FLOOD HAZARD ANALYSIS FOR LANDUSE PLANNING IN PENAMPANG AREA, SABAH

FACULTY OF HUMANITY, ARTS AND HERITAGE UNIVERSITI MALAYSIA SABAH

2019

FLOOD HAZARD ANALYSIS FOR LANDUSE PLANNNING IN PENAMPANG AREA, SABAH

SYAHLINI MARIAPPAN

FACULTY OF HUMANITY, ARTS AND HERITAGE UNIVERSITI MALAYSIA SABAH 2019

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: FLOOD HAZARD ANALYSIS FOR LANDUSE PLANNING IN PENAMPANG AREA, SABAH

IJAZAH: IJAZAH SARJANA (GEOGRAFI)

Saya **<u>SYAHLINI MARIAPPAN</u>**, Sesi **<u>2013-2019</u>**, mengaku membenarkan tesis Ijazah Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

Disahkan Oleh,

SYAHLINI MARIAPPAN MA1421173T

(Tandatangan Pustakawan)

Tarikh : 3 Julai 2019

(Dr. Rodeano Hj. Roslee) Penyelia

DECLARATION

I hereby declare that the materials in this thesis are my own except for quotations, excerpts, equations, summaries and reference, which have been duly acknowledged.

CERTIFICATION

NAME	:	SYAHLINI MARIAPPAN
MATRIC NO	:	MA1421173T
TITLE	:	FLOOD HAZARD ANALYSIS FOR LANDUSE PLANNING IN PENAMPANG AREA, SABAH
DEGREE	:	MASTER OF ARTS (GEOGRAPHY)
VIVA DATE	:	27 [™] JUN 2019

ACKNOWLEDGEMENT

First and foremost, I would like to thank God the Almighty for His blessings that made me complete this thesis successfully. I would also like to express my deepest gratitude and appreciation to my supervisor, Dr. Rodeano Hj. Roslee for his remarkable supervision, support and inspiration. I appreciate his valuable time and energy that he has contributed for my progress.

I sincerely thank lecturers in University Malaysia Sabah: Dr. Oliver Valentine Eboy, Dr. Felix Tongkul, Mr. Mustapa Abd Talip and Dr. Bamini KPD Balakrishnan for their support and resourceful sharing of knowledge and special thanks to my good friend Saraswathi Govindaraju for her help and support. Above all I would like to thank my beloved parents Mr. Mariappan Suppiah and Mdm. Nagaletchumy Munian, and all my siblings who have been giving me complete support, encouragement, patience and affections throughout my years of studies.

Last but not least, I am indebted to many kind people that were not mentioned; who have helped me directly or indirectly with their advice and knowledge in the completion of this thesis. Thank you to each and every one of you.

Syahlini Mariappan 3rd July 2019

ABSTRACT

Flooding is one of the major natural disasters in Sabah, Malaysia. Several recent cases of catastrophic flooding were recorded especially in Penampang area, Sabah (e.g. July 1999; October 2010; April 2013; October & December 2014). Heavy monsoon rainfall has triggered floods and caused great damage in Penampang area. The 2014 floods have affected 40,000 people from 70 villages. The objectives of this research are (i) To determine the factors contributing to the flood occurrences; (ii) To analyse the Flood Susceptibility Level (FSL); and (iii) To identify the flood hazard in the study area and produce the flood hazard map. In this study, eigth (8) parameters were considered in relation to the causative factors to flooding, which are: rainfall, slope gradient, elevation, drainage density, landuse, soil textures, slope curvatures and flow accumulation. Flood Hazard Analysis (FHAn) map were produced based on the data collected from the field survey, laboratory analysis, high resolution digital radar images (IFSAR) acquisation, and secondary data in three (3) different period (2002, 2008 and 2014). FHL were defined using Multi Criteria Evaluation (MCE) technique integrated with GIS software. Based on the FHAn, approximately 3.17% of total study area classified as Very High Hazard (VHH), 4.55% as High Hazard (HH), 15.52% as Moderate Hazard (MH), 15.72% as Low Hazard (LH) dan 61.04% as Very Low Hazard (VLH) respectively. As a result of the calculation and interpretation, the average ratio of the areas under the curve were 0.839, and thus can be argued that validation prediction accuracy was 83.90%. The developed model will be a very valuable resource for consulting, planning agencies and local governments in managing risk, land-use zoning and remediation efforts to mitigate risks. Moreover, the technique applied in this study can easily be extended to other areas, where other factors may be considered, depending on the availability of data.

ABSTRAK

ANALISIS BAHAYA BANJIR UNTUK PERANCANGAN GUNA TANAH DI KAWASAN PENAMPANG, SABAH

Banjir merupakan salah satu bencana alam yang major di Sabah, Malaysia. Beberapa kes terkini tentang katastropik baniir telah direkodkan terutamanya di kawasan Penampang, Sabah (contohnya Julai 1999; Oktober 2010; April 2013; Oktober & Disember 2014). Hujan lebat mencetuskan banjir dan menyebabkan kerosakan besar di kawasan Penampang. Banjir 2014 telah memberi kesan kepada 40,000 orang dari 70 buah kampung. Objektif kajian ini adalah (i) untuk menentukan faktor yang menyumbang kepada kejadian banjir; (ii) Untuk menganalisis Tahap Kerentanan Banjir (FSL); dan (iii) Mengenal pasti bahaya banjir di kawasan kajian dan menghasilkan peta bahaya banjir. Dalam kajian ini, lapan (8) parameter yang berkaitan dengan faktor penyebab kepada banjir telah diambilkira, iaitu: hujan, kecerunan cerun, ketinggian, ketumpatan saliran, guna tanah, tekstur tanah, kelengkungan cerun dan akumulasi aliran. Peta Analisis Bahaya Banjir (FHAn) telah dihasilkan berdasarkan data yang diperoleh daripada kajian lapangan, analisis makmal, perolehan imej radar digital (IFSAR) beresolusi tinggi dan data sekunder dalam tiga (3) jangka masa yang berbeza (2002, 2008 dan 2014). FHL ditentukan berdasarkan kepada teknik Penilaian Multi-Kriteria (MCE) yang berintegrasi dengan perisian GIS. Berdasarkan FHAn, kira-kira 3.17% daripada jumlah kawasan kajian diklasifikasikan sebagai Bahaya Sangat Tinggi (VHH), 4.55% sebagai Bahaya Tinggi (HH), 15.52% sebagai Bahaya Sederhana (MH), 15.72% sebagai Bahaya Rendah (LH) dan 61,04% sebagai Bahaya Sangat Rendah (VLH). Hasil daripada pengiraan dan tafsiran, nisbah purata kawasan di bawah lengkung adalah 0.839, dan ini boleh dikatakan bahawa ketepatan pengesahan ramalan adalah 83.90%. Model yang dibangunkan akan menjadi sumber yang sangat berharga kepada perundingan, perancangan agensi dan kerajaan tempatan dalam mengurus risiko, zon guna tanah dan usaha pemulihan bagi mengurangkan risiko. Selain itu, teknik yang digunakan dalam kajian ini boleh diperluaskan ke kawasan lain, di mana faktor-faktor lain boleh dipertimbangkan, bergantung kepada ketersediaan data.

TABLE OF CONTENT

		Page
TITLE	E	i
CAND	DIDATE'S DECLARATION	ii
CONF	IRMATION	iii
ACKN	IOWLEDGEMENTS	iv
ABST <i>ABST</i>	RACT RAK	v vi
TABL	E OF CONTENT	vii
LIST	OF FORMULAS	х
LIST	OF TABLES	xi
LIST OF FIGURES		xii
LIST OF PHOTOGRAPHS		
LIST	OF APPENDICES	xvii
СНАР	TER 1: RESEARCH BACKGROUND VERSITI MALAYSIA SAB	AH
1.1	Introduction	1
1.2	Problem statement	2
1.3	Aim	3
1.4	Objectives	3
1.5	Research questions	4
1.6	Scope of study	4
1.7	Importance of the research	7
1.8	Thesis structure	7
СНАР	TER 2: LITERATURE REVIEW	

2.1 Introduction 9

2.2	Flood	9
2.3	Causes of flooding	14
2.4	Effects of flooding	19
2.5	Risk assessment techniques	20
	2.5.1 Meteorological parameters	21
	2.5.2 Hydrological parameters	22
	2.5.3 GIS and Remote sensing techniques	22
2.6	Flood hazard mapping	24
2.7	Multi criteria analysis	26
2.8	Land use planning for flood management	29
2.9	Flood control measures	31
	2.9.1 Structural measures	32
	2.9.2 Non-structural measures	36
2.10	AHP as an MCE technique for flood hazard analysis	40
2.11	Summary	41
	UNIVERSITI MALAYSIA	SABAH
CHAP	TER 3: MATERIAL AND METHOD	

3.1	Introduction	42
3.2	Desktop study	42
3.3	Field observation	42
3.4	Data interpretation & analysis	43
	3.4.1 Flood hazard analysis	43
3.5	Producing flood hazard analysis map	57
3.6	Validation of flood hazard map	57
3.7	Summary	58

CHAPTER 4: GEOGRAPHICAL AND GEOLOGICAL SETTING

4.1	Introd	luction	59
4.2	Backg	round of the study area	59
4.3	Climat	cological condition	61
4.4	Landu	se and social economic	74
4.5 4 5	Тород	raphic condition	79
4.6	Draina	age system	83
4.7	Soil Te	exture	85
4.8	Slope	Gradient	87
4.9	Slope	Curvature	91
4.10	Gener	al geology	95
	4.10.1	Crocker formation	95
	4.10.2	Q <mark>uaternary</mark> alluvium	103
4.11	Summ	iary B	104
СНАР	TER 5:	FLOOD HAZARD ASSESSMENT (FHAs) AND DISCUSS	ION
5.1	Introd	uction	5740AN 105
5.2	Hydro	logy Statistics	105
5.3	Discus	ssion	116
	5.3.1	Rainfall	116
	5.3.2	Drainage Density	121
	5.3.3	Flow accumulation	124
	5.3.4	Landuse	126
	5.3.5	Elevation	131
	5.3.6	Slope gradient	136
	5.3.7	Soil textures	140

5.4	Flood Susceptibility Level (FSL)	147
5.5	Flood Hazard	154
5.6	Validation for Flood Hazard Analysis	157
5.7	Summary	159

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1	Introduction	160
6.2	Summary of Result	160
6.3	Objective Achievement	161
6.4	Limitation of the Study	163
6.5	Recommendation	163
6.6	Conclusion	
REFEF		165
APPE	NDICES	
	ABA	UNIVERSITI MALAYSIA SABAH

LIST OF FORMULAS

LIST OF TABLES

		Page
Table 2.1	Five main types of natural floods	10
Table 2.2	Flood records in Penampang area, Sabah (2005-2015)	12
Table 2.3	Categories of Flood Losses	20
Table 3.1	The general structure of Analytical Hierarchy Process (AHP) for Multi-Criteria Evaluation (MCE) in study area	47
Table 3.2	Scale of preference between two parameters in AHP	49
Table 3.3	Judgement value in pair-wise comparison for every criterion	50
Table 3.4	Table of comparison matrix	51
Table 3.5	Result of pairwise comparison matrix	52
Table 3.6	Result of normal comparison matrix	53
Table 3.7	Result of relative weights	53
Table 3.8	Random index (RI) used to compute consistency ratios (CR)	55
Table 3.9	The weighted value of the factor in the final result	56
Table 4.1	Population composition for Penampang district in the year 2009	59
Table 4.2	Average thickness of beds in the Crocker Formation in the study area	98
Table 5.1	Statistical analysis of daily recorded rainfall of Ulu Moyog Station from 1985 – May 2015	107
Table 5.2	Statistical analysis of daily recorded rainfall of Babagon Agriculture Station from August 2002 – May 2015	107
Table 5.3	Statistical analysis of daily recorded discharge of Penampang Station from 1969 – March 2015	110
Table 5.4	Statistical analysis of daily recorded water level of Moyog river at Penampang Proper from 1969 – January 2001	112
Table 5.5	Statistical analysis of daily recorded stage of Moyog river at Penampang Proper from 2001 – March 2015	114
Table 5.6	The weighted values of rainfall and its sub parameters	117

Table 5.7	The weighted values of drainage destiny and its sub parameters	122
Table 5.8	The weighted values of flow accumulation and its sub parameters	124
Table 5.9	The weighted values of land use and its sub parameters	127
Table 5.10	The weighted values of elevation and its sub parameters	132
Table 5.11	The weighted values of slope gradient and its sub parameters	136
Table 5.12	The weighted values of soil texture and its sub parameter	141
Table 5.13	The weighted values of slope curvature and its sub parameters	143
Table 5.14	Comparison between different years and the percentage of Flood Susceptibility Level (FSL) in Penampang	148
Table 5.15	Land use suitability classes	148
Table 5.16	Calculation of the ratio of the averagearea under the curve (AUC)	158
Table 5.17	Classification for Area Under the Curve, AUC	159

LIST OF FIGURES

		Page
Figure 1.1	Location of study area	5
Figure 1.2	Location of study area	6
Figure 2.1	Six main causes of flooding	15
Figure 2.2	An illustration of the factors that contribute to floods	16
Figure 2.3	An illustration of the low-lying area adjacent a river	17
Figure 2.4	Malaysian flood mortality	18
Figure 2.5	Global flood vulnerability, with the highlighted point showing Malaysia.	18
Figure 2.6	Four main effects of flooding	19
Figure 2.7	General procedure undertaken to develop flood risk map in GIS	27
Figure 2.8	AHP model use in the process flood risk map	28
Figure 2.9	Hierarchy of flood risk assessment	29
Figure 2.10	Land use regulation techniques	31
Figure 2.11	SMART Tunnel and related flood mitigation projects	36
Figure 2.12	Typical forecasting and warning activities	37
Figure 2.13	The waste hierarchy which applicable to waste management before and after flooding	38
Figure 2.14	Examples of flood proofing	39
Figure 3.1	Methodology Flowchart of the study	44
Figure 3.2	Methodology Flowchart of AHP	44
Figure 3.3	Multi-Criteria Decision Analysis (MCDA) conceptual framework for analytical hierarchy process-geographic information system (AHP-GIS) based urban flood mapping and flood risk analysis	45
Figure3.4.	Framework model of integrating spatial analysis with Multi-Criteria Evaluation (MCE) for Flood Susceptibility Analysis (FSAn)	46

Figure 4.1	Composition of population for Penampang District year 2009	60
Figure 4.2	Distribution of Sabah means annual rainfall	62
Figure 4.3	Monthly recorded rainfall of Ulu Moyog Station from year 1985 – May 2015	64
Figure 4.4	Monthly recorded rainfall of Babagon Agriculture Station from year August 2002 – May 2015	65
Figure 4.5	Rainfall map in 2002	66
Figure 4.6	Rainfall map in 2008	67
Figure 4.7	Rainfal I map in 2014	68
Figure 4.8	Monthly recorded discharge of Moyog river at Penampang Proper from year 1969 – March 2015	70
Figure 4.9	Monthly recorded stage of Moyog river at Penampang Proper from year 1969 — January 2001	71
Figure 4.10	Monthly recorded stage of Moyog river at Penampang Proper from year 2001 – March 2015	72
Figure 4.11	Yearly recorded temperature for Kota Kinabalu from year	73
Figure 4.12	Yearly recorded surface wind speed of Kota Kinabalu from year 1998 – 2007	73
Figure 4.13	Land use map in 2002	76
Figure 4.14	Land use map in 2008	77
Figure 4.15	Land use map in 2014	78
Figure 4.16	Elevation map in 2002	80
Figure 4.17	Elevation map in 2008	81
Figure 4.18	Elevation map in 2014	82
Figure 4.19	Buffer map in study area	84
Figure 4.20	Soil texture map in study area	86
Figure 4.21	Slope gradient map in 2002	88
Figure 4.22	Slope gradient map in 2008	89
Figure 4.23	Slope gradient map in 2014	90
Figure 4.24	Slope curvature map in 2002	92

Figure 4.25	Slope curvature map in 2008	93
Figure 4.26	Slope curvature map in 2014	94
Figure 4.27	Geology map of the study area	96
Figure 5.1	Daily recorded rainfall of Ulu Moyog Station from 1985 – May 2015	108
Figure 5.2	Daily recorded rainfall of Babagon Agriculture Station from August 2002 – May 2015	109
Figure 5.3	Daily recorded discharge of Moyog river at Penampang Proper from 1969 – March 2015	111
Figure 5.4	Daily recorded stage of Moyog river at Penampang Proper from 1969 – January 2001	113
Figure 5.5	Daily recorded stage of Moyog river at Penampang Proper from 2001 – March 2015	114
Figure 5.6	Rainfall map in 2002	118
Figure 5.7	Rainfall map in 2008	119
Figure 5.8	Rainfall map in 2014	120
Figure 5.9	Drainage network of the study area	122
Figure 5.10	Drainage density map in study area TIMALAYSIA SABA	123
Figure 5.10	Flow accumulation map	125
Figure 5.11	Land use map in 2002	127
Figure 5.12	Land use map in 2008	128
Figure 5.13	Land use map in 2014	129
Figure 5.14	Elevation map in 2002	132
Figure 5.15	Elevation map in 2008	133
Figure 5.16	Elevation map in 2014	134
Figure 5.17	Slope gradient map in 2002	136
Figure 5.18	Slope gradient map in 2008	137
Figure 5.19	Slope gradient map in 2014	138
Figure 5.20	Soil texture map	140

Figure 5.21	Slope curvature map in 2002	142
Figure 5.22	Slope curvature map in 2008	143
Figure 5.23	Slope curvature map in 2014	144
Figure 5.24	Flood susceptibility map in 2002	146
Figure 5.25	Flood susceptibility map in 2008	147
Figure 5.26	Flood susceptibility map in 2014	148
Figure 5.27	Flood hazard map of the study area	150
Figure 5.28	Floodplain map in the study area	152
Figure 5.29	Illustration of cumulative frequency showing flood hazard index rank (y-axis) occurring in cumulative percentages of flood occurrences (x-axis)	154

LIST OF PHOTOGRAPHS

Photo 1.1	Some cases of flash floodin Penampang, Sabah	2
Photo 2.1	Houses built near the floodplain area in Dongongon	31
Photo 2.2	Concrete lined channels	34
Photo 2.3	Storage Pond of Sungai Batu, Kuala Lumpur, Malaysia	35
Photo 2.8	Poldering in Taman Sri MudaShah Alam, Selangor	36
Photo 2.9	Houses built near the floodplain area in Dongongon 2	41
Photo 2.10	Flood survival and Drowning Risk Awareness Campaign organized by the Malaysian Volunteer Fire and Rescue Association in 2013	42
Photo 4.1	Sinkhole along the Putatan-Kimbambangan road	61
Photo 4.2	Submerged vehicle	61
Photo 4.3	a. Upper Moyog River at Babagon b. Upper Moyog at Kampung Madsiang c. Moyog River near Dongongon township d. Moyog river at Penampang Proper	85
Photo4.4	 (a) Weathered of thick sandstone (Location: Bukit Padang), (b) Highly sheared and crushed of thick sandstone (Location: Damai, Luyang), (c) Peculiar sole marking preserved on sole of overturned thick sandstone bed (Location: Kurnia Perdana College (UMS), Likas) 	98 H
Photo 4.5	 (a) The beds exhibit a high dipping angle with topside indicated by arrow (Location: Taman Iramanis, Luyang), (b) Sedimentary structures (load structures) at the base of sandstone (Location: Kurnia Perdana College (UMS), Likas), (c) Sedimentary structures (flute mould) of sandstone (Location: Tuaran by Pass road), (d) Organic structures (trace fossil: Glockeria?) are commonly found on the soles of the beds and less commonly within the beds (Location: Bukit Padang, Luyang), (e) Plant fragments (trace fossil: <i>Chondrites?</i>) are scattered throughout the bed (Location: Quarry Madziang, Penampang) 	101
Photo 4.6	Sedimentary structures (climbing ripples) of thin – bedded sandstone (Location: Taman Tah Yeh, Luyang)	102
Photo 4.7	(a) Grey shale was exposed in the study area (Location: Sembulan-Penampang highway, Kepayan), (b) The red shale is found interbedded in the highly sheared thick – bedded	103

sandstone beds (Location: Penampang-Inanam road, Penampang), (c) The shale units is highly deformed, sheared and development of sandstone boudins (Location: Penampang-Inanam road, Penampang)

129

Photo 4.8	Quaternary alluvium areas are flat and generally covered by scrub or swamp vegetation (Location: Taman Iramanis, Lintas road)	104

- Photo 5.1 Minimally acceptable channel condition in Dongongon 128
- Photo 5.2 Unacceptable channel condition in Penampang Proper 128
- Photo 5.3 Concrete lined channels
- Photo 5.4 Houses built near the floodplain area in Dongongon 2 133
- Photo 5.5 Flood survival and Drowning Risk Awareness Campaign 134 organized by the Malaysian Volunteer Fire and Rescue Association in 2013

LIST OF APPENDICES

APPENDIX A	Flood records in Penampang area, Sabah	185
APPENDIX B	Judgement value in pair-wise comparison of parameters	188
APPENDIX C	AHP analysis results of parameters	193

CHAPTER 1

RESEARCH BACKGROUND

1.1 Introduction

Flooding is one of the major natural disasters in Malaysia. All over Malaysia, including Sabah and Sarawak, there is total of 189 river basins (89 of the river basins are in peninsular Malaysia, 78 in Sabah and 22 in Sarawak), with the main channels flowing directly to the South China Sea and 85 of them are susceptible to become frequent flooding (Sani,2014). Based on the results from Department of Irrigation and Drainage, it has been estimated that an area of 29,000 km² or 9 % of the total area in Malaysia are vulnerable to this disaster, a loss of RM 915.12 million and 4,915,000 people was evacuated in 2002 (Wong, 2013).

The Penampang District of Sabah has long been known as a flood prone area, is facing a rapid economic development which resulted in further pressure to utilize various purposes such as infrastructures, residential, commercial, tourism and agricultural activities in low lying area in Moyog river floodplain. Based on the flood histories in Kota Kinabalu vicinity from July 2005 until May 2015, a total of 38 flood cases and 5 deaths that caused by the monsoon flood had been recorded (Appendix A).

In October 7th to October 10th, 2014, Penampang suffered its worse flood ever since the last big flood in 1991 (Photo 1.1). According to Penampang District Officer, around 40,000 people from 70 villages were affected by this event. This catastrophic flood occurred coincidently with continuous heavy rainfall and affected by the tail of typhoon Phanfone and typhoon Vongfong (Chris, 2014). Another recent flood disaster in Penampang occurred in September 2007 and May 2013 which were also affecting several villages.

Photo 1.1 : Some cases of flash flood in Penampang, Sabah

Sources : Penampang District Office, 2014

This research will focus on flood hazard assessment in Penampang low lying areas using Multi Criteria Evaluation (MCE) method and Geographic Information System (GIS). By the end of this research, several types of flood hazard severity maps will be produced. Although this approach looks like a general research, but it is very practical and relevance to delineate a clear flood hazard situation. These maps can help the authorities to identify the most cost-effective measurement for flood mitigation development plan. Generally, this research approach is a compulsory way in early stage for any development purposes activities and to ensure the sustainability of long-term development in low lying areas and to avoid an unplanned and mismanage development. It is hopes that the outcomes from this research can be an important reference document for the local authority and other relevant agencies for the purpose of urban planning and flood mitigation.

1.2 Problem Statement

Although millions of ringgits have been spent by the government to implement various mitigation works to solve this problem, yet it still cannot be mitigated effectively due to uncontrol floodplain development practice. Until recently, most of