SEISMIC VULNERABILITY ASSESMENT OF SELECTED BUILDINGS IN KOTA KINABALU, SABAH

FACULTY OF ENGINEERING UNIVERSITY MALAYSIA SABAH 2020

SEISMIC VULNERABILITY ASSESMENT OF SELECTED BUILDINGS IN KOTA KINABALU, SABAH

VILIANA JAINIH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER IN ENGINEERING

FACULTY OF ENGINEERING UNIVERSITY MALAYSIA SABAH 2020

UNIVERSITY MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL SEISMIC VULNERABILITY ASSESMENT OF SELECTED : **BUILDINGS IN KOTA KINABALU, SABAH**

IJAZAH SARJANA KEJURUTERAAN

KEJURUTERAAN AWAM BIDANG :

Saya VILIANA JAINIH, Sesi 2018-2020, mengaku membenarkan tesi Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- Sila tandakan (/): 4.

Menengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan Oleh,

ANITA BINTI ARSAD ~ PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Perpustakawan)

Tarikh : 11 Dec 2020

VILIANA JAINIH

MK1811009T

(Dr. Noor Sheena Herayani Harith) Penyelia

DECLARATION

I hereby declared that the work in this thesis is my own, except for the quotation, equation and all the summaries where each of them has been cited and mentioned appropriately with the sources.

11 December 2020

VILIANA JAINIH MK1811009T

CERTIFICATION

- NAME : VILIANA JAINIH
- MATRIC : MK1811009T

NUMBER

- TITLE : SEISMIC VULNERABILITY ASSESMENT OF SELECTED BUIDINGS IN KOTA KINABALU, SABAH
- DEGREE : MASTER OF ENGINEERING
- FIELD : CIVIL ENGINEERING
- DATE OF VIVA : 11 DECEMBER 2020

CERTIFIED BY;

CO - SUPERVISORY

1. MAIN SUPERVISOR Dr. Noor Sheena Herayani Harith

Signature

UNIVERSITI MALAYSIA SABAH

2. CO- SUPERVISOR Prof. Ir. Dr. Abdul Karim Bin Mirasa

ACKNOWLEDGEMENT

I am truly grateful to God for the good health, mind and well being throughout my master study that was necessary to complete this thesis. Here, I would like to take this opportunity to express my deepest gratitude to everyone who has supported and contributed in many ways towards the completion of this thesis. Indeed, with their endless support that this thesis was made possibly a success. I am sincerely thankful for their aspiring guidance, invaluably constructive criticism and advice throughout this research. First and foremost, I am really thankful to University Malaysia Sabah (UMS) for providing research grant UMSGreat (GU/2018) throughout this research. I would like to also express my sincere gratitude to mu supervisor, Dr. Noor Sheena Herayani Harith, for her valuable guidance, patience, continuous support and constructive feedbacks. Her sincere guidance helped me in all the time of research and writing of the thesis. Besides, I am also great full to the stuff of Faculty of Engineering (FKJ) for providing all the necessary facilities for this project.

Last and most importantly, I would like to thank my family for their wise counsel sympathetic ear as well as support; spiritually and verbally, during my entire degree of master. None of this would be possible without the love and strength by them throughout these years. Thank you.

Viliana Jainih 11 December 2020

ABSTARCT

June 5th 2015 incident in Ranau, Sabah has brought the attention of both local and international researchers due to the 6.0 magnitude of earthquake that hit the district. It was the most powerful earthquake ever recorded in Borneo for the past 120 years since 1900. The records of loses demonstrate the significant needs for seismic vulnerability assessment on the existing buildings in the effected state. The objective of this study is to investigate the building vulnerabilities in the capital city of Sabah, Kota Kinabalu. Then, to establish a performance level of the existing buildings. Case buildings include major government buildings and facilities, educational and institutional buildings, residential buildings, commercial as well as public buildings. The empirical vulnerability assessment involves 250 number of buildings evaluations by Rapid Visual Screening according to FEMA 154 (2002). Local ground motion data indicates that Sabah is a region with moderate seismicity level. Case buildings ranging from low-rise to high-rise were screened with Level 1 assessment form and categorized into two groups; hazardous and non-hazardous, based on the determined final value "cut-off value". 60.4% of the case buildings deem to be potentially seismically hazardous under local ground excitation. 38.54% of the building stock possesses limiting seismic performance criteria and put forward for further seismic vulnerability assessment. Second part of this study involves analytical vulnerability assessment by means of Nonlinear Static Analysis (Pushover Analysis) using Capacity Spectrum Method. 7 case buildings were modeled into engineering software and evaluated with the highest expected ground excitation magnitude at 0.17ag with 10% probability of exceedance (PE) and 50 years design time period with respect to 2,475 return periods. Considering elastic damping at $\beta_{o} = 5\%$, all case buildings are assumed to be Type B category. Analysis of building performance results show majority of the building stock give a linearly elastic response under the local seismic excitation. Structures without seismic code compliance were estimated to show early damage accumulation due to ground shaking.

Key words: seismic vulnerability, nonlinear static analysis, rapid visual screening, capacity demand

ABSTRAK

PENILAIAN KERENTANAN SEISMIK DI KOTA KINABALU, SABAH

Kejadian 5 Jun 2015 di Ranau, Sabah telah menarik perhatian para penyelidik tempatan dan antarabangsa disebabkan gempa berkekuatan 6.0 yang melanda daerah itu. Gempa tersebut adalah yang terkuat pernah dicatatkan di Borneo selama 120 tahun sejak tahun 1900. Rekod kehilangan menunjukkan keperluan penting untuk penilaian kerentanan aempa pada bangunan yang ada di negeri yang terjejas tersebut. Objektif kajian ini adalah untuk mengkaji kerentanan bangunan di ibu kota Sabah, Kota Kinabalu. Kemudian, untuk menentukan tahap prestasi bangunan yang ada. Bangunan kes meliputi bangunan dan kemudahan utama kerajaan, bangunan pendidikan dan institusi, bangunan kediaman, bangunan komersial dan awam. Penilaian kerentanan empirikal melibatkan 250 penilaian bangunan dengan Rapid Visual Screening menurut FEMA 154 (2002). Data gerakan tanah tempatan menunjukkan bahawa Sabah adalah wilayah dengan tahap gempa sederhana. Bangunan kes meliputi bangunan bertingkat rendah hingga bangunan bertingkat tinggi disaring dengan borang penilaian Tahap 1 dan dikategorikan kepada dua kumpulan; berbahaya dan tidak berbahaya dari segi seismik, berdasarkan nilai akhir yang ditentukan "nilai cut-off". 60.4% bangunan kes dianggap berpotensi berbahaya secara gempa akibat eksitasi tanah tempatan. 38.54% stok bangunan mempunyai kriteria prestasi seismik yang terhad dan dikemukakan untuk penilaian kerentanan seismik selanjutnya. Bahagian kedua kajian ini melibatkan penilaian kerentanan analitik dengan kaedah Analisis Statik Tidak Linear (Analisa Tolakan) menggunakan Kaedah Kapasiti Spektrum. 7 bangunan kes dimodelkan dalam perisian kejuruteraan dan dinilai dengan magnitud penguiaan tanah tempatan yang dijangkakan paling tinggi pada 0.17ag dengan kebarangkalian 10% dan jangka masa reka bentuk 50 tahun berkenaan dengan 2.475 tempoh pengembalian. Dengan mempertimbangkan redaman elastik pada $\beta_{\circ} = 5\%$, semua bangunan kes dianggap sebagai kategori Jenis B. Analisis hasil prestasi bangunan menunjukkan sebahagian besar stok bangunan memberikan tindak balas anjal secara linear di bawah pengujaan seismik tempatan. Struktur tanpa pematuhan kod seismik dijangkakan menunjukkan pengumpulan kerosakan awal akibat gegaran tanah.

Kata Kunci: kerentanan seismik, analisis statik tidak linear, pemeriksaan visual yang cepat, permintaan kapasiti

LIST OF CONTENTS

	Р	age
TITL	E	i
DEC	LARATION	ii
CER	TIFICATION	iii
ACK	NOWLEDGEMENTS	iv
ABS	TRACT	v
ABS	TRAK	vi
LIST	OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF SYMBOLS AND ABBREVIATIONS	xvi
LIST	OF APPENDICES	xix
CHA	TER 1: INTRODUCTION	
1.1	Overview	1
1.2	Background of Study	4
1.3	Problem Statement	13
1.4	Aim and Objectives	15
1.5	Significance of Research	15
1.6	Scope	16
1.7	Thesis Structure	17

TERATURE REVIEW
1

2.1	Overvi	ew 20				
2.2	Earthq	nquake Risk Assessment (ERA)				
2.3	Seismi	Seismic Vulnerability				
	2.3.1	Empirical Vulnerability Assessment	24			
		2.3.1.1 Existing Empirical Vulnerability methods	25			
		2.3.1.2 Continuous Vulnerability Curves	31			
	2.3.2	Analytical Vulnerability Assessment	34			
		2.3.2.1 Displacement-based Analytical Vulnerability				
		Assessment	35			
	Æ	2.3.2.2 Nonlinear Static Analysis (Pushover Analysis)	37			
СНА	TER 3:	RESEARCH METHODOLOGY				
	Testua d		42			
3.1	Introd		45			
3.2 Empirical Vulnerability Assessment3.2.1 Building Evaluation by Rapid Visual Screening FEMA154						
		(2002)	47			
	3.2.2	Data Collection Form and Building Information	48			
	3.2.3	Soil Profile	53			
	3.2.4	Building Irregularities	56			
	3.2.5	Identifying FEMA Building Type and Basic Score				
	3.2.6	5 Score Modifiers				
3.3	Analyt	ical Vulnerability Assessment	65			
	221	Defining Building Index	65			

3.3.2	Finite Element Analysis of Structure Models	67
3.3.3	Nonlinear Static Analysis with Capacity Spectrum Method	70
3.3.4	Capacity Spectrum	71
3.3.5	Bilinearization of Capacity Spectrum	74
3.3.6	Demand Spectrum	76
3.3.7	Determination of Performance Point in ADRS Format	77
3.3.8	Hinge Properties	79

CHATER 4: RESULTS AND DISCUSSION

CHA [.]	TER 5:	CONCLUSION AND RECOMMENDATION			
4.5	Discus	sion on Seismic Demand Outcomes	110		
	4.4.2	Hinge Formation	108		
	4.4.1	Building Displacement	104		
4.4	Analys	is of Building Performance Level	96		
4.3	Discus	sion on RVS Findings	93		
Z	4.2.3	Analysis of Building Status from Rapid Visual Screening	91		
A	4 <mark>.2.2</mark>	Building Benchmark	89		
ß	4.2.1	Building Attributions	88		
4.2	Preliminary Assessment of Buildings in Kota Kinabalu, Sabah				
4.1	Introduction				

5.1	Introduction	113
5.2	Concluding Remarks (Objective 1)	114
5.2	Concluding Remarks (Objective 2)	115
5.3	Recommendations	116

APPENDICES

121

118

LIST OF TABLES

		Page
Table 1.1	: Frequency of Earthquakes Occurrence Worldwide	3
Table 1.2	: Seismic Intensity and Maximum Damage to Buildings	5
Table 1.3	: Richter Magnitudes and Mercalli Intensity Scale and Their	
	Respective Effects	7
Table 3.1	: Descriptive of the Occupancy Classes in FEMA 154	
	Level 1 Data Collection Form	50
Table 3.2	: Number of Buildings Involved and Their Respective Soil Type	55
Table 3.3	: Ground Types based to Eurocode 8	55
Table 3.4	: FEMA Building Types based on ASCE/SEI 41-13 Model	62
Table 4.1	: Structural Scores with Damage Potential RVS	94
Table 4.2	: Performance Points	100
Table 4.3	: Performance Points in ADRS format	100
Table 4.4	: Building Displacements ERSITI MALAYSIA SABAH	107
Table 4.5	: Hinge States in Final Step of the Pushover Analysis	110

LIST OF FIGURES

		Page
Figure 1.1	: Tectonic Setting of Sabah and Its Major Plate Movements	10
Figure 1.2	: Fault Lines in West Coast Division of Sabah	11
Figure 1.3	: Number of Local Earthquakes and Their Respective Location	12
	in 2016	
Figure 2.1	: Vulnerability Assessment Procedure for Seismic Risk Assessment	24
Figure 2.2	: Map of Building Evaluation Findings using RVS	27
Figure 2.3	: Building Evaluation Process (ASCE 41-13, 2014)	29
Figure 2.4	: Vulnerability Curves Produced for Bare Moment Resisting	
1ST	Frames Using PSI	31
Figure 2.5	: Simplified Model for an Equivalent SDOF System	36
Figure 2.6	: Displacement Capacity Versus Period of Vibration Graph	37
Figur <mark>e 2.</mark> 7	: Capacity Curves for (a) Low-rise and (b) Middle-rise Structures	39
Figure 2.8	: Lateral Displacement VERSITI MALAYSIA SABAH	41
Figure 2.9	: Maximum Storey Drift	41
Figure 3.1	: Rapid Visual Screening Procedure in Accordance to FEMA 125	45
	(2002)	
Figure 3.2	: ATC-40 (1996) Nonlinear Static Analysis Procedure	46
Figure 3.3	: Complete Building Identification Information Segment of the	49
	Level 1 Data Collection Form	
Figure 3.4	: Complete Building Characteristics Segment of the Level 1	49
	Data Collection Form	

Figure 3.5	: Complete Occupancy segment of the Level 1 Data Collection	50
	Form	
Figure 3.6	: Sample of Building Photo and Sketches	52
Figure 3.7	: Contour Map for Site Classification in Kota Kinabalu, Sabah	54
Figure 3.8	: Soil Type Segment in the Level 1 Data Collection Form	55
Figure 3.9	: Sloping Site	57
Figure 3.10	: Weak and/or Soft Story	57
Figure 3.11	: Out-of-Plane Setback	57
Figure 3.12	: In-Plane Setback	58
Figure 3.13	: Short Column/Pier	58
Figure 3.14	: Split Levels	58
Figure 3.15	: Torsion	59
Figure 3.16	: Non-Parallel Systems	59
Figure 3.17	: Reentrant Corners	60
Figure 3.18	: Non-Parallel Systems	60
Figure 3.19	: Beams Do Not Align With Columns	60
Figure 3.20	: Irregularity Segment of the Level 1 Data Collection Form	61
Figure 3.21	: FEMA Building Type and Basic Score Segment of the Level 1	62
	Data Collection Form for Moderate Seismicity	
Figure 3.22	: Scoring Matrix Segment of the Level 1 Data Collection Form	
	for Medium Seismicity	64
Figure 3.23	: Complete Level 1 Data Collection Form Used by Screener	64
Figure 3.24	: Load Combinations for Nonlinear Static Analysis	67
Figure 3.25	: 3D view of Building Modeled in Software	69

Figure 3.26	: Typical Floor Plan of the Building	70
Figure 3.27	: Formation of Pushover Curve	72
Figure 3.28	: Capacity Spectrum Curve	73
Figure 3.29	: Equivalent Bilinearization in Inelastic SDOF System	74
Figure 3.30	: Equivalent Viscous Damping	75
Figure 3.31	: Elastic Response Spectrum	77
Figure 3.32	: Elastic Response Spectrum	77
Figure 3.33	: Evaluation of Performance Point in ADRS Format	78
Figure 3.34	: Flexural Hinge Property	79
Figure 4.1	: Building Types in Kota Kinabalu and Their Respective	
æ	Percentage	83
Figure 4.2	: Residential Buildings (C1)	85
Figure 4.3	: Shoplots (C1)	85
Figure 4.4	: Residential Buildings (PC2)	86
Figure 4.5	: Shoplots (PC2)	86
Figure 4.6	: Government Buildings (C2)	86
Figure 4.7	: School Buildings (C3)	87
Figure 4.8	: Residential Buildings (C3)	87
Figure 4.9	: Government Buildings (S1)	88
Figure 4.10	: Commercial Buildings (S4)	88
Figure 4.11	: Building Attribution based on Number of Storey	89
Figure 4.12	: Building Irregularity Benchmark	90
Figure 4.13	: Status of Buildings on Potential Seismic Hazards	92
Figure 4.14	: Status of Buildings on Potential Seismic Hazards	93

Figure 4.15(a): View on Typical Residential Building (Building VM)	97
Figure 4.15(b): Building Plan (VM)	97
Figure 4.16(a): View on Government Building Model (JKR)	98
Figure 4.16(b): Building Plan (JKR)	98
Figure 4.17(a): View on Hospital Building Model (HQE)	98
Figure 4.17(b): Building Plan (HQE)	99
Figure 4.18 : JKR Demand Capacity Graphs	100
Figure 4.19 : PH Demand Capacity Graph	101
Figure 4.20 : WD Demand Capacity Graph	101
Figure 4.21 : YS Demand Capacity Graph	101
Figure 4.22 : WP Demand Capacity Graph	102
Figure 4.23 : VM Demand Capacity Graph	102
Figure 4.24 : HQE Demand Capacity Graph	102
Figure 4.25(a): Building deformation along X direction (VM)	104
Figure 4.25(b): Building deformation along Y direction (VM)	105
Figure 4.26(a): Building deformation along X direction (JKR)	105
Figure 4.26(b): Building deformation along Y direction (JKR)	105
Figure 4.27(a): Building deformation along X direction (HQE)	106
Figure 4.27(b): Building deformation along Y direction (HQE)	106
Figure 4.28 : Storey Displacement in X Direction for Soil Type	106
Figure 4.29 : Storey Displacement in X Direction for Soil Type D	107
Figure 4.30 : Storey Displacement in X Direction for Soil Type E	107
Figure 4.31 : Hinges Formation on Building VM	109
Figure 4.32 : Hinges Formation on Building PH	109

LIST OF ABBREVIATIONS AND SYMBOLS

- **MMD** Malaysian Meteorological Department
- MOSTI Ministry of Science, Technology and Innovation
- NERC Non-engineered Reinforced Concrete
- RVS Rapid Visual Screening
- ERA Earthquake Risk Assessment
- **IEM** Institute of Engineering Malaysia
- FEM Finite Element Method
- **SDOF** Single Degree of Freedom
- MDOF Multi Degree of Freedom
- MDR Mean Damage Ratio
- **SLS** Service Limit State
- RC Reinforced Concrete
 - PoA Pushover Analysis SITI MALAYSIA SABAH
 - **GIS** Geographical Information System
 - SI Soil Investigation
 - PI Plasticity Index
 - ADRS Acceleration-Displacement Response Spectrum
 - PP Performance Point
 - IO Immediate Occupancy level
 - LS Life Safety level
 - CP Collapse Prevention level

- Γ_1 Participation factor corresponding to fundamental mode, ϕ_1
- m_i Lump mass at $i_{t/t}$ floor
- ϕ_{i1} $i_{t/t}$ floor element of the fundamental mode, ϕ_1
- T Corresponding vibration period
- *S_d* Spectral displacement ordinate of the elastic demand spectrum
- *S*_a Spectral acceleration ordinate of the elastic demand spectrum
- *T_B* Lower limits of constant spectral acceleration plateau
- T_c Upper limits of constant spectral acceleration plateau
- T_D Controlling periods for constant displacement plateau

LIST OF APPENDICES

Appendix A	:	Structural Drawing of Building WP	121
Appendix B	:	Structural Drawing of Building VM	122
Appendix C	:	Architectural Drawing of Building	122
Appendix D	:	Complete RVS Level 1 Form	123
Appendix E	:	Complete RVS Level 1 Form	124
Appendix F	:	Complete RVS Level 1 Form	125
Appendix G	:	Complete RVS Level 1 Form	126
Appendix H	:	Complete RVS Level 1 Form	127
Appendix I	R	Complete RVS Level 1 Form	128
Appen <mark>dix J</mark>	:	Complete RVS Level 1 Form	129
Appen <mark>dix K</mark>		Complete RVS Level 1 Form	130
Appendix L	£,	Complete RVS Level 1 Form	131
Appendix M		Complete RVS Level 1 Form MALAYSIA SABAH	132

CHAPTER 1

INTRODUCTION

1.1 Overview

Scientifically, earthquakes are caused by faulting, a sudden lateral or vertical movement of rock along a rupture surface. Accumulated strain in the earth along faults is released, resulting in radiation of seismic energy and ground shaking. The area of the fault where the sudden rupture takes place is called the focus or hypocenter of the earthquake. The point on the Earth's surface directly above the focus is called the epicenter of the earthquake. Earthquakes can also be triggered by volcanic or magmatic activity as well as other sudden stress changes in the earth. Scientists and researchers have increasingly focused their attention beyond seismology and the physics of the earth's structure and interior, to look at real-time earthquake damage estimation. According to researches by Berckhemer (2002), it is possible to estimate the seismic hazard or how much an earthquake could potentially shake the ground in an area by looking at local seismicity, seismotectonics and from records of strong-motion accelerographs.

Being one of the most destructive natural hazards, earthquake had caused large destruction in terms of life and economic losses (both recorded and nonrecorded). The risk posed by earthquakes gradually increases with the ever

expending human populations. According to the data on reported deaths compiled by the EM-DAT International Disaster Database, records stating the average amount of loss of human life were 27,000 lives per annum since 1900. Data shows that the number of earthquakes causing significant human and economic loss has increased since 1970 (Guha-Sapir and Vos, 2011). The records of losses demonstrate significant needs to the societies of the effected countries for Earthquake Risk Assessment (ERA). For the recent decade, media coverage of global events has expanded widely as telecommunication across the world has with the help of social media been eased (sites and apps) like Facebook, Twitter, Instagram, Snapchat and others. Hence, data quality and coverage on natural disaster events have vastly improved. In this section, we look at some of the patterns and trends in the earthquake data since 1970s. An annual average of 21 earthquake disasters has been reported over the last 39 years; according to EM-DAT criteria. But over the last 9 years, this average has increased to 30 earthquakes per year. According to study from Doocy et al. (2013), there were a range of 314,634 to 412,599 deaths, 845,345 to 1,145,093 injuries and more than 61 million people affected by earthquakes, where mortality was the greatest in Asia from 1980 through 2009. However, the frequency of seismic shocks with significant human impact is suggested to be underestimated due to inconsistent reporting across data sources. SITI MALAYSIA SABAH

The three peak years for high numbers of earthquake disasters were 1990, 2003 and 2004. Most recently, the 24thApril 2015 7.8-magnitude earthquake that hit Lamjung, Nepal (also known as the Gorkha earthquake) caused large-scale of human and economic loss, killing almost 9,000 people and may have pushed an estimated 2.5-3.5 per cent of the population into poverty (ESCAP, 2015). Moreover, the 9.0 magnitude earthquake that struck Japan's northeastern coast and Tōhoku region on March 11, 2011 has triggered a tsunami with catastrophic consequences with material damage estimated to be \$300 billion according to CNN that measure up to the 9.1 magnitude earthquake that shook the seas near the coast of Sumatra on Dec. 26, 2004, which recorded more than 227,000 fatalities. China's Sichuan7.9

magnitude earthquakes left 87,000 killed and 4.8 million rendered homeless 18,000 schools damaged with international aid reaching up to \$137.5 billion. The 7.6 magnitude shock that felled swaths of the fast-growing state of Gujarat on January 26th, 2001 recorded at least 20,000 of casualties.

According to (IEM, 2005), there are three types of interactions that can cause earthquakes, namely divergent boundary, convergent boundary and transform boundary. In Sumatra, the types of plate boundary that cause earthquakes, posing direct vibration threat to Malaysia are of the last two types. The NEIC estimates several million earthquakes occur in the world each year. However, many go undetected as they hit remote areas or have very small magnitudes. Table 1.1 shows the frequency of earthquakes worldwide, according to magnitude and annual average. The data shown for earthquakes having magnitude of 8 or higher were obtained based on observations since 1900, while data shown for earthquakes having magnitude of 5 to 7.9 were obtained since 1990.

Descriptor	Magnitude	I MAL Annual average BAH
Great	8 or higher	1
Major	7–7.9	17
Strong	6-6.9	134
Moderate	5–5.9	1,319
Light	4-4.9	+/- 13,000
Minor	3–3.9	+/- 130,000
Very minor	2–2.9	+/- 1,300,000

 Table 1.1: Frequency of Earthquakes Occurrence Worldwide

Source: National Earthquake Information Center, U.S. Geological Survey