran Gempa Bumi	41
R V	b. Penghasilan Bentuk Gelombang Simulasi	43
14	c. Kemasukan Data Pergerakan Permukaan(<i>Input</i> <i>Motion</i>)	48
- E	d. Simulasi Gegaran ke atas Model Cerun A SARA -	49
	e. Limitasi Analisis Meja Gegar	50
3.5	Analisis Data	51
	3.5.1 Analisis Kestabilan Cerun	51
	3.5.2 Analisis Komputasi Perisian 'Rocfall'	53
	3.5.3 Kajian Soal Selidik Responden	54
3.6	Penulisan Tesis	56
BAB 4:	PEMETAAN UNIT GRAVEL PINOUSUK	
4.1	Pendahuluan	57
4.2	Taburan Endapan Gravel Pinousuk Kawasan Kajian	58
	4.2.1 Unit Batuan Bercampur	60
	4.2.2 Unit Dominan Ultramafik	62
	4.2.3 Unit Dominan Granodiorit	64
	4.2.4 Petrografi Batuan Gravel Pinousuk	65
4.3	Kesimpulan	68

BAB 5:	SIFAT KEJURUTERAAN DAN MINERALOGI	
	MATRIKS CERUN GRAVEL PINOUSUK	
5.1	Pendahuluan	69
5.2	Pengelasan Cerun Gravel Pinousuk Kajian	69
5.3	Hasil Analisis Makmal	70
	5.3.1 Sifat Fiziko-Kimia Tanah	70
	5.3.2 Analisis Had-had Atterberg	72
	5.2.3 Analisis Pembelauan Sinar-X (XRD)	73
	5.3.4 Analisis Ujian Ricih Terus	76
5.4	Analisis Kestabilan Cerun Gravel Pinousuk	78
	5.4.1 Faktor Keselamatan Cerun Gravel Pinousuk	79
	5.4.2 Kebarangkalian Kegagalan Cerun Gravel Pinousuk	83
BAB 6:	SIMULASI RAGAM KEGAGALAN MODEL CERUN	
6.1	Pendahuluan	84
6.2	Analisis Simulasi Gegaran Gempa Bumi ke atas Model Cerun	84
	6.2.1 Model Cerun Pasir Kering	85
	6.2.2 Model Cerun Lempung Kering	86
15	a. Tafsiran Kegagalan Model Cerun Lempung	88
A	6.2.3 Model Cerun Campuran Pasir dan Lempung (Sudut Cerun 30°)	90
E	a. Tafsiran Kegagalan Model Cerun Campuran	92
	6.2.4 Model Cerup Compuren Pasir dan Lompung (Sudut	03
13	Corun 35°)	33
	a Tafeiran Kegagalan Model Cerun Campuran	96
	Bersudut 35°	50
6.3	Perkaitan Hasil Analisis Meia Gegar dengan Bahan Cerun	97
	Kaijan	
6.4	Analisis Perisian 'Rocfall	100
	6.4.1 Analisis Komputasi Cerun Kajian	100
	a. Cerun 1 (C1)	101
	b. Cerun 2 (C2)	101
	c. Cerun 3 (C3)	101
	d. Cerun 4 (C4)	101
	e. Cerun 5 (C5)	101
	6.4.2 Cadangan Lokasi Struktur Penghalang	108
	a. Cerun 1 (C1)	108
	b. Cerun 2 (C2)	108
	c. Cerun 3 (C3)	110
	d. Cerun 4 (C4)	111
	e. Cerun 5 (C5)	112
	-	

BAB 7: PERBINCANGAN

7.1	Pendahuluan	114
7.2	Taburan Unit Gravel Pinousuk	114
7.3	Pengaruh Sifat Kejuruteraan Bahan Cerun ke atas Kestabilan Cerun Gravel Pinousuk	116
	7.3.1 Langkah Mitigasi Kegagalan Cerun Gravel Pinousuk	120
7.4	Kesan Gegaran Gempa Bumi Simulasi ke atas Kestabilan	121
	Cerun Gravel Pinousuk	
	a. Cerun 1 (C1)	124
	b. Cerun 2 (C2)	125
	c. Cerun 3 (C3)	126
	d. Cerun 4 (C4)	127
	e. Cerun 5 (C5)	128
	f. Kesimpulan	129
7.5	Impak Simulasi Kegagalan Cerun kepada Masyarakat	130
BAB 8:	KESIMPULAN DAN CADANGAN	
8.1	Pendahuluan	132
8.2	Taburan Unit Gravel Pinousuk	132
8.3	Sifat Kejuruteraan dan Mineralogi Bahan Cerun Gravel	133
13/	Pinousuk	
	- mouse in the second	
8.4	Analisis Kestabilan Cerun Gravel Pinousuk	134
8.4 8.5	Analisis Kestabilan Cerun Gravel Pinousuk Analisis Ragam Kegagalan Cerun dan Lokasi Struktur	134 135
8.4 8.5	Analisis Kestabilan Cerun Gravel Pinousuk Analisis Ragam Kegagalan Cerun dan Lokasi Struktur Penghalang	134 135
8.4 8.5 8.6	Analisis Kestabilan Cerun Gravel Pinousuk Analisis Ragam Kegagalan Cerun dan Lokasi Struktur Penghalang Impak kepada Masyarakat Kg. Mesilou, Kundasang	134 135 136
8.4 8.5 8.6 8.7	Analisis Kestabilan Cerun Gravel Pinousuk Analisis Ragam Kegagalan Cerun dan Lokasi Struktur Penghalang Impak kepada Masyarakat Kg. Mesilou, Kundasang Cadangan	134 135 136 136
8.4 8.5 8.6 8.7	Analisis Kestabilan Cerun Gravel Pinousuk Analisis Ragam Kegagalan Cerun dan Lokasi Struktur Penghalang Impak kepada Masyarakat Kg. Mesilou, Kundasang Cadangan RUJUKAN	134 135 136 136 137

SENARAI JADUAL

		Halar	nan
Jadual 1.1	:	Pemerhatian akibat gegaran gempa bumi berdasarkan skala intensiti Mercalli dan skala magnitud Richter	2
Jadual 3.1	:	Nisbah antara klasta dan matriks bagi cerun kajian	26
Jadual 3.2	:	Pencirian tanah berdasarkan indeks keplastikan	39
Jadual 3.3	:	Nilai <i>Cronbach's alpha</i> bagi menguji kebergantungan item	55
Jadual 3.4	:	Ringkasan metodologi yang digunakan bagi mencapai objektif yang telah ditetapkan dalam kajian ini	56
Jadual 5.1	:	Perkaitan antara butiran halus dan jenis endapan tilloid	69
Jadual 5.2	:	Pencirian tanah cerun kajian	70
Jadual 5.3	:	Hasil analisis sifat fiziko-kimia bagi sampel tanah kajian	71
Jadual 5.4		Hasil analisis had-had Atterberg sampel tanah kajian	73
Jadual 5. <mark>5</mark>	9 %	Kandungan mineral yang hadir dalam sampel tanah kajian	76
Jadual 5.6		Hasil analisis ujian ricih terus sampel tanah cerun kajian	77
Jadual 5.7	н н	Kepentingan faktor keselamatan (FOS) untuk kestabilan struktur	79
Jadual 5.8	:	Nilai faktor keselamatan (FOS) untuk cerun kajian	82
Jadual 5.9	:	Perkaitan antara faktor keselamatan (FOS) cerun dengan peratusan kebarangkalian kegagalan (POF) yang boleh berlaku	83
Jadual 5.10	:	Kebarangkalian kegagalan (POF) cerun kajian berdasarkan nilai faktor keselamatan (FOS)	83
Jadual 6.1	:	Anggaran anjakan jatuhan permukaan kegagalan cerun kajian berdasarkan simulasi gempa bumi pada model cerun	89
Jadual 6.2	:	Anggaran jarak pergerakan bahan cerun kajian berdasarkan simulasi gempa bumi pada model cerun	89
Jadual 6.3	:	Anjakan jatuhan dan jarak pergerakan bahan cerun bersudut 30° selepas gegaran pertama dan kedua	92

Jadual 6.4	:	Anggaran masa yang diperlukan bagi kegagalan cerun kajian dengan sudut cerun 30°	92
Jadual 6.5	:	Anggaran masa yang diperlukan bagi menyebabkan anjakan jatuhan dan pergerakan bahan bagi cerun kajian bersudut 35°	96
Jadual 6.6	:	Anjakan jatuhan dan jarak pergerakan bahan cerun bersudut 35° selepas gegaran pertama dan kedua	97
Jadual 6.7	:	Anggaran anjakan jatuhan bagi cerun di kawasan kajian	98
Jadual 6.8	:	Anggaran jarak pergerakan bahan cerun di kawasan kajian	98
Jadual 6.9	:	Anggaran masa yang diambil untuk jatuhan dan pergerakan bahan cerun di kawasan kajian	98
Jadual 6.10	: 	Kegagalan cerun kajian berdasarkan peratusan pasir dan lempung yang hadir sebagai bahan cerun pada sudut 30° dan 35° yang dikenakan dua set gegaran simulasi gempa bumi	99
Jadual 6.11		Ringkasan simulasi jatuhan batuan cerun kajian	102
Jadual 7.1	6	Komponen-komponen yang mempengaruhi kepada faktor keselamatan (FOS) sampel cerun kajian	117
Jadual 7.2	: н	Korelasi matriks antara pembolehubah yang mempengaruhi kepada kestabilan cerun kajian	119
Jadual 7.3	:	Ragam kegagalan cerun kajian apabila dikenakan daya gegaran gempa bumi simulasi	123
Jadual 8.1	:	Pencirian Unit Gravel Pinousuk di kawasan kajian	132
Jadual 8.2	:	Kesimpulan sifat kejuruteraan dan mineralogi bahan cerun Gravel Pinousuk di kawasan kajian	133
Jadual 8.3	:	Analisis kestabilan cerun Gravel Pinousuk	135
Jadual 8.4	:	Analisis ragam kegagalan cerun hasil simulasi dan cadangan lokasi struktur penghalang	136

SENARAI RAJAH

				Halaman
Rajah	1.1	:	Intensti gempa bumi Ranau 2015 menunjukkan skala V hingga VII terutama di kawasan fokus gempa bumi	3
Rajah	1.2	:	Peta geologi kawasan Mesilou, Kundasang, Sabah	6
Rajah	1.3	:	Peta topografi kawasan kajian	8
Rajah	2.1	:	Peristiwa canggaan yang membentuk kepulauan Borneo	12
Rajah	2.2	:	Kedudukan kejadian gempa bumi di sekitar Sabah dengan magnitud melebihi 6.0	14
Rajah	2.3	:	Taburan sesar-sesar aktif di seluruh Sabah	14
Rajah	2.4	:	Alat meja gegar yang direka oleh Profesor Rogers dari Universiti Stanford untuk kajian selepas gempa bumi tahun 1906	18
Rajah	3.1	:	Carta segitiga pengelasan tekstur tanah	37
Rajah	3.2	:	Penentuan had cecair bersamaan dengan nilai kandungan kelembapan pada kedalaman tusukan 20 mm	38
Rajah	3.3	:	Carta keplastikan bagi pengelasan keplastikan tanah	33
Rajah	3.4) H	Graf tekanan ricih melawan tekanan normal daripada ujian ricih terus yang dijalankan	39
Rajah	3.5	:	Stesen pemantauan KKM bagi memperolehi data siri masa kejadian gempa bumi di lokasi kejadian	42
Rajah	3.6	:	Data siri masa gempa bumi 7 Mac 2018 bermagnitud 5.2 daripada stesen pemantauan Kota Kinabalu (KKM)	43
Rajah	3.7	:	Bentuk gelombang terhasil daripada data pergerakan permukaan yang telah dikira daripada data 'count' kejadian gempa bumi 7 Mac 2018	45
Rajah	3.8	:	Bentuk gelombang untuk halaju melawan masa bagi tempoh 30 saat gegaran yang dipilih	46
Rajah	3.9	:	Bentuk gelombang untuk pemecutan melawan masa bagi tempoh 30 saat gegaran yang dipilih	46
Rajah	3.10	:	Bentuk gelombang untuk anjakan melawan masa bagi tempoh 30 saat gegaran yang dipilih	47

Rajah 3.11	:	Kontur PGV kawasan berlakunya bencana gempa bumi di Ranau berdasarkan <i>Shake Map</i> USGS	47
Rajah 3.12	:	Gelombang seismik dengan amplitud maksimum (19.019 mm) dan minimum (- 22.835 mm) bagi gegaran simulasi gempa bumi 7 Mac 2018 lalu	48
Rajah 3.13	:	Lakaran menunjukkan ragam kegagalan model cerun selepas dikenakan simulasi gegaran gempa bumi	50
Rajah 3.14	:	Hirisan cerun bagi menilai faktor keselamatan (FOS) cerun kajian	51
Rajah 3.15	:	Parameter geometri cerun untuk menentukan jarak pergerakan bahan cerun	52
Rajah 3.16	:	Antara muka analisis 'Rocfall' yang dijalankan	54
Rajah 4.1	:	Empat 'mulut' (M1 – M4) yang mengawal pengendapan batuan granit, batuan ultramafik dan batuan sedimen Tertieri di Dataran Pinousuk	58
Rajah 4.2	: 5%	Penerangan ringkas pada beberapa lokaliti singkapan Unit Gravel Pinousuk	59
Rajah 4.3		Tafsiran sempadan batuan bagi Unit Gravel Pinousuk di kawasan kajian	60
Rajah 4.4		Pengelasan batuan ultrabes menunjukkan jenis Iherzolit	67
Rajah 4.5	:	Pengelasan batuan igneus plutonik menunjukkan jenis granodiorit	68
Rajah 4.6	:	Pengelasan batu pasir menunjukkan jenis greiwak litik	68
Rajah 5.1	:	Segitiga pengelasan tekstur tanah berdasarkan peratusan pasir, lodak dan lempung bagi sampel tanah kajian	72
Rajah 5.2	:	Carta keplastikan menunjukkan pengelasan keplastikan sampel tanah kajian	73
Rajah 5.3	:	Analisis XRD bagi sampel tanah C1	74
Rajah 5.4	:	Analisis XRD bagi sampel tanah C2	74
Rajah 5.5	:	Analisis XRD bagi sampel tanah C3	75
Rajah 5.6	:	Analisis XRD bagi sampel tanah C4	75
Rajah 5.7	:	Analisis XRD bagi sampel tanah C5	76

Rajah 5.8	:	Perkaitan antara tegasan ricih (kPa) dan tegasan normal (kPa) bagi sampel tanah (a) cerun C1, (b) cerun C2, (c) cerun C3, (d) cerun C4 dan (e) cerun C5	78
Rajah 5.9	:	Enam hirisan bagi cerun C1 dengan ketinggian 7.11 meter pada sudut cerun 55° memberikan nilai FOS 1.45	80
Rajah 5.10	:	Enam hirisan bagi cerun C2 dengan ketinggian 6.32 meter pada sudut cerun 70° memberikan nilai FOS 2.53	80
Rajah 5.11	:	Enam hirisan bagi cerun C3 dengan ketinggian 11.8 meter pada sudut cerun 82° memberikan nilai FOS 1.15	81
Rajah 5.12	:	Lima hirisan bagi cerun C4 dengan ketinggian 3.95 meter pada sudut cerun 71° memberikan nilai FOS 1.99	81
Rajah 5.13	:	Lima hirisan bagi cerun C5 dengan ketinggian 15 meter pada sudut cerun 75° memberikan nilai FOS 1.53	82
Rajah 6.1	:	Profil sisi kegagalan model cerun pasir kering	85
Rajah 6.2	:	Faktor kestabilan cerun pasir semasa (A) sebelum menerima gegaran dengan FOS 1.18 manakala (B) selepas menerima gegaran cerun menunjukkan kegagalan penuh	86
Rajah 6.3	:0	Profil sisi kegagalan model cerun lempung kering	86
Rajah 6.4	B	Faktor kestabilan cerun lempung semasa (A) sebelum menerima gegaran dengan FOS 1.58 manakala (B) selepas menerima gegaran cerun dengan penurunan FOS 1.28	88
Rajah 6.5	:	Faktor kestabilan cerun bahan campuran bersudut 30° semasa (A) sebelum menerima gegaran dengan FOS 0.84 manakala (B) selepas menerima gegaran cerun dengan penurunan FOS 0.92	90
Rajah 6.6	:	Lakaran deskriptif bagi menunjukkan jarak pergerakan bahan cerun setelah menerima gegaran pertama dan kedua. Tempoh masa untuk kegagalan cerun berlaku adalah lebih panjang jika menerima gegaran seterusnya tetapi jarak pergerakan bahan adalah lebih jauh	91
Rajah 6.7	:	Faktor kestabilan cerun bahan campuran bersudut 35° semasa (A) sebelum menerima gegaran dengan FOS 0.85 manakala (B) selepas menerima gegaran cerun dengan penurunan FOS 0.98	94

- Rajah 6.8 : Lakaran deskriptif anjakan jatuhan dan pergerakan bahan 94 cerun selepas mengalami gegaran pertama (kelabu) dan gegaran kedua (merah)
- Rajah 6.9 : Rajah (A) hingga (C) menunjukkan runtuhan dan 95 pergerakan bahan selepas gegaran pertama pada tempoh 6 saat manakala Rajah (D) dan (E) menunjukkan runtuhan dan pergerakan bahan selepas gegaran kedua dalam tempoh masa 8 saat
- Rajah 6.10 : Hasil komputasi jatuhan batuan bagi cerun C1 103 menunjukkan titik impak pertama pada kaki cerun dengan tinggi lantunan 0.6 meter untuk endapan titik awal pada 1.6 meter manakala titik akhir pergerakan batuan pada 4.9 meter dari kaki cerun. Tenaga kinetik maksimum yang terhasil adalah 584 Joule sewaktu batuan menuruni cerun dengan pantas
- Rajah 6.11 : Hasil komputasi jatuhan batuan bagi cerun C2 104 menunjukkan titik impak pertama pada di dinding cerun sebelum hujung kaki cerun dengan tinggi lantunan 2.7 meter manakala titik pergerakan batuan pada 0.2 hingga 3.4 meter dari kaki cerun. Tenaga kinetik maksimum yang terhasil adalah 700 Joule sewaktu batuan menuruni cerun dengan pantas
- Rajah 6.12 : Hasil komputasi jatuhan batuan bagi cerun C3 105 menunjukkan titik impak pertama pada 0.5 meter dengan titik pengendapan antara 1.9 meter hingga 5.3 meter. Tenaga kinetik maksimum yang terhasil adalah 1200 Joule sewaktu pengendapan dengan tinggi lantunan maksimum 2 meter
- Rajah 6.13 : Hasil komputasi jatuhan batuan bagi cerun C4 106 menunjukkan titik impak pertama pada 0.1 meter dengan titik pengendapan antara 1.2 meter hingga 3.1 meter. Tenaga kinetik maksimum yang terhasil adalah 442 Joule sewaktu pengendapan dengan tinggi lantunan maksimum 1.8 meter
- Rajah 6.14 : Hasil komputasi jatuhan batuan bagi cerun C5 107 menunjukkan titik impak pertama pada 0.1 meter dengan titik pengendapan antara 3.4 meter hingga 4.5 meter. Tenaga kinetik maksimum yang terhasil adalah 1537 Joule sewaktu pengendapan dengan tinggi lantunan maksimum 2.8 meter
- Rajah 6.15 : Komputasi kedudukan struktur penghalang berdasarkan 109 tenaga kinetik pada titik yang dicadangkan di cerun C1

Rajah 6.16 : Komputasi kedudukan struktur penghalang berdasarkan 110 tenaga kinetik pada titik yang dicadangkan di cerun C2 Rajah 6.17 : Komputasi kedudukan struktur penghalang berdasarkan 111 tenaga kinetik pada titik yang dicadangkan di cerun C3 Rajah 6.18 : Komputasi kedudukan struktur penghalang berdasarkan 112 tenaga kinetik pada titik yang dicadangkan di cerun C4 Rajah 6.19 : Komputasi kedudukan struktur penghalang berdasarkan 113 tenaga kinetik pada titik yang dicadangkan di cerun C5 Kedudukan 'mulut' aliran glasier 115 Rajah 7.1 yang menghasilkan : endapan litologi berbeza di Dataran Pinousuk. Kotak merah menandakan 'mulut' yang mengawal endapan di kawasan kajian iaitu lembah Desa Cattle dan Mesilou Golf Resort Rajah 7.2 Peta taburan Unit Gravel Pinousuk di kawasan kajian 116 2 berdasarkan (A) hasil pemetaan di lapangan (2019); (B) Marilah Sarman dan Ibrahim Komoo (2000) Raiah 7.3 Zon bencana berpotensi berlakunya tanah runtuh 122 Rajah 7.4 Ilustrasi kegagalan cerun akibat gegaran simulasi dan 124 • cadangan struktur penghalang bagi mengurangkan impak zon bencana berpotensi Rajah 7.5 (A) Peratusan responden yang masih tinggal di Kg. 130 100 Mesilou dan (B) peratusan responden yang masih tinggal di lereng atau kaki cerun Rajah 7.6 (A) Peratusan responden yang akan berpindah dari lokasi 131 2 bencana gempa bumi dan (B) peratusan responden yang

akan berpindah dari laluan tanah runtuh jika diberikan

petempatan baharu yang selamat

SENARAI FOTO

			Halaman
Foto 1.1	:	Kesan gempa bumi menunjukkan (A) pergerakan tanah yang menjarak dan (B) dasar bangunan yang pecah	4
Foto 3.1	:	Singkapan cerun C1	27
Foto 3.2	:	Pelbagai jenis batuan iaitu (A) batu pasir, (B) rijang/cert, (C) granodiorit dan (D) peridotit ditemui pada cerun C1	28
Foto 3.3	:	Lokasi cerun C1 yang berdekatan dengan laluan masuk ke Ladang Desa Cattle	28
Foto 3.4	:	Singkapan cerun C2	29
Foto 3.5	:	(A) Dominasi bongkah batuan ultrabes melebihi 1 meter diameter dan (B) sudut curam cerun pada cerun C2	30
Foto 3.6	:	Kedudukan lokasi cerun C2 yang terletak di tepi jalan raya utama menuju ke Kg. Mesilou	30
Foto 3.7	÷	Singkapan cerun C3	31
Foto 3.8		Pengumpulan debris (talus) di kaki cerun menandakan sejarah ketakstabilan yang meningkatkan potensi kegagalan cerun	31
Foto 3.9	B	Lokasi cerun C3 yang berdekatan dengan bangunan dan jalan raya boleh mendatangkan bahaya sekiranya mengalami kegagalan cerun	32
Foto 3.10	:	Singkapan cerun C4	33
Foto 3.11	:	'Perlekatan' bongkah batuan granodiorit pada matriks cerun berdasarkan kekuatan matriks sebagai bahan pengikat bongkah	33
Foto 3.12	:	Saiz feldspar yang besar dan kasar pada bongkah granodiorit menandakan tekstur porfiritik batuan intrusif igneus	34
Foto 3.13	:	(A) Lokasi cerun C4 yang hanya berjarak 2 meter dari bangunan dan (B) sebahagian cerun C4 yang tersingkap berpotensi untuk gagal yang boleh merosakkan bangunan dan jalan raya	34
Foto 3.14	:	Dominasi bongkah granodiorit yang terikat pada sisi dinding singkapan dan terendap di sepanjang sungai	35

Foto 3.15	:	Kebarangkalian berlakunya banjir debris sekiranya jatuhan dinding cerun mengisi laluan air sungai	35
Foto 3.16	:	Alat meja gegar kecil bagi pengukuran ragam kegagalan model cerun dengan simulasi gegaran gempa bumi	41
Foto 4.1	:	Unit batuan campuran di kawasan pertanian	61
Foto 4.2	:	Tekstur porfiritik dengan butiran mineral yang besar dan kasar pada bongkah granodiorit	61
Foto 4.3	:	Singkapan Formasi Crocker menunjukkan kehadiran batuan sedimen dalam Unit Batuan Bercampur	62
Foto 4.4	:	Kepelbagaian saiz batuan ultramafik daripada bersaiz kerikil hingga bongkah	62
Foto 4.5	:	Bongkah batuan ultramafik yang menunjukkan permukaan biru kehijauan iaitu jenis peridotit terserpentin	63
Foto 4.6	÷	Matriks halus merah kecoklatan sebagai bahan penyimen fragmen-fragmen batuan ultrabes	63
Foto 4.7		Bongkah granodiorit dengan kehadiran butiran mineral kasar terutamanya fenokris feldspar menunjukkan batuan jenis plutonik	64
Foto 4.8	e B	Bongkah-bongkah granodiorit dengan kebulatan subbulat hingga membulat terendap di sepanjang sungai dan di laluannya	65
Foto 6.1	:	Model cerun pasir kering (A) sebelum dan (B) selepas dikenakan gegaran gempa bumi simulasi	85
Foto 6.2	:	Model cerun lempung kering (A) sebelum dan (B) selepas dikenakan gegaran gempa bumi simulasi	87
Foto 6.3	:	Permukaan kegagalan menghasilkan skarp dan jatuhan bahan berjarak 10 cm dari kaki cerun	87
Foto 6.4	:	Lokasi struktur penghalang pada cerun C1 pada jarak 3 meter dari kaki cerun dengan kekuatan melebihi 210 Joule	109
Foto 6.5	:	Lokasi struktur penghalang pada cerun C2 pada jarak 1 meter dari kaki cerun dengan kekuatan melebihi 200 Joule	110

Foto 6.6	:	Lokasi struktur penghalang pada cerun C3 pada jarak 4 meter dari kaki cerun dengan kekuatan melebihi 200 Joule	111
Foto 6.7	:	Lokasi struktur penghalang pada cerun C4 pada jarak 1 meter dari kaki cerun dengan kekuatan melebihi 100 Joule	112
Foto 6.8	:	Lokasi struktur penghalang pada cerun C5 pada jarak 2 meter dari kaki cerun dengan kekuatan melebihi 300 Joule hingga 1600 Joule dan menghalang pengendapan di sungai	113
Foto 7.1	:	Endapan bongkah batuan di teres-teres penanaman sayuran	115
Foto 7.2	:	Peneresan cerun merendahkan sudut curam	121
Foto 7.3	:	Struktur gabion di kaki cerun sebagai langkah meningkatkan kestabilan cerun	121
Foto 7.4	1:	Zon bencana berpotensi bagi cerun C1	125
Foto 7.5	49	Zon bencana berpotensi bagi cerun C2	126
Foto 7.6		Zon bencana berpotensi bagi cerun C3	127
Foto 7.7	÷	Zon bencana berpotensi bagi cerun C4	128
Foto 7.8	А ;В	Zon bencana berpotensi bagi cerun C5 AYSIA SABAH	129

SENARAI FOTOMIKRO

Halaman

- Fotomikro : Mineral serpentin (Sp) mengisi rekahan pada klino-4.1 piroksen (Cpx), ortopiroksen (Opx) dan olivin dalam sampel batuan ultrabes (Pembesaran: 10X, XPL)
- Fotomikro : Butiran mineral yang besar dan kasar menandakan 66 4.2 tekstur faneritik bagi batuan granodiorit. Dapat dilihat kembaran albit pada plagioklas (Plg) dan kehadiran butiran kuarza (K) yang banyak (Pembesaran: 10X, XPL)
- Fotomikro : Dominasi mineral kuarza (K) bersudut hingga membulat 67 4.3 dengan matriks (M) halus yang banyak mengelilinginya. Terdapat juga mineral feldspar (F) dan serpihan batuan (B) dalam sampel batu pasir Formasi Crocker (Pembesaran: 5X, XPL)

SENARAI LAMPIRAN

Halaman

Lampiran A :	Penerbitan	149
Lampiran B :	Persidangan	149

BAB 1

PENGENALAN

1.1 Pendahuluan

Kejadian gempa bumi merupakan salah satu bencana yang boleh mendatangkan pelbagai kesan buruk ke atas sesebuah kawasan yang terlibat. Cetusan yang disebabkan oleh gegaran gempa bumi dilihat antara sebab berlakunya ketidakstabilan cerun hingga boleh menyebabkan terjadinya tanah runtuh yang meningkatkan risiko ke atas keselamatan nyawa, harta benda dan menjejaskan sosio-ekonomi penduduk. Kegagalan cerun yang berlaku semasa gempa bumi adalah disebabkan pengurangan kekuatan ricih tanah untuk menahan daya pemacu daripada gegaran gempa bumi tersebut. Keadaan topografi juga boleh memainkan peranan dalam meningkatkan ketidak stabilan cerun semasa gempa bumi. Ini kerana kedudukan muka bumi di kawasan tanah tinggi lebih cenderung meningkatkan pergerakan tanah yang terhasil akibat gegaran gempa bumi (Havenith et al., 2003). Ini menjadikan cerun-cerun di kawasan tanah tinggi mempunyai potensi risiko bahaya lebih tinggi apabila menerima gegaran gelombang gempa bumi berbanding kawasan yang lebih rendah topografinya. Di samping itu, gegaran yang diterima menggalakkan gelongsoran bahan cerun lalu terendap di kawasan lebih rendah. Sekiranya pengumpulan debris daripada cerun yang tidak stabil tersebut terendap di dalam kawasan jasad berair, ianya boleh menyebabkan berlakunya aliran tanah atau banjir lumpur.

Situasi ini ditunjukkan dengan kejadian gempa bumi di Ranau yang berlaku pada tahun 2015 yang telah menyebabkan kematian 18 orang pendaki Gunung Kinabalu. Bongkah batuan di permukaan Gunung Kinabalu telah mulai melonggar setelah beberapa gegaran awal dan akhirnya jatuh menuruni Gunung Kinabalu apabila gegaran kuat utama berlaku. Bahan yang tidak terkonsolidasi menunjukkan tindak balas berbeza bagi gegaran seismik berbanding bahan berjasad utuh di mana bahan longgar ini cenderung untuk mengalami lebih kemusnahan dan