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ABSTARCT 
 

June 5th 2015 incident in Ranau, Sabah has brought the attention of both local and 
international researchers due to the 6.0 magnitude of earthquake that hit the 
district. It was the most powerful earthquake ever recorded in Borneo for the past 
120 years since 1900. The records of loses demonstrate the significant needs for 
seismic vulnerability assessment on the existing buildings in the effected state. The 
objective of this study is to investigate the building vulnerabilities in the capital city 
of Sabah, Kota Kinabalu. Then, to establish a performance level of the existing 
buildings. Case buildings include major government buildings and facilities, 
educational and institutional buildings, residential buildings, commercial as well as 
public buildings. The empirical vulnerability assessment involves 250 number of 
buildings evaluations by Rapid Visual Screening according to FEMA 154 (2002). 
Local ground motion data indicates that Sabah is a region with moderate seismicity 
level. Case buildings ranging from low-rise to high-rise were screened with Level 1 
assessment form and categorized into two groups; hazardous and non-hazardous, 
based on the determined final value “cut-off value”. 60.4% of the case buildings 
deem to be potentially seismically hazardous under local ground excitation. 38.54% 
of the building stock possesses limiting seismic performance criteria and put 
forward for further seismic vulnerability assessment. Second part of this study 
involves analytical vulnerability assessment by means of Nonlinear Static Analysis 
(Pushover Analysis) using Capacity Spectrum Method. 7 case buildings were 
modeled into engineering software and evaluated with the highest expected ground 
excitation magnitude at 0.17ag with 10% probability of exceedance (PE) and 50 
years design time period with respect to 2,475 return periods. Considering elastic 
damping at β° = 5% , all case buildings are assumed to be Type B category. 
Analysis of building performance results show majority of the building stock give a 
linearly elastic response under the local seismic excitation. Structures without 
seismic code compliance were estimated to show early damage accumulation due 
to ground shaking. 
 

 
Key words: seismic vulnerability, nonlinear static analysis, rapid visual screening, 
capacity demand 
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ABSTRAK  

 
PENILAIAN KERENTANAN SEISMIK DI KOTA KINABALU, SABAH 

 
Kejadian 5 Jun 2015 di Ranau, Sabah telah menarik perhatian para 
penyelidik tempatan dan antarabangsa disebabkan gempa berkekuatan 
6.0 yang melanda daerah itu. Gempa tersebut adalah yang terkuat pernah 
dicatatkan di Borneo selama 120 tahun sejak tahun 1900. Rekod 
kehilangan menunjukkan keperluan penting untuk penilaian kerentanan 
gempa pada bangunan yang ada di negeri yang terjejas tersebut. Objektif 
kajian ini adalah untuk mengkaji kerentanan bangunan di ibu kota Sabah, 
Kota Kinabalu. Kemudian, untuk menentukan tahap prestasi bangunan 
yang ada. Bangunan kes meliputi bangunan dan kemudahan utama 
kerajaan, bangunan pendidikan dan institusi, bangunan kediaman, 
bangunan komersial dan awam. Penilaian kerentanan empirikal 
melibatkan 250 penilaian bangunan dengan Rapid Visual Screening 
menurut FEMA 154 (2002). Data gerakan tanah tempatan menunjukkan 
bahawa Sabah adalah wilayah dengan tahap gempa sederhana. Bangunan 
kes meliputi bangunan bertingkat rendah hingga bangunan bertingkat 
tinggi disaring dengan borang penilaian Tahap 1 dan dikategorikan 
kepada dua kumpulan; berbahaya dan tidak berbahaya dari segi seismik, 
berdasarkan nilai akhir yang ditentukan "nilai cut-off". 60.4% bangunan 
kes dianggap berpotensi berbahaya secara gempa akibat eksitasi tanah 
tempatan. 38.54% stok bangunan mempunyai kriteria prestasi seismik 
yang terhad dan dikemukakan untuk penilaian kerentanan seismik 
selanjutnya. Bahagian kedua kajian ini melibatkan penilaian kerentanan 
analitik dengan kaedah Analisis Statik Tidak Linear (Analisa Tolakan) 
menggunakan Kaedah Kapasiti Spektrum. 7 bangunan kes dimodelkan 
dalam perisian kejuruteraan dan dinilai dengan magnitud pengujaan 
tanah tempatan yang dijangkakan paling tinggi pada 0.17ag dengan 
kebarangkalian 10% dan jangka masa reka bentuk 50 tahun berkenaan 
dengan 2.475 tempoh pengembalian. Dengan mempertimbangkan 
redaman elastik pada 𝛽° = 5%, semua bangunan kes dianggap sebagai 
kategori Jenis B. Analisis hasil prestasi bangunan menunjukkan 
sebahagian besar stok bangunan memberikan tindak balas anjal secara 
linear di bawah pengujaan seismik tempatan. Struktur tanpa pematuhan 
kod seismik dijangkakan menunjukkan pengumpulan kerosakan awal 
akibat gegaran tanah. 
 
 

Kata Kunci: kerentanan seismik, analisis statik tidak linear, pemeriksaan 
visual yang cepat, permintaan kapasiti 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

Scientifically, earthquakes are caused by faulting, a sudden lateral or vertical 

movement of rock along a rupture surface. Accumulated strain in the earth along 

faults is released, resulting in radiation of seismic energy and ground shaking. The 

area of the fault where the sudden rupture takes place is called 

the focus or hypocenter of the earthquake. The point on the Earth's surface directly 

above the focus is called the epicenter of the earthquake. Earthquakes can also be 

triggered by volcanic or magmatic activity as well as other sudden stress changes in 

the earth. Scientists and researchers have increasingly focused their attention 

beyond seismology and the physics of the earth’s structure and interior, to look at 

real-time earthquake damage estimation. According to researches by Berckhemer 

(2002), it is possible to estimate the seismic hazard or how much an earthquake 

could potentially shake the ground in an area by looking at local seismicity, 

seismotectonics and from records of strong-motion accelerographs. 

 

 

Being one of the most destructive natural hazards, earthquake had caused 

large destruction in terms of life and economic losses (both recorded and non-

recorded). The risk posed by earthquakes gradually increases with the ever 
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expending human populations. According to the data on reported deaths 

compiled by the EM-DAT International Disaster Database, records stating the 

average amount of loss of human life were 27,000 lives per annum since 1900. 

Data shows that the number of earthquakes causing significant human and 

economic loss has increased since 1970 (Guha-Sapir and Vos, 2011). The records 

of losses demonstrate significant needs to the societies of the effected countries for 

Earthquake Risk Assessment (ERA). For the recent decade, media coverage of 

global events has expanded widely as telecommunication across the world has 

been eased with the help of social media (sites and apps) 

like Facebook, Twitter, Instagram, Snapchat and others. Hence, data quality and 

coverage on natural disaster events have vastly improved. In this section, we look 

at some of the patterns and trends in the earthquake data since 1970s. An annual 

average of 21 earthquake disasters has been reported over the last 39 years; 

according to EM-DAT criteria. But over the last 9 years, this average has increased 

to 30 earthquakes per year. According to study from Doocy et al. (2013), there 

were a range of 314,634 to 412,599 deaths, 845,345 to 1,145,093 injuries and 

more than 61 million people affected by earthquakes, where mortality was the 

greatest in Asia from 1980 through 2009. However, the frequency of seismic shocks 

with significant human impact is suggested to be underestimated due to 

inconsistent reporting across data sources.  

 

 

The three peak years for high numbers of earthquake disasters were 1990, 

2003 and 2004. Most recently, the 24thApril 2015 7.8-magnitude earthquake that 

hit Lamjung, Nepal (also known as the Gorkha earthquake) caused large-scale of 

human and economic loss, killing almost 9,000 people and may have pushed an 

estimated 2.5-3.5 per cent of the population into poverty (ESCAP, 2015). Moreover, 

the 9.0 magnitude earthquake that struck Japan’s northeastern coast and Tōhoku 

region on March 11, 2011 has triggered a tsunami with catastrophic consequences 

with material damage estimated to be $300 billion according to CNN that measure 

up to the 9.1 magnitude earthquake that shook the seas near the coast of Sumatra 

on Dec. 26, 2004, which recorded more than 227,000 fatalities. China’s Sichuan7.9 
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magnitude earthquakes left 87,000 killed and 4.8 million rendered homeless 18,000 

schools damaged with international aid reaching up to $137.5 billion. The 7.6 

magnitude shock that felled swaths of the fast-growing state of Gujarat on January 

26th, 2001 recorded at least 20,000 of casualties.  

 

 

According to (IEM, 2005), there are three types of interactions that can 

cause earthquakes, namely divergent boundary, convergent boundary and 

transform boundary. In Sumatra, the types of plate boundary that cause 

earthquakes, posing direct vibration threat to Malaysia are of the last two types. 

The NEIC estimates several million earthquakes occur in the world each year. 

However, many go undetected as they hit remote areas or have very small 

magnitudes. Table 1.1 shows the frequency of earthquakes worldwide, according to 

magnitude and annual average. The data shown for earthquakes having magnitude 

of 8 or higher were obtained based on observations since 1900, while data shown 

for earthquakes having magnitude of 5 to 7.9 were obtained since 1990. 

 

 

Table 1.1: Frequency of Earthquakes Occurrence Worldwide 

Descriptor Magnitude Annual average 

Great 8 or higher 1 

Major 7–7.9 17 

Strong 6–6.9 134 

Moderate 5–5.9 1,319 

Light 4–4.9 +/- 13,000 

Minor 3–3.9 +/- 130,000 

Very minor 2–2.9 +/- 1,300,000 

Source: National Earthquake Information Center, U.S. Geological Survey 

 

 


