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ABSTRACT 
 
Multicollinearity happens when two or more independent variables in a multiple 
regression model are highly correlated. This increases the standard errors as the 
coefficients cannot be estimated accurately. Insignificant variable which does not 
contribute to a model may also affect the interpretation of data. Therefore, the key 
objective of this work is to develop a best model that is free from multicollinearity 
problem and insignificant variables. Originally, there are 25 variables in the data set. 
Using factor analysis, correlation coefficient values and dummy transformation the 
following variables are identified: body weight as dependent variable, chest diameter, 
shoulder girth, chest girth, bicep girth, forearm girth and wrist girth each as single 
quantitative independent variable and ankle diameter, biacromial diameter, elbow 
diameter, wrist diameter and gender each as dummy variable. The interaction 
variables involved here is up to the fifth-order (product of 6 variables). Variables 
which are lowly correlated with dependent variable are not removed, but are 
transformed into dummy variables. This work also identifies the significance of 
interaction variables and variables which are lowly correlated with dependent 
variables in an analysis. So, applying the concept of backward elimination, 
multicollinearity and coefficient tests are employed to discard variables systematically 
from each of all possible models. Multicollinearity source variables are removed using 
a modified method on the Zainodin-Noraini multicollinearity remedial method. Finally, 
a best model is obtained, free from multicollinearity problem and insignificant 
variables. Interaction variables are found to play important role as the best model 
consists of two single quantitative independent variables (chest diameter, forearm 
girth), four first-order interaction variables (chest girth and wrist girth, and bicep girth 
each with biacromial, ankle, gender) and one second-order interaction variable (chest 
girth, chest diameter and shoulder girth). The highest interaction order found in the 
best model is up to the second-order. Variables which are lowly correlated with 
dependent variable (biacromial diameter, ankle diameter and gender) are found to be 
significant and appear in the best model as interaction variables with bicep girth, 
respectively. Thus, the results of this work suggest a suitable procedure for 
researchers when dealing with a large number of independent variables. 
 
Keywords:  Multicollinearity, insignificant variable, multiple regression, interaction 
 variable, dummy variable 
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ABSTRAK 
 
TEKNIK TERUBAHSUAI UNTUK MENGATASI MASALAH MULTIKOLINEARITI 

DALAM MODEL REGRESI BERGANDA 
 
Multikolineariti berlaku apabila dua atau lebih daripada dua pemboleh ubah tak 
bersandar dalam suatu model regresi berganda adalah berkolerasi tinggi. Hal ini 
meningkatkan sisihan piawai kerana pekali tidak dapat dianggarkan dengan tepat. 
Pemboleh ubah tidak signifikan yang tidak menyumbang kepada model juga 
berkemungkinan mempengaruhi pentafsiran data. Oleh itu, objektif utama kerja ini 
adalah untuk membentuk satu model terbaik yang bebas daripada masalah 
multikolineariti dan pemboleh ubah tidak signifikan. Pada asalnya, terdapatnya 25 
pemboleh ubah dalam set data. Dengan menggunakan faktor analisis, nilai pekali 
kolerasi dan penjelmaan patung, pemboleh ubah-pemboleh ubah berikut dikenalpasti: 
berat badan sebagai pemboleh ubah bersandar, diameter dada, liltan bahu, lilitan 
dada, lilitan bisep, lilitan lengan dan lilitan pergelangan tangan sebagai pemboleh 
ubah tidak bersandar kuantitatif tunggal dan diameter pergelangan kaki, diameter 
biakromial, diameter siku, diameter pergelangan tangan dan jantina sebagai pemboleh 
ubah patung. Pemboleh ubah-pemboleh ubah interaksi sehingga peringkat kelima 
terlibat (pendaraban daripada 6 pemboleh-ubah). Pemboleh ubah-pemboleh ubah 
yang berkolerasi rendah dengan pemboleh ubah bersandar tidak disingkirkan daripada 
analisis, tetapi dijelmakan menjadi pemboleh ubah patung. Kerja ini juga menerokai 
kepentingan pemboleh ubah interaksi dan pemboleh ubah yang berkolerasi rendah 
dengan pemboleh ubah bersandar dalam suatu analisis. Oleh itu, dengan 
mengaplikasikan konsep kaedah penghapusan ke belakang, ujian multikolineariti dan 
ujian pekali digunakan untuk menggugurkan pemboleh ubah daripada setiap model 
berkemungkinan secara sistematik. Satu teknik terubahsuai atas teknik mengatasi 
multikolineariti Zainodin-Noraini digunakan untuk menggugurkan pemboleh ubah 
punca multikolineariti. Akhirnya, satu model terbaik yang bebas daripada masalah 
multikolineariti dan pemboleh ubah tidak signifikan diperolehi. Didapati pemboleh 
ubah interaksi memainkan peranan penting kerana terdapatnya dua pemboleh ubah 
tidak bersandar kuantitatif tunggal (diameter dada, lilitan lengan), empat pemboleh 
ubah interaksi peringkat pertama (lilitan dada dengan lilitan pergelangan tangan, dan 
lilitan bisep masing-masing dengan biakromial, pergelangan kaki dan jantina) dan satu 
pemboleh ubah interaksi peringkat kedua (lilitan dada, diameter dada dan lilitan bahu) 
dalam model terbaik yang diperolehi. Didapati peringkat interaksi tertinggi dalam 
model terbaik ialah peringkat kedua. Pemboleh ubah-pemboleh ubah yang berkolerasi 
rendah dengan pemboleh ubah bersandar (diameter biakromial, diameter siku dan 
jantina) didapati signifikan dan masing masing berinteraksi dengan lilitan bisep. Oleh 
itu, keputusan kerja ini mencadangkan satu prosedur kepada penyelidik lain apabila 
berurusan dengan bilangan pemboleh ubah tidak bersandar yang banyak. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

In real life, there are many factors or independent variables affecting one dependent 

variable. However, researchers may attempt to minimize the number of the possible 

models and number of parameters rather than estimate coefficients of every possible 

independent variable initially considered in the data set. Thus, this work focuses on 

the simplified steps in handling a large number of independent variables. Moreover, 

by having models in which dependent variable depends on more than one 

independent variables, this leads this work to the discussion of multiple regression 

models, which is presented in Subsection 1.2. One of the major challenges in multiple 

linear regression analysis is to eliminate multicollinearity source variables and 

insignificant variables from the models. Although some methods have been 

introduced in encountering this problem, the existing methods are found to have 

some weaknesses. The method suggested by this work in overcoming this problem is 

discussed in Chapter 3, while in this chapter, definition on the multicollinearity 

problem and insignificant variables are described in Subsections 1.3 and 1.4. Another 

concern in a multiple linear regression model is whether the independent variables 

interact with each others in affecting the dependent variable. Thus, this chapter also 

discusses on the interaction variables in Subsection 1.5. Subsection 1.6 presents the 

problem that are faced in a multiple linear regression model with higher order 

interaction variables, which lead to the objectives of this work as presented in 

Subsection 1.8. Subsections 1.9 and 1.10 describe the scope of this work and the 

importance of implementing this work. 

 

 

1.2 Multiple Linear Regression 

Gujarati and Porter (2009) stated that based on the historical origin of the term 

“regression” that came from Francis Galton, who observed that although there was a 
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tendency for short parents to have short children and tall parents to have tall children, 

the average height of children with a fixed parents’ height tended to move or “regress” 

toward the average height of the population as a whole. In other words, the heights 

of children of extraordinarily short or extraordinarily tall parents tend to “regress” 

toward the average height of the population. Karl Pearson, who has collected over a 

thousand records of heights of members of family groups, verified his friend’s, 

Galton’s law of universal regression. He observed that the average height of sons of a 

group of short fathers was greater than their fathers’ height and the average height 

of sons of a group of tall fathers was less than their fathers’ height. In other words, 

“regressing” short and tall sons alike toward the average height of all men. Galton 

regarded this as “regression to mediocrity”. 

 

 

 However, the modern interpretation of regression is quite different. 

Regression analysis is about the study of the dependence of one variable (dependent 

variable) on one or more other variables (independent variables), in order to estimate 

and or predict the (population) mean of the dependent variable based on the known 

or fixed (in repeated sampling) values of the independent variables. For instance, 

multiple regression can be used to predict a student’s height (dependent variable) 

using age, gender and father’s and mother’s heights (independent variables). Multiple 

regression is also employed to predict the crop yield in a farm (dependent variable) 

using the rainfall and amount of fertilizer (independent variables). In the field of 

studies that are related to body weight, multiple regression is also utilized by Bernal-

Orozco et al. (2010) in developing a new equation to estimate body weight 

(dependent variable) in elderly Mexican women by using anthropometric 

measurements (independent variables). Buckley et al. (2012) also employed multiple 

regression in generating an equation to predict Emergency Department (ED) patients’ 

weights (dependent variable) using the anthropometric measurements, including tibial 

length and abdominal, neck, chest, arm, and thigh circumferences (independent 

variables). 
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1.3 Multicollinearity 

Warner (2008) stated that multicollinearity happens when there are high correlations 

among independent variables (when the correlations among independent variables 

are more than 0.90). In this case, these independent variables may compete to 

explain much of the similar variance and it would be difficult to distinguish their 

contributions to the dependent variable. For better understanding, multicollinearity 

can be likened to a lovers’ triangle. James is in love with two twins who are alike, 

Kate and Kelly. James feels happy when he is with Kate, and a “meaningful” 

relationship exists between them. James also feels happy when he is with Kelly, and a 

“meaningful” relationship also exists between them. However, when James is with 

both Kate and Kelly, James is confused and cannot separate their individual 

characteristics as they are so much alike, and so no “meaningful” relationship exists 

between them. This is just like multicollinearity. There exists a significant 

(“meaningful”) relationship between the dependent variable (James) and either 

independent variable (Kate or Kelly). But confusion reigns when both independent 

variables exist at the same time. Or, multicollinearity can also be similar to the case 

when two people are singing loudly and it is hard to discern who is louder as they 

offset each other. 

 

 

 According to Gujarati and Porter (2009), the term multicollinearity is first 

used by Ragnar Frisch. Originally, multicollinearity means the existence of an exact or 

perfect linear relationship among some or all independent variables of a regression 

model. However, the term multicollinearity is utilized in a broader sense nowadays to 

include the case of perfect multicollinearity, as well as the less than perfect 

multicollinearity. The multicollinearity problem may exist due to several factors: the 

data collection method employed, constraints on the model or in the population that 

being sampled, model specification and an overdetermined model. Firstly, 

multicollinearity may happen due to the method employed in collecting data; where 

the sampling is carried over on a limited range of the values taken by the 

independent variables in the population and thus insufficient variability in the values 

of the independent variables. Secondly, multicollinearity also exists when there are 

constraints on the model; for instance, in the regression of blood pressure 

(dependent variable) with BMI (weight/height2) and weight (independent variables), 
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there is a constraint in the model as weight is involved in the formulation of BMI. 

Thirdly, model specification such as adding polynomial terms to a regression model 

also causes multicollinearity, especially when the range of independent variable is 

small. Next, an overdetermined model, or which is defined as a model with more 

independent variables than the number of observations in the sample is also one of 

the factors that causes multicollinearity. 

 

 

1.4 Insignificant Variables 

Ramanathan et al. (1997) mentioned that insignificant variables can affect the 

precision of the coefficients that are left in the model and the powers of hypothesis 

tests. Therefore, in their work on developing a number of models to produce very 

short run forecasts of hourly system loads, they omitted variables which were 

insignificant to improve the efficiency of their work. In the recent year, Jackson (2012) 

also discussed on the inclusion of variables that are highly insignificant in an equation. 

He mentioned that these variables tends to raise the standard error of estimate and 

may cause variables that are significant in reality to be described as insignificant. In 

the following year, Haines and Fiori (2013) also supported the idea of Jackson (2012). 

They stated that the elimination of insignificant variables from model can aid in 

reducing the model dimensionality and thus, gives a more accurate standard error of 

estimate. 

 

 

1.5 Interaction Variables 

Allen (1997) mentioned that in multiple regression analysis, people always make the 

initial assumption that the dependent variable can be predicted most accurately by a 

linear function of the independent variables. Nevertheless, the effects of independent 

variables on a dependent variable are not always additive, nonadditive effects or 

interaction effects may also present in some cases. According to Allison (1999), 

interaction involves two or more than two independent variables. Black and Eldredge 

(2002) stated that an interaction variable can be created by multiplying the data 

values of one variable by the values of another variable. They also supported the idea 

of Allen (1997) that the effects of two variables are not additive in some cases. They 

believed that there are interacting effects between the two variables. For instance, 
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interaction effects may present in the independent variables age and education level 

in estimating monthly income. Interaction effects may also present between 

temperature and humidity in estimating the annual crop. The later work carried out 

by Ge and Frick (2007) supported the idea of Black and Eldredge (2002), namely the 

interaction variables are useful in cases where the dependent variable does not 

exhibit a linear relationship with the independent variables. They have included 3 

first-order interaction variables in their work on modeling of beach bacteria 

concentrations using multiple regression. They found that omitting interaction 

variables may result in biased models. In this sense, researchers should include 

interaction variables in the model and identify the significance of interaction variables 

by using multiple regression analysis. 

 

 

1.6 Problem Statement 

Researchers may always attempt to include all the possible independent variables in 

their analyses so that they would not lose any important information. However, in real 

life, there may happen that a dependent variable is affected by too many independent 

variables. Thus, when facing a large number of independent variables, the doubt of 

whether to use all the independent variables in the analysis or to discard some of the 

independent variable from analysis remains a problem. Besides, researchers also 

attempt to get a best model which is free from multicollinearity problem and 

insignificant variables that would give the best estimation on the dependent variable. 

However, the procedures in getting a best model which is free from multicollinearity 

problem and insignificant variables remain unclear because the existing methods are 

found to have their own weaknesses. 

 

 

1.7 Motivation of Work 

The studies carried out by Tay et al. (2012), Zainodin and Yap (2010) and Zainodin et 

al. (2011) have motivated this work. This is because in the work carried out by Tay et 

al. (2012), SPSS did not run the regression on all of the predictors in one of their 

models. This can be seen from the excluded variables table shown in their work, 

where three predictor variables are excluded from the regression model. It is possible 

that that there exists multicollinearity among the predictors and this may degrade the 


