# DYNAMIC SOIL AMPLIFICATION FACTORS AND INFLUENCE OF SOIL CONDITIONS IN KOTA KINABALU, SABAH



FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2020

## DYNAMIC SOIL AMPLIFICATION FACTORS AND INFLUENCE OF SOIL CONDITIONS IN KOTA KINABALU, SABAH

**LESLEY HOUSTEN C. KIBAT** 

# THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OFENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2020

#### **UNIVERSITI MALAYSIA SABAH**

#### BORANG PENGESAHAN STATUS TESIS

### JUDUL : DYNAMIC SOIL AMPLIFICATION FACTORS AND INFLUENCE OF SOIL CONDITIONS IN KOTA KINABALU, SABAH

- IJAZAH : SARJANA KEJURUTERAAN
- BIDANG : KEJURUTERAAN AWAM

Saya **LESLEY HOUSTEN C. KIBAT**, Sesi **2017-2020**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan ( / ):



(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh,

#### LESLEY HOUSTEN C. KIBAT MK1621028T

(Tandatangan Pustakawan)

Tarikh: 10 MAC 2020

(Dr. Noor Sheena Herayani binti Harith) Penyelia Utama

## DECLARATION

This work is my own work except for the excerpts, summaries and references to which I have outlined each source.

10<sup>th</sup>FEBRUARY 2020

LESLEY HOUSTEN C. KIBAT MK1621028T



## CERTIFICATION

- NAME : LESLEY HOUSTEN C. KIBAT
- MATRIK NO. : **MK1621028T**
- TITLE : DYNAMIC SOIL AMPLIFICATION FACTORS AND INFLUENCE OF SOIL CONDITIONS IN KOTA KINABALU, SABAH
- DEGREE : MASTER OF ENGINEERING
- FIELD : CIVIL ENGINEERING
- VIVA DATE : 10<sup>TH</sup>JANUARY 2020



VERIFIED BY;

UNIVERSITI MALAYSIA SABAH

#### **CO-SUPERVISION**

Signature

#### 1. MAIN SUPERVISOR

Dr. Noor Sheena Herayani binti Harith

#### 2. CO-SUPERVISOR

Prof. Ir. Dr. Abdul Karim bin Mirasa

### ACKNOWLEDGEMENTS

Firstly, I wish to thank God for giving me the opportunity to embark on my master and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Noor Sheena Herayanibinti Harith, and co-supervisor, Prof. Ir. Dr. Abdul Karim bin Mirasa. Thank you for the support, patience and ideas in assisting me with this study. I also would like to express my gratitude to thestaff of Faculty of Engineering (FKJ)of Universiti Malaysia Sabah (UMS) especially Dr. Noor Maizurabinti Ismail, Dr.Ahmad NurfaidhibinRizalman, Dr.Siti JaharabintiMatlan, Mr. Bolhasney bin Borhanordin and Mr. Azwan bin Gakau for providing the knowledge, facilities and assistance towards the completion of this study.

My appreciation also goes to the Faculty of Science and Natural Resources (FSSA) which had provided me a handful of helps during analysis stage. Special thanks to my friends for helping me in my hardship and finishing this study.

Finally, this thesis is dedicated to my very dear mother and sister for their guide and endless motivation until the completion of my study.

UNIVERSITI MALAYSIA SABAH



#### ABSTRACT

Sabah is a state located in the area of moderate earthquake intensity which mostly involves the region of Kundasang, Ranau. The magnitudeof M<sub>w</sub> 6.0 earthquake damaged approximately 50 buildings including schools, hospital and mosque. This earthquake intensity was the highest in history that affected Malaysia. A city that was also affected by the M<sub>w</sub> 6.0 is Kota Kinabalu, which is located 200 km away. The city comprises many mid- to high-rise buildings that were not designed based on seismic provision. In Kota Kinabalu, the geological types below the city show that there are two types of soil, namely the very loose sand and sensitive clay. These types of soils are liable to be transformed due to the earthquakeas they might lose their original soil structure thus undergo a compaction stage. Therefore, this study had been carried out based on three objectives. The first objective was to produce the contour map for Kota Kinabalu city in terms of site class B, C, D and E. The second objective was to determine the soil amplification factor for each soil type due to the earthquake magnitude of M<sub>w</sub> 6.1 and M<sub>w</sub> 5.9. Lastly was to determine the fragility curves from analysis of four high-rise buildings. Soil amplification factor, f is the ratio between the peak ground acceleration (PGA) and pseudo-spectral acceleration (PSA) of values. This value of f will be used in determining the pushover analysis. From the result, it is shown that 28% of soil is class B, 24% is class C, 25% is class D and 23% is class E. This study showed that the amplification factor for time history of M<sub>w</sub> 5.9 at period t=0.01s is between 0.392 and 4.302. Meanwhile, the amplification factor for time history of M<sub>w</sub> 6.1, t=0.01s is between 0.199 and 6.202. The base shear of fourbuilding models denoted by B1, B2, B3 and B4 shows that building B2 produced the highest displacement under both magnitudes of  $M_w$  6.1 and  $M_w$  5.9.

#### ABSTRAK

#### FAKTOR AMPLIFIKASI TANAH DINAMIK DAN PENGARUH CIRI-CIRI TANAH DI KOTA KINABALU, SABAH

Sabah merupakan negeri yang berada di kawasan gempa bumi bersaiz sederhana yang kebanyakkannya berada di daerah Kundasang, Ranau. Gempa bumi bermagnitud M<sub>w</sub>6.0 telah mengakibatkan banyak kerosakan terhadap 50 buah bangunan termasuklah sekolah-sekolah, hospital dan masjid. Menurut rekod, kadar intensiti gempa tersebut merupakan yang tertinggi di Malaysia. Dalam jarak 200 km dari daerah Kundasang, terletaknya sebuah bandar Kota Kinabalu, di mana kawasan ini juga menerima kesan daripada gempa bumi bermagnitud M<sub>w</sub> 6.0. Bandar ini mempunyai bangunan-bangunan sederhana dan tinggi yang banyak namun ada yang tidak direkabentuk dengan bebanan seismik. Di bandar ini, jenis geologi di sekitar menunjukkan bahawa terdapat dua jenis tanah iaitu berunsur seperti pasir yang bersifat longgar dan tanah liat yang sensitif. Jenis-jenis tanah ini boleh berubah bentuk akibat gempa bumi yang akhirnya mengakibatkan kehilangan struktur asalnya dan akhirnya mengalami peringkat pemadatan. Oleh itu, kajian ini dijalankan berdasarkan tiga obj<mark>ektif.</mark> Obj<mark>ekti</mark>f pertama adalah untuk menghasilkan sebuah peta kontur bagi setiap jenis tanah B, C, D dan E di Kota Kinabalu. Objektif kedua adalahuntuk memperolehi faktor amplikasi tanah bagi setiap jenis tanah yang terhasil daripada gempa bumi bermagnitud Mw6.1 danMw5.9. Akhir sekali adalah untuk menentukan keluk kerapuhan terhadap empat buah bangunan-bangunan. Faktor amplifiksi tanah, f adalah nisbah nilai pecutan tinggi tanah (PGA) dan pecutan pseudo-spectral (PSA). Faktor nilai f digunakan untuk analisis pushover. Hasil daripada keputusan menunjukkan bahawa, terdapat 28% adalah dari jenis tanah B, 24% jenis tanah C, 25% jenis tanah D dan 23% jenis tanah E. Kajian ini menunjukkan bahawa faktor penguatan untuk gerakan sejarah masa  $M_w$  5.9, tempoh masa, t = 0.01s berada dalam julat 0.392 dan 4.302 manakala untuk  $M_w$  6.1, t = 0.01s dalam julat 0.199 dan 6.202. Daya ricih asas untuk empat model ditandakan sebagai B1, B2, B3 dan B4 menunjukkan bahawa bangunan B2 menghasilkan nilai sesaran yang terbesar kesan daripada kedua-dua jenis magnitud, M<sub>w</sub>6.1 and M<sub>w</sub>5.9.

## **TABLE OF CONTENTS**

|                                                       | Page |
|-------------------------------------------------------|------|
| TITLE                                                 | i    |
| DECLARATION                                           | ii   |
| CERTIFICATION                                         | iii  |
| ACKNOWLEDGEMENTS                                      | iv   |
| ABSTRACT                                              | v    |
| ABSTRAK                                               | vi   |
| TABLE OF CONTENTS                                     | vii  |
| LIST OF TABLE                                         | х    |
| LIST OF FIGURES                                       | xii  |
| LIST OF ABBREVIATIONS                                 | xv   |
| LIST OF APPENDICES                                    | xvi  |
| CHAPTER 1: INTRODUCTION                               |      |
| 1.1 Background of The Study UNIVERSITI MALAYSIA SABAH | 1    |
| 1.1.1 Fault Rupture                                   | 4    |
| 1.1.2 Fault Rupture in Sabah                          | 6    |
| 1.1.3 Earthquake Risks                                | 8    |
| 1.1.4 Seismic Behaviour on Building Structure         | 10   |
| 1.1.5 Buildings in Sabah                              | 13   |
| 1.2 Problem Statement                                 | 13   |
| 1.3 Objectives                                        | 14   |
| 1.4 Scope of Work                                     | 14   |
| 1.5 Limitations of Study                              | 14   |
| CHAPTER 2: LITERATURE REVIEW                          |      |
| 2.1 Introduction                                      | 16   |

| 2.2    | Geological Properties in Kota Kinabalu Region         | 17 |
|--------|-------------------------------------------------------|----|
| 2.3    | Seismic Microzonation                                 | 20 |
| 2.3.1  | Seismic Hazard Assessment Studies in Sabah            | 22 |
| 2.4    | Dynamic Properties of Soil Samples                    | 24 |
| 2.4.1  | Peak Ground Acceleration                              | 25 |
| 2.5    | Structural Vulnerability of Buildings                 | 25 |
| 2.5.1  | Risk Analysis                                         | 26 |
| 2.5.2  | Scenario Studies                                      | 28 |
| 2.5.3  | Buildings in Kota Kinabalu city                       | 28 |
| 2.5.4  | Building Types                                        | 29 |
| 2.5.5  | Displacement-Based Earthquake Loss Assessment (DBELA) | 31 |
| 2.5.6  | Application of Infill Walls in Building Structures    | 32 |
| 2.5.7  | Properties of Building Parameters                     | 32 |
| 2.5.8  | Fragility curves of Reinforced Concrete Buildings     | 33 |
| 2.6    | Earthquake Resistant Design of Building               | 35 |
| 2.7    | Summary                                               | 36 |
| СНАРТІ | ER 3: METHODOLOGY                                     |    |
| 3.1    | Introduction                                          | 37 |
| 3.1.1  | Flowchart of methodology                              | 37 |
| 3.2    | Contour Map for Site Class B, C, D and E.             | 38 |
| 3.3    | Determination of Soil Amplification Factor            | 40 |
| 3.3.3  | Shear Modulus (Gmax)                                  | 40 |
| 3.3.4  | Peak Ground Acceleration (PGA)                        | 42 |
| 3.3.5  | Pseudo-Spectral Acceleration (PSA)                    | 43 |
| 3.3.6  | Soil Amplification factor, f                          | 43 |
| 3.4    | Representation for Pushover Curves on Buildings       | 48 |
| 3.4.1  | Parameters of Structural Buildings Vulnerability      | 48 |
| 3.4.2  | Number of Storey, <i>n</i>                            | 49 |
|        | viii                                                  |    |

| 3.4.3  | Height Range, H                                                      | 50  |  |  |  |
|--------|----------------------------------------------------------------------|-----|--|--|--|
| 3.4.4  | Hinge Properties of Beam and Column Components                       | 52  |  |  |  |
| 3.4.4  | Pushover Analysis                                                    | 53  |  |  |  |
| 3.4.5  | Capacity Curves                                                      | 55  |  |  |  |
| 3.4.6  | Selected Building Models                                             | 56  |  |  |  |
| 3.5    | Summary                                                              | 58  |  |  |  |
| CHAPT  | ER 4: RESULTS AND DISCUSSION                                         |     |  |  |  |
| 4.1    | Overview                                                             | 59  |  |  |  |
| 4.1.1  | Site Classification and Dynamic Soil Properties                      | 59  |  |  |  |
| 4.1.2  | Determination of Soil Amplification Factor                           | 64  |  |  |  |
| 4.1.3  | Soil Sample Loc. 2                                                   | 64  |  |  |  |
| 4.1.4  | Soil Sample Loc. 5                                                   | 67  |  |  |  |
| 4.1.5  | Soil Sample Loc. 7                                                   | 69  |  |  |  |
| 4.1.6  | Soil Sample Loc. 28                                                  | 72  |  |  |  |
| 4.1.7  | Result of Soil Samples in Kota Kinabalu city                         | 74  |  |  |  |
| 4.2    | Contour Map of Kota Kinabalu City                                    | 74  |  |  |  |
| 4.3    | Representation of Pushover Curves on Buildings in Kota Kinabalu City | 78  |  |  |  |
| 4.3.1  | Outline Building Model B1                                            | 78  |  |  |  |
| 4.3.2  | Outline Building Model B2                                            | 83  |  |  |  |
| 4.3.3  | Outline Building Model B3                                            | 88  |  |  |  |
| 4.3.4  | Outline Building Model B4                                            | 93  |  |  |  |
| 4.3.5  | Results and Discussions                                              | 98  |  |  |  |
| CHAPT  | ER 5: CONCLUSIONS AND RECOMMENDATIONS                                |     |  |  |  |
| 5.1    | Overview                                                             | 102 |  |  |  |
| 5.2    | Conclusion                                                           | 102 |  |  |  |
| 5.3    | Recommendations                                                      | 103 |  |  |  |
| REFERI | ENCES                                                                | 105 |  |  |  |
| APPEN  | APPENDICES 111                                                       |     |  |  |  |

ix

## LIST OF TABLE

| Table 1.1:  | The soil type and bedrock for Kota Kinabalu, the district of Sabah 3     |    |  |  |
|-------------|--------------------------------------------------------------------------|----|--|--|
| Table 2.1:  | The soil type for Kota Kinabalu, the district of Sabah published for     |    |  |  |
|             | Land Resources Division, Overseas Development Administration of          |    |  |  |
|             | England in 1974                                                          | 18 |  |  |
| Table 3.1:  | Ground Type and N <sub>SPT</sub> Values                                  | 39 |  |  |
| Table 3.2:  | Information of the soil sample data in location                          | 44 |  |  |
| Table 3.3:  | Unit weight of bedrock                                                   | 44 |  |  |
| Table 3.4:  | Input motion data                                                        | 44 |  |  |
| Table 3.5:  | The output values for soil sample at Loc. 1                              | 48 |  |  |
| Table 3.6:  | The output values for soil sample at Loc. 1                              | 48 |  |  |
| Table3.7:   | Parameters of geometrical and material parameter model for               |    |  |  |
|             | reinforced concrete buildings                                            | 49 |  |  |
| Table 3.8:  | Building types in accordance to BTM                                      | 49 |  |  |
| Table 3.9:  | List of building models                                                  | 56 |  |  |
| Table 4.1:  | The PGA value for the soil sample at location profile of Loc. 2          | 66 |  |  |
| Table 4.2:  | The PSA value for the soil sample at location profile of Loc. 2          | 66 |  |  |
| Table 4.3:  | The PGA value for the soil sample at location profile of Loc. 5          | 68 |  |  |
| Table 4.4:  | The PSA value for the soil sample at the location profile of Loc. 5      | 69 |  |  |
| Table 4.5:  | The PGA value for the soil sample at location profile of Loc. 7          | 71 |  |  |
| Table 4.6:  | The PSA value for the soil sample at location profile of Loc. 7          | 71 |  |  |
| Table 4.7:  | The PGA value for the soil sample at location profile of Loc. 28         | 73 |  |  |
| Table 4.8:  | The PSA value for the soil sample at location profile of Loc. 28         | 74 |  |  |
| Table 4.9:  | Summary of amplification factor, <i>f</i> .                              | 74 |  |  |
| Table 4.10: | Range of pseudo-spectral values (PSA) on time motion of $M_{\rm w}$ 5.9, |    |  |  |
|             | t=0.01s                                                                  | 75 |  |  |
| Table 4.11: | Range of pseudo-spectral values (PSA) on time motion of $M_{\rm w}6.1,$  |    |  |  |
|             | t=0.01s                                                                  | 76 |  |  |
| Table 4.12: | Details of building model B1                                             | 79 |  |  |
| Table 4.13: | Base Shear & Roof Displacement of Model by Nonlinear Pushover            |    |  |  |
|             | Analysis of B1 on time motion of $M_w$ 5.9, t=0.01s                      | 81 |  |  |
| Table 4.14: | Base Shear & Roof Displacement of Model by Nonlinear Pushover            |    |  |  |
|             | Analysis of B1 on time motion of $M_w$ 6.1, t=0.01s                      | 82 |  |  |

| Table4.15:  | Details of building model B2                                  | 84 |
|-------------|---------------------------------------------------------------|----|
| Table 4.16: | Base Shear & Roof Displacement of Model by Nonlinear Pushover |    |
|             | Analysis of B2 on time motion of $M_w$ 5.9, t=0.01s           | 86 |
| Table 4.17: | Base Shear & Roof Displacement of Model by Nonlinear Pushover |    |
|             | Analysis of B2 on time motion of $M_w$ 6.1, t=0.01s           | 87 |
| Table 4.18: | Details of building model B3                                  | 88 |
| Table 4.19: | Base Shear & Roof Displacement of Model by Nonlinear Pushover |    |
|             | Analysis of B3 on time motion of $M_w$ 5.9, t=0.01s           | 91 |
| Table 4.20: | Base Shear & Roof Displacement of Model by Nonlinear Pushover |    |
|             | Analysis of B3 on time motion of $M_w$ 6.1, t=0.01s           | 92 |
| Table 4.21: | Details of building model B4                                  | 94 |
| Table 4.22: | Base Shear & Roof Displacement of Model by Nonlinear Pushover |    |
|             | Analysis of B4 on time motion of $M_w$ 5.9, t=0.01s           | 96 |
| Table 4.23: | Base Shear & Roof Displacement of Model by Nonlinear Pushover |    |
|             | Analysis of B4 on time motion of $M_w$ 6.1, t=0.01s           | 97 |
|             |                                                               |    |



## **LIST OF FIGURES**

|                           |                                                                      | Page |
|---------------------------|----------------------------------------------------------------------|------|
| Figure 1.1:               | The soils of Sabah published for Land Resources Division, Overseas   |      |
|                           | Development Administration of England on 1974                        | 1    |
| Figure 1.2:               | The soils of Kota Kinabalu region of Sabah published for Land        |      |
|                           | Resources Division, Overseas Development Administration of           |      |
|                           | England on 1974                                                      | 2    |
| Figure 1.3:               | Fault rupture theory from stage (a) to stage (c)                     | 5    |
| Figure 1.4:               | The principle of geometrical earthquake with fault line rupture      | 6    |
| Figure 1.5:               | Geomorphic expressions of normal faults near the southeast flank of  |      |
|                           | Mt. Kinabalu and the Ranau Basin.                                    | 7    |
| Figure 1.6:               | Damaged houses due to landslide hazard at Lok Bunuk village area     |      |
|                           | (30th June 2006).                                                    | 8    |
| Figure 1.7:               | General stratigraphy of Western and Northern Sabah.                  | 9    |
| Figure 1.8:               | Diagram of seismic wave propagation through seismic bedrock and      |      |
| 155                       | soil surface                                                         | 11   |
| Figure 1.9 <mark>:</mark> | Design response spectra for horizontal bedrock motion                | 12   |
| Figure 1.10:              | The building cracks in Karamunsing, Sabah in January 2017            | 13   |
| Figure 2.1:               | The soils of Kota Kinabalu published for Land Resources Division,    |      |
|                           | Overseas Development Administration of England on 1974               | 17   |
| Figure 2.2:               | Derivation of fragility curves based on building damage distribution | 34   |
| Figure 3.1:               | Flowchart of Methodology                                             | 38   |
| Figure 3.2:               | Schematic representation of stress-strain mode                       | 41   |
| Figure 3.3:               | Backbone curve (left) during loading and hysteretic stress-strain    |      |
|                           | loop (right) of soil model during loading-unloading cycle.           | 41   |
| Figure 3.4:               | Time History of KKMR ( $M_W$ 5.9, $t_s$ =0.01s, PGA=0.135g)          | 45   |
| Figure 3.5:               | Time History of Parkfield ( $M_w$ 6.1, ts=0.01s, PGA=0.357g)         | 45   |
| Figure 3.6:               | The soil profile for the soil sample                                 | 46   |
| Figure 3.7:               | Modulus for clay (Seed and Sun, 1989) upper range and damping        |      |
|                           | ratio                                                                | 47   |
| Figure 3.8:               | Modulus for sand (Seed & Idriss 1970) - Upper Range and damping      |      |
|                           | ratio                                                                | 47   |
| Figure 3.9:               | Definition of effective height coefficient, ef <sub>h</sub>          | 50   |
| Figure 3.10:              | Deformation profiles as a function of the failure mode, building     |      |
|                           | height and ductility                                                 | 50   |

| Figure 3.11: Beam-sway frames and Column-sway frames theory                           | 51 |
|---------------------------------------------------------------------------------------|----|
| Figure 3.12: A moment-rotation curve concept                                          | 53 |
| Figure 3.13: A frame structure that is subjected to pushover analysis and the         |    |
| general curve                                                                         | 54 |
| Figure 3.14: Capacity curve of lateral load resistance (base shear, V) versus its     |    |
| characteristic lateral displacement (peak building roof displacement,                 |    |
| ΔR).                                                                                  | 55 |
| Figure 3.15: Capacity spectrum of spectral acceleration ( $S_A$ ) versus the spectral |    |
| displacement (S <sub>D</sub> )                                                        | 55 |
| Figure 3.16: Four building models to be analysed                                      | 58 |
| Figure 4.1: Shear wave velocity values for site class E                               | 60 |
| Figure 4.2: Shear wave velocity values for site class D                               | 61 |
| Figure 4.3: Shear wave velocity values for site class C                               | 62 |
| Figure 4.4: Shear wave velocity values for site class B                               | 63 |
| Figure 4.5: Soil dynamic properties of soil sample Loc. 2                             | 65 |
| Figure 4.6: The soil profile for the location profile Loc. 2                          | 66 |
| Figure 4.7: Soil dynamic properties of soil sample Loc. 5                             | 67 |
| Figure 4.8 <mark>: The soil profile for the location profile Loc. 5</mark>            | 68 |
| Figure 4.9 <mark>: Soil dyna</mark> mic properties of soil sample Loc. 7              | 70 |
| Figure 4.10: The soil profile for the location profile Loc. 7                         | 71 |
| Figure 4.11: Soil dynamic properties of soil sample Loc.28                            | 72 |
| Figure 4.12: The soil profile for the location profile Loc.28                         | 73 |
| Figure 4.13: Contour of pseudo-spectral acceleration, PSA under $M_w$ 5.9, t=0.01s.   | 75 |
| Figure 4.14: Contour of soil amplification factor, f under $M_w$ 5.9, t=0.01s.        | 76 |
| Figure 4.15: Contour of pseudo-spectral acceleration, PSA under $M_w$ 6.1, t=0.01s.   | 77 |
| Figure 4.16: Contour of soil amplification factor, f under $M_w$ 6.1, t=0.01s.        | 78 |
| Figure 4.17: Plan view of the ground floor for building model B1                      | 79 |
| Figure 4.18: Building model B1 (n=11)                                                 | 79 |
| Figure 4.19: Response spectrum of type I soil D                                       | 80 |
| Figure 4.20: Deformed shape of building model B1 after pushover analysis              | 81 |
| Figure 4.21: Pushover graph of Base force (kN) vs displacement (m) of B1 on           |    |
| time motion of $M_w$ 5.9, t=0.01s                                                     | 82 |
| Figure 4.22: Pushover graph of Base force (kN) vs displacement (m) of B1 on           |    |
| time motion of $M_w$ 6.1, t=0.01s                                                     | 83 |
| Figure 4.23: Plan view of ground floor for building model B2                          | 83 |
| Figure 4.24: Building model B2 (n=10)                                                 | 84 |
|                                                                                       |    |

| Figure 4.25: Response spectrum of type I soil C                                   | 84  |  |  |
|-----------------------------------------------------------------------------------|-----|--|--|
| Figure 4.26: Deformed shape of building model B2 after pushover analysis          |     |  |  |
| Figure 4.27: Pushover graph of Base force (kN) vs displacement (m) of B2 on       |     |  |  |
| time motion of $M_w$ 5.9, t=0.01s                                                 | 86  |  |  |
| Figure 4.28: Pushover graph of Base force (kN) vs displacement (m) of B2 on       |     |  |  |
| time motion of $M_w$ 6.1, t=0.01s                                                 | 87  |  |  |
| Figure 4.29: Plan view of ground floor for building model B3                      | 88  |  |  |
| Figure 4.30: Building model B1 (n=11)                                             | 89  |  |  |
| Figure 4.31: Response spectrum of type I soil E                                   | 89  |  |  |
| Figure 4.32: Deformed shape of building model B3 after pushover analysis          | 90  |  |  |
| Figure 4.33: Pushover graph of Base force (kN) vs displacement (m) of B3 on       |     |  |  |
| time motion of $M_w$ 5.9, t=0.01s                                                 | 91  |  |  |
| Figure 4.34: Pushover graph of Base force (kN) vs displacement (m) of B3 on       |     |  |  |
| time motion of $M_w$ 6.1, t=0.01s                                                 | 92  |  |  |
| Figure 4.35: Plan view of ground floor for building model B4                      | 93  |  |  |
| Figure 4.36: 4 <sup>th</sup> floor to 28 <sup>th</sup> floor of building model B4 | 93  |  |  |
| Figure 4.37: Building model B4 (n=28)                                             | 94  |  |  |
| Figure 4.3 <mark>8: Respon</mark> se spectrum of type I soil B                    | 95  |  |  |
| Figure 4.39: Deformed shape of building model B4 after pushover analysis          | 96  |  |  |
| Figure 4.40: Pushover graph of Base force (kN) vs displacement (m) of B4 on       |     |  |  |
| time motion of M <sub>w</sub> 5.9, t=0.01s                                        | 97  |  |  |
| Figure 4.41: Pushover graph of Base force (kN) vs displacement (m) of B4 on       |     |  |  |
| time motion of $M_w$ 6.1, t=0.01s                                                 | 98  |  |  |
| Figure 4.42: Horizontal elastic response spectrum of ground types B to E (5 $\%$  |     |  |  |
| damping) for Sabah                                                                | 99  |  |  |
| Figure 4.43: Comparison of Base Shear & Roof Displacement of Building Models      |     |  |  |
| on time motion of $M_w$ 5.9, t=0.01s                                              | 100 |  |  |
| Figure 4.44: Comparison of Base Shear & Roof Displacement of Building Models      |     |  |  |
| on time motion of $M_w$ 6.1, t=0.01s                                              | 101 |  |  |

## LIST OF ABBREVIATIONS

|             | dγ                      | -   | Strain increment of soil model                                                   |
|-------------|-------------------------|-----|----------------------------------------------------------------------------------|
|             | dτ                      | -   | Stress increment of soil model                                                   |
|             | f                       | -   | Soil amplification factor                                                        |
|             | F <sub>cu</sub>         | -   | Compressive strength of concrete                                                 |
|             | <b>G</b> <sub>max</sub> | -   | Maximum shear modulus                                                            |
|             | Η                       | -   | Tangential modulus of soil model                                                 |
|             | h <sub>i</sub>          | -   | Height of soil layer of <i>i</i>                                                 |
|             | $H_T$                   | -   | Total height of building model                                                   |
|             | $M_W$                   | -   | Earthquake magnitude                                                             |
|             | n                       | -   | Number of storey buildings                                                       |
|             | N                       | -   | Total number of soil layers                                                      |
|             | N <sub>SPT</sub>        |     | The number of distribution<br>with standard penetration test<br>on a soil sample |
| A O A       | PGA                     | - 1 | Peak ground acceleration                                                         |
| Alexand and | PSA                     | -   | Pseudo-spectral acceleration                                                     |
| ABD         | Sa                      | U   | Spectrum acceleration AYSIA SABAF                                                |
|             | $S_d$                   | -   | Spectrum displacement                                                            |
|             | t <sub>s</sub>          | -   | Time step                                                                        |
|             | $v_{S}$                 | -   | Shear wave velocity                                                              |

## LIST OF APPENDICES

|             |                                                              | Page |
|-------------|--------------------------------------------------------------|------|
| Appendix A: | Determination of Soil Amplification Factor                   | 111  |
| Appendix B: | The Contour Maps                                             | 115  |
| Appendix C: | Representation of Pushover Curve on Kota Kinabalu Buildings. | 127  |
| Appendix D: | Building Model B1                                            | 128  |
| Appendix E: | Building Model B2                                            | 130  |
| Appendix F: | Building Model B3                                            | 134  |
| Appendix G: | Building Model B4                                            | 136  |
| Appendix H: | Gantt Chart                                                  | 138  |



### **CHAPTER 1**

## INTRODUCTION

#### **1.1** Background of The Study

In Sabah, the geological data show that the tertiary rocks are younger than sedimentary rocks in (Tongkul, 1990). Figure 1.1 shows the formation of tertiary rocks in the regions of Sabah such as sandstone and shale.



## Figure 1.1: The soils of Sabah published for Land Resources Division, Overseas Development Administration of England on 1974

Source: ESDAC (2017)

From the figure, the region of Sabah consists of various soil characteristics. It is rich with forest area in the interior region; while the coastal areas generally consist of swamps, marshlands and wetland forests including mangrove, and other wetland forest types (Tating, 2015). From the distribution of these wetland soils in most urban areas such as Kota Kinabalu, Sandakan and Tawau, it is believed that these areas

contain sand, clay and silt soil layers. Sandakan and Tawau districts located at the east coast of Sabah consist mainly of series of parallel linear ridges mostly oriented about northeast to southwest (NE - SW). The west coast of Sabah is made up of flat swampy areas, coastal plains, valleys and some isolated hills. Moreover, the coastal plains and valleys vary from 2 to 5 kilometres in width while the linear belt of hills is about a kilometre wide. Those coastal terrains and valleys underlain by Quaternary deposits, consist of unconsolidated to semi-consolidated sedimentary layers of sand, silt, clay and peat. Figure 1.2 shows the region of Kota Kinabalu which is composed of various soil characteristics.



Figure 1.2: The soils of Kota Kinabalu region of Sabah published for Land Resources Division, Overseas Development Administration of England on 1974

Source: ESDAC (2017)

The soil map in Kota Kinabalu region can be referred with the soil information as shown in Table 1.1.

# Table 1.1: The soil type and bedrock for Kota Kinabalu, the district of Sabah

| Кеу                                                                                                            | Soil types                                    | Bedrock                       |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|
| 1                                                                                                              | Tidal swamps                                  | Sulphidic alluvium, sulphidic |
|                                                                                                                |                                               | peat and alluvium             |
| 3                                                                                                              | Beaches                                       | Alluvium                      |
| 5                                                                                                              | Floodplains                                   | Alluvium                      |
| 6                                                                                                              | Swamps                                        | Alluvium and peat             |
| 30                                                                                                             | Moderate hills: slope >25°                    | Mudstone and sandstone        |
| 31                                                                                                             | Moderate hills and minor valley floors: slope | Sandstone, mudstone and       |
|                                                                                                                | $0 - 20^{\circ}$                              | alluvium                      |
| -                                                                                                              | Moderate hills and minor valley floors: slope | Sandstone, mudstone and       |
| 32                                                                                                             |                                               |                               |
|                                                                                                                | 0 - 20                                        | alluvium                      |
| 33                                                                                                             | Moderate hills: slope $0 - 20^{\circ}$        | Mudstone, sandstone and       |
|                                                                                                                |                                               | miscellaneous rocks           |
|                                                                                                                | High bills, done $15 - 25^{\circ}$            | Basic ignoous rocks           |
| 34                                                                                                             | High hills. Slope 15 – 25°                    | Basic Igneous Tocks           |
| -                                                                                                              | Moderate hills: slope 10 – 20°                | Tuffaceous rocks, mudstone    |
| 35                                                                                                             |                                               | and canditions                |
|                                                                                                                |                                               |                               |
| 36                                                                                                             | High hills: slope $> 25^{\circ}$              | Sandstone, mudstone and       |
|                                                                                                                |                                               | ianeous rocks                 |
|                                                                                                                | Vory high hills: clope $> 25^{\circ}$         | Basic ignoous rocks           |
| 37                                                                                                             | very high hins. slope > 25                    | Dasic Igrieous rocks          |
| 38                                                                                                             | Very high hills: slope > 25°                  | Limestone                     |
|                                                                                                                | Vory high hills: clope $> 25^{\circ}$         | Sandstone and mudstone        |
| 39                                                                                                             | very night nins. slope > 25                   | Sanustone and muustone        |
| And a second |                                               |                               |

Source: ESDAC, (2017)

# UNIVERSITI MALAYSIA SABAH

The table shows that the region of Kota Kinabalu mainly consists of sandstone and mudstone. In coastal area of Kota Kinabalu, the region is composed of alluvium and peat while hilly areas are basically composed of basic igneous rocks. These soil types in Kota Kinabalu had also been studied by Tating (2015). Although Malaysia is located in a safe zone from tectonic plate, it is still subjected to the risk of earthquake at any time as it is near to Sumatra and the Philippines's subzones (Adnan, et al., 2006). In the early year 2015, an earthquake with the magnitude  $M_w$  6.0 was recorded in the areas of Ranau and Kundasang, Sabah. There were more than 100 evidences showing the aftermath of the earthquake in which 61 buildings such as school, hospital, mosque and 44 infrastructures were affected (Lee, 2015). On January 10<sup>th</sup> 2017, it was reported that some mid-rise buildings in Kota Kinabalu city had experienced shaking of earthquake-induced long-period ground motions with hypocentres distance  $R_{epi}$  of about 900 km away from Celebes Sea, Philippines with the magnitude of M<sub>w</sub> 7.3 (Sario, 2017). There are several methods of seismic study, for instance, macroseismic intensity and seismic hazard assessment. The term "macroseismic intensity" is used entirely for classification of the severity of ground shaking or motion on the basis of observed effects in a limited area (Grünthal, 1998). This approach is different from the preceding methods that are mostly in empirical form. This method can be used with a probabilistic probability matrix (DPM) or properly analyzed data and feasible to assess vulnerability of individual buildings and municipalities. It also offers a quick and low cost solution for risk assessment, prevention and management. Moreover, it has been widely used in the European building typologies for their vulnerability characterisation of traditional constructions (especially for masonry type). Examples of vulnerability evaluations from the European research can be found in the research of seismic assessments from Faccioli et al. (2010); Giovinazzi et al. (2004); and Pierre et al. (2006).

Seismic Hazard Assessment is used to indicate the probability of specific earthquake effects in terms of acceleration and intensity given the time length (Datta, 2010a; Stefánsson, 2011). It is also used to describe the character of a regional area regardless of when and which earthquake effects happened. According to Bolt (1994), seismic hazards are the foundation of study in regards to pre and post of earthquake hazards. The four expression types of seismic hazards are ground shaking, fault rupture, secondary hazards and time-dependent hazard.

## UNIVERSITI MALAYSIA SABAH

#### 1.1.1 Fault Rupture

Surface rupture and movement along the fault lines are physically visible. Fault line is a break or fracture on the ground that occurs when the Earth's tectonic plates move or shift and the areas where earthquakes are likely to occur. The movement is associated with shaking and occurs in such a large scale that in severe cases can cause damage to major structure such as power lines, pipelines, buildings, roads, bridges, and other large structures at its proximity. The offset between rocks on the surface rupture, or on the opposite sides of the fault can be seen in Figure 1.3 (Datta, 2010).



Figure 1.3: Fault rupture theory from stage (a) to stage (c)

Source: Datta (2010)

Stage (a) shows that there is an occurrence of strike-slip fault before its soil is strained in which the directions for strike-slip fault are opposed to each other along the fault line. From stage (b), the strike-slip fault occurs after the straining as the infrastructure of road is constructed. The line of soil layers become strained before the earthquake strikes. Then stage (c) shows the infrastructure of road strained together along the strike-slip fault. This fault is shown to cause destruction of infrastructure after the straining of soil.

The boundaries of large rock masses are tens to hundreds of kilometres beneath the earth's surface which can cause rise of crustal movement as a result of ground shaking as shown in Figure 1.4 (Buchholdt & Edin, 2011). When the underlying soils or sediments are weak and poorly consolidated, its ground displacement is often worsened. In urban areas where land is susceptible to earthquake risk, many cities decided to expand into wetlands and shallow coastal regions by using artificial fill to increase the land area after an earthquake incident (Juan and Yong, 2011).



# Figure 1.4:The principle of geometrical earthquake with fault line ruptureSource:Buchholdt & Edin (2011)

#### 1.1.2 Fault Rupture in Sabah

The earthquake of Mt. Kinabalu in 2015 with M<sub>w</sub> 6.0had caused a deadly impact. It happened from the limit of the nearest plates in a very low historical seismicity. Earthquake signifies a fragmentation of a rupture northwest mist that does not reach the surface. Its unilateral rupture was almost directly beneath 4 kilometres high of Mt. Kinabalu and activated widespread slope failures on steep mountainous slopes, where there are dangerous rockfalls. Seismological analysis showed that the rupture occurred on a common area that had spread since the previously identified at Marakau fault, where it was marked in the eastern part of Ranau (Wang Yu and Wei, 2017). Figure 1.5 shows the map of Geomorphic expressions of normal faults near the southeast flank of Mountain Kinabalu and the Ranau Basin.