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ABSTRACT 
 

Mining contrast subspace finds subsets of features or subspaces where a query object 
is most likely similar to target class against other class in a multidimensional data set 
of two classes. Those subspaces are termed as contrast subspaces. All existing 
mining contrast subspace methods (i.e. CSMiner and CSMiner-BPR) use density-
based likelihood contrast scoring function to estimate the likelihood of a query object 
to target class against other class in a subspace. Query object resides in the area 
that has high ratio of probability density of target class to probability density of other 
class with respect to query object in a contrast subspace. However, the probability 
density estimation of a class requires adjustment to the dimensionality or number of 
features in subspaces which may affect the performance of mining contrast 
subspace. Besides, the parameter setting and the subspace search strategy of all 
existing methods are not being optimized to mine contrast subspace. They also 
cannot be directly applied to mine contrast subspaces in categorical data. In this 
thesis, a novel tree-based contrast subspace mining method is introduced which 
employs tree-based likelihood contrast scoring function that is not affected by the 
dimensionality of subspaces. Tree-based likelihood contrast scoring function 
recursively partitions a subspace space in the way that query object fall in a group 
that has high ratio of probability of target class and probability of other class in a 
contrast subspace. The tree-based method begins with feature selection phase which 
finds relevant features and followed by contrast subspace search phase to search 
contrast subspaces from the relevant features, accordance to the tree-based 
likelihood contrast scoring function. Genetic algorithm has been widely used to find 
global solution to optimization and search problem. Hence, this thesis presents the 
optimization of parameters values for the tree-based method by genetic algorithm. 
This thesis also presents the optimization of contrast subspace search of the tree-
based method by genetic algorithm. In addition, the tree-based method is extended 
to mine contrast subspaces of query object in categorical data. The research works 
involve first preparing the real world numerical and categorical data sets. Then, the 
tree-based method, the genetic algorithm based parameter values identification of 
tree-based method, and followed by the genetic algorithm based tree-based method, 
for numerical data sets are developed and evaluated. Lastly, the extended tree-based 
method for categorical data sets is developed and evaluated.  The effectiveness of 
the tree-based method in mining contrast subspace is evaluated by the classification 
accuracy on the obtained contrast subspaces with respect to query object. The 
empirical results demonstrated that the tree-based method is capable to find relevant 
contrast subspace of the given query object while the tree-based method with the 
optimized parameter setting is the best for mining contrast subspace in numerical 
data. Furthermore, the results exhibited that the extended tree-based method is 
capable to find contrast subspace of query object in categorical data.  
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ABSTRAK 
 

KAEDAH TREE-BASED CONTRAST SUBSPACE MINING 
 

Mining contrast susbpace mencari subset-subset atribut atau subruang di mana objek 
pertanyaan adalah sama dengan kelas sasaran tetapi berbeza daripada kelas lain 
dalam data multidimensi dua kelas. Subruang tersebut dikenali sebagai subruang 
kontras. Semua kaedah-kaedah mining contrast subspace yang sedia ada (iaitu 
CSMiner dan CSMiner-BPR) menggunakan likelihood contrast scoring function 
berdasarkan kepadatan untuk mengganggar persamaan objek pertanyaan dengan 
kelas sasaran serta perbezaan dengan kelas lain pada suatu subruang. Objek 
pertanyaan berada dalam kelompok yang menpunyai nisbah kepadatan 
kebarangkalian kelas sasaran kepada kepadatan kebarangkalian kelas lain yang 
tinggi pada suatu subruang kontras. Walau bagaimanapun, anggaran kepadatan 
keberangkalian kelas memerlukan pelarasan berdasarkan bilangan atribut dalam 
subruang untuk mengelakkan penurunan kepadatan dengan penambahan bilangan 
atribut dalam subruang. Di samping itu, nilai parameter dan strategi pencarian 
subspace semua kaedah yang sedia ada adalah tidak dioptimumkan untuk mencari 
subruang kontras. Kaedah-kaedah yang sedia ada juga tidak dapat digunakan secara 
langsung untuk mencari subruang kontras bagi object pertanyaan dalam data 
kategori. Dalam tesis ini, kaedah baru tree-based contrast subspace mining 
diperkenalkan yang menggunakan tree-based likelihood contrast scoring function 
yang tidak terjejas oleh bilangan atribut dalam subruang, maka dengan itu tidak 
memerlukan sebarang pelarasan. Tree-based likelihood contrast scoring function 
membahagi data pada subruang secara berulangan di mana objek pertanyaan 
dikumpulkan dengan objek yang mempunyai ciri yang sama. Kaedah tree-based 
bermula dengan fasa pemilihan atribut yang mencari atribut yang releven 
berdasarkan tree-based likelihood contrast scoring function dan diikuti dengan fasa 
pencarian subruang kontras yang mencari subruang kontras dari atribut yang relevan 
berdasarkan tree-based likelihood contrast scoring function. Algoritma genetik telah 
digunakan secara meluas untuk mencari penyelesaian optimum kepada masalah 
pengoptimuman dan pencarian. Dengan itu, tesis ini membentangkan 
pengoptimuman nilai parameter terbaik untuk kaedah tree-based dengan 
menggunakan algoritma genetik. Tesis ini membentangkan pengoptimuman 
pencarian subruang kontras dengan menggunakan algoritma genetik. Seterusnya, 
kaedah tree-based diperluas untuk mencari subruang kontras dalam data kategori. 
Keberkesanan kaedah tree-based dinilai dari segi ketepatan klasifikasi pada subruang 
kontras yang diperolehi. Kajian ini bermula dengan menyediakan data berangka dan 
kategori. Selepas itu, kaedah tree-based, kaedah pencarian nilai parameter 
berdasarkan algoritma genetik, dan kaedah tree-based berdasarkan algoritma 
genetik untuk data berangka dibina dan dinilai. Akhir sekali, kaedah tree-based untuk 
data kategori dibina dan dinilai. Keberkesan kaedah tree-based akan dinilai 
berdasarkan ketepatan klasifikasi pada subruang kontras yang diperolehi. Keputusan 
empirikal menunjukkan kaedah tree-based mampu mencari subruang kontras yang 
relevan bagi objek pertanyaan dan kaedah tree-based dengan tetapan parameter 
yang telah dioptimumkan adalah terbaik untuk pencarian subruang kontras dalam 
data berangka. Selain itu, keputusan empirikal menunjukkan kaedah tree-based yang 
diperluas tersebut mampu mencari contrast subspaces bagi objek pertanyaan dalam 
data kategori. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

Current advanced technology has made it possible to accumulate massive amount of 

data set in a database at lower cost. Data mining is essential to exploit this stored 

data in order to extract useful information by automatic means. Outlier detection is 

one of the data mining tasks which it aims to detect data objects whose behaviour 

deviates significantly from the remaining objects in a data set. Those objects are 

outliers that may be bad data that need to be removed or malicious data that urge 

to be tackled. Besides, finding explanation about why the detected outlier is different 

in a data set is also important to provide information necessary for interpreting the 

outlier. Accordingly, there are more and more attention is directed to identifying 

explanation about why and how an object differs in a data set (Duan et al., 2015; 

Duan et al., 2014; Dang et al., 2013). 

 

 

In recent years, mining contrast subspace has been introduced which finds 

explanation about how an object differs between two classes in a data set (Duan et 

al., 2014). More specifically, given a multidimensional data set of two classes, a target 

class and a query object, mining contrast subspace finds contrast subspaces where 

the query object is most similar to the target class while most dissimilar to other 

class. Those contrast subspaces are subsets of features from the full feature set of 

the data set. A query object can be any object which its contrast subspaces want to 

be investigated. 
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 Mining contrast subspace has many important real life applications. One of 

the examples, in the medical field, Dementia with Lewy Bodies (DLB) and Alzhemer’s 

Disease (AD) are common neurodegenerative dementia happened to older people. 

DLB and AD share many similar conditions that include memory loss, difficulty in 

judgment and reasoning, which causes DLB is often misdiagnosed as AD 

(Surendranathan & O’brien, 2018; Walker et al., 2007). When a doctor wanted to 

diagnose a patient against these two types of dementia, the doctor may want to 

know in what subspace the patient is most similar to the cases of DLB and different 

from AD at the same time. By knowing that subspace, it helps to ensure accurate 

diagnosis and right treatment to be given for the patient. Another example, in the 

insurance field, a fraudulent claim is suspected and need to be investigated. An 

analyst may want to know what subspace makes the claim is similar to the fraud 

cases but dissimilar to the normal cases.  That subspace gives analyst useful 

information for deeper investigation so as to avoid claim misuse. 

 

 

 There are only few methods have been developed for mining contrast 

subspace. In general, mining contrast subspace process requires a subspace search 

strategy and a likelihood contrast scoring function (Duan et al., 2014; Duan et al., 

2016). A potential candidate contrast subspace is searched using a search strategy 

from a collection of possible subspaces derived from the full feature set given in a 

data set. The similarity of a query object to a target class against other class in the 

searched subspace is estimated by using a likelihood contrast scoring function. After 

examining all candidate subspaces, the likelihood contrast score among the 

subspaces are compared to find the contrast subspaces for the query object. 

 

 

 All of the existing mining contrast subspace methods (i.e. CSMiner and 

CSMiner-BPR) employ a probability density based likelihood contrast scoring function 

(Duan et al., 2014; Duan et al., 2016). For a subspace, it estimates the ratio of 

probability density of a target class against probability density of other class, with 

respect to a query object. The probability density estimation of a class uses distance 

between a query object and other objects in the class to measure the similarity of 


