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ABSTRACT 

 

 

A fundamental understanding of senescence in human amnion mesenchymal stem 
cells (HAMCs) is crucial for its application in cellular therapy. Cellular senescence is 
characterized by changes in cell morphology and the presence of senescence 
markers such as SA-β-Gal. Several genes such as p53, p21, pRB, p16 and GADD45 
are commonly associated with the cellular senescence pathway. Also, telomerase 
activity which is important in the regulation of cell proliferation has been linked to 
cellular aging. At the same time, determining p53 sequence mutation is needed to 
assess the tumourigenicity risk in long-term cultured HAMCs. Thus, the aim of the 
study are: i) to determine the level of senescence in HAMCs at passage 5, 10 and 
15 (P5, P10 and P15) through morphology changes of cells and the use of 
senescent-associated β-galactosidase (SA-β-Gal) assay; ii) to determine the 
expression of senescent-associated gene (p53, pRB, p21, p16 and GADD45) via 
reverse transcription polymerase chain reaction (RT-qPCR) at P5, P10 and P15; 
and iii)to determine the DNA damage level in HAMCs during long-term culture 
using comet assay, telomeric repeat amplification protocol (TRAP) and p53 
mutation detection assay. The samples were obtained from amnion placentae of 
healthy mothers who underwent caesarean section at the Damai Specialist 
Hospital. After the isolation, HAMCs were cultured in vitro up to passage 15. They 
were assessed at passage 5, 10 and 15 and then analysed to correspond with the 
objectives of the study. The results show that HAMCs underwent morphological 
changes – from showing typical MSCs morphology at early passages to flattened 
and elongated shaped at late passages. The cells viability also decreased in 
percentage, i. e. 92.94±2.32% at P5, decreased to 87.15±1.48% at P10, and 
further decreased to 67.24±4.50% at P15. A larger number of cells were also 
tested positive for SA-β-Gal assay, with increasing percentage of senescent cells 
from P5 to P15 (P5: 0.03±0.01%, P10: 42.68±0.92%, P15: 82.61±1.40%). From 
the assessment of gene expression level at P5 to P15; it was found that p53 was 
up-regulated from 1 to 2.49 (0.27 to 1.3 fold); p21 was up-regulated from 1 to 
5.45 (0.27 to 2.45 fold); pRB was up-regulated from 1 to 2.83 (0.38 to 1.39 fold); 
and p16 was up-regulated from 1 to 11.86 (0 to 0.35 fold). Meanwhile GADD45 
was down-regulated from P5 to P15 (1 to 0.49 with 0.24 to 0.88 fold). p53/p21 
and p53/pRB signalling pathway were activated in the senescence pathway of 
HAMCs. Genes expression level increased with increasing passage numbers. Comet 
assay showed that HAMCs at P15 have higher DNA damage compared to HAMCs 
at earlier passages (P5: 91±9.54 a.u., P10: 152.33±11.54 a.u., P15: 229±7.94 
a.u.). Telomerase activity of HAMCs decreased between P5 to 15 
(P5:103.75±37.89, P10: 64.67±34.96, P15: 35.03±13.98). DNA sequencing of p53 
gene indicated that mutations had occurred after long-term culture with a higher 
presence of single nucleotide variants (SNVs) particularly in later passages. 
Assessment of senescence in HAMCs provided information that HAMCs at early 
passages have higher proliferative capacity and lower senescent cells. Thus, P5 
and P10 are deemed as the most suitable for utilization in cellular therapy. Further 
study should be performed in vivo to investigate if long-term cultured HAMCs 
could cause malignant transformation. 
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ABSTRAK 

SELULAR KETUAAN KULTUR JANGKA PANJANG DALAM SEL STEM 
MESENKIMA AMNION MANUSIA (HAMCS)  

Pemahaman asas mengenai ketuaan dalam sel stem mesenkima amnion manusia 
(HAMCs) adalah penting untuk aplikasinya dalam terapi selular. Selular ketuaan 
dicirikan oleh perubahan dalam morfologi sel dan kehadiran penanda ketuaan 
seperti SA-β-Gal. Beberapa gen seperti p53, p21, pRB, p16, dan GADD45 biasanya 
dikaitkan dengan laluan selular ketuaan. Aktiviti telomerase yang penting dalam 
pengawalseliaan perkembangan sel juga dikaitkan dengan penuaan selular. Pada 
masa yang sama, kajian mutasi gen p53 diperlukan untuk mengakses risiko 
tumorigenicity dalam HAMCs yang dikultur secara jangka panjang. Oleh itu, tujuan 
kajian ini adalah: i) untuk menentukan tahap ketuaan dalam HAMCs di laluan 5, 10 
dan 15 (P5, P10 and P15) melalui perubahan morfologi sel dan penggunaan ujian 
SA-β-Gal; ii) untuk menentukan ekspresi gen (p53, p21, pRB, p16 dan GADD45) 
melalui RT-qPCR pada P5, P10 dan P15; iii) untuk menentukan tahap kerosakan 
DNA dalam kultur jangka panjang HAMCs melalui ujian komet, protocol amplifikasi 
pengulangan telomerik (TRAP) dan pengesanan mutasi gen p53. Sampel 
diperolehi daripada amnion plasenta di Damai Specialist Hospital. Selepas 
pengekstrakan, HAMCs kemudian dikultur secara in vitro untuk jangka masa 
panjang sehingga P15. HAMCs diakses pada laluan 5, 10, dan 15 dan kemudian 
dianalisis bersesuaian dengan objektif-objektif kajian. Keputusan menunjukkan 
bahawa HAMCs melalui perubahan morfologi – daripada morfologi biasa MSCs 
pada laluan awal kepada morfologi diratakan dan dipanjangkan laluan kemudian. 
Peratusan viabiliti sel juga menurun, i. e. 92.94±2.32% pada P5, menurun ke 
87.15±1.48% pada P10, dan menurun lagi ke 67.24±4.50% pada P15.  Sejumlah 
besar sel juga positif bagi ujian SA-β-Gal, dengan peratusan sel ketuan yang 
meningkat dari P5 ke P15 (P5: 0.03±0.01%, P10: 42.68±0.92%, P15: 
82.61±1.40%). Daripada penilaian tahap ekspresi gen pada P5 sehingga p15: 
telah dijumpai bahawa ekspresi p53 telah meningkat dari 1 ke 2.49 (0.27 ke 1.3 
kali lipat); ekspresi p21 telah meningkat dari 1 ke 5.45 (0.27 ke 2.45 kali  lipat); 
ekspresi pRB telah meningkat dari1 ke 2.83 (0.38 ke 1.39 kali fold); dan ekspresi 
p16 telah meningkat dari 1 ke 11.86 (0 ke 0.35 kali lipat). Manakala ekspresi 
GADD45 menurun dari P5 ke P15 (1 ke 0.49 dengan penurunan 0.24 ke 0.88 kali 
lipat). Laluan isyarat p53/p21 dan p53/pRB telah diaktifkan dalam laluan ketuaan 
dalam HAMCs. Tahap ekspresi gen meningkat dengan peningkatan laluan. Ujian 
komet menujukkan bahawa HAMCs pada laluan kemudian mempunyai kerosakan 
DNA yang lebih tinggi berbanding laluan awal (P5: 91±9.54 a.u., P10: 
152.33±11.54 a.u., P15: 229±7.94 a.u.).  Aktiviti telomerase HAMCs juga 
menurun dari P5 ke 15 (P5:103.75±37.89, P10: 64.67±34.96, P15: 35.03±13.98). 
Penjujukan DNA gen p53 menunjukkan bahawa mutasi telah berlaku selepas 
kultur jangka panjang dengan kehadiran kepelbagaian nukleotida tunggal (SNVs) 
terutamanya dalam laluan kemudian. Penilaian terhadap ketuaan dalam HAMCs 
memberi maklumat bahawa HAMCs pada laluan awal mempunyai lebiih banyak sel 
proliferatif dan sedikit sel tua. Maka dipercayai bahawa P5 dan P10 adalah paling 
sesuai digunakan dalam terapi secular. Kajian selanjutnya perlu dilaksanakan 
secara in vivo untuk mengkaji sekiranya kultur jangka panjang HAMCs boleh 
mengakibatkan transformasi malignan.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

Mesenchymal stem cells (MSCs) are well known for their high capacity to 

renew themselves and differentiate into any type of cells. Morphologically, MSCs 

are spindle shaped and have fibroblast-like features prior to differentiation into 

specialized cells. They are able to differentiate into three germ layers: endoderm, 

ectoderm and mesoderm; both in vivo and in vitro. MSCs are found abundantly in 

bone marrow, placenta, umbilical cord, umbilical cord blood. They also possess 

characteristics such as low immunogenicity and anti-inflammatory activity 

(Manochantr et al., 2010).  

Recently, human amnion has been extensively studied as a potential source 

of stem cells. The human amnion mesenchymal stem cells (HAMCs) are located at 

the innermost extra-embryonic membrane, distributed in the collagenous stroma 

underlying the epithelial monolayer of the amniotic membrane. Other than yielding 

a rich amount of stem cells, HAMCs are found to exhibit MSCs-like characteristics, 

with ease of handling compared to other sources of stem cells such as embryos. 

More importantly, there is less ethical concern regarding the use of amnion 

derived stem cells since its source is usually discarded after delivery and are easily 

obtained through informed consents from the mother. As such, the usages of 

these cells are usually non-controversial. 

HAMCs‟ unique characteristics increasingly attract researchers to utilise the 

full potential for these cells. Many MSCs-related publications show its contributions 

in cells self-renewal particularly, the medical field. Some applications of these cells 
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include their use in wound healing treatment, allografting, various surgeries, and 

even as scaffolds in tissue engineering research (Miki, 2011). Also, HAMCs 

capabilities are not only limited to differentiation or renewal properties, but extend 

beyond them to immunomodulatory property, anti-inflammatory property, and has 

no tumorigenicity. Studies exploring further potentials of these clogenic cells 

remain on-going, such as the construction of amnion-based cell sheets in skin 

tissue engineering (Toda et al., 2007), neurological disorders treatment in stem 

cells therapies (Castilo-Melendez et al., 2013), and stem cell-derived 

cardiomyocytes for drug development (Miki, 2011). 

Isolation of HAMCs isolation is easily performed and is cost effective, since 

the fetal membrane is discarded after birth and is available as long as there is an 

approval from the Ethics Committee and written informed consent from the 

mothers. The isolated stem cells can be long-term cultured in vitro up to several 

passages (Lindenmair et al., 2012). While there are many protocols that have 

been published on how to long-term culture stem cells (Tsai et al., 2004; Fatimah 

et al., 2013), the success of these methods is measured by the evidence of 

differentiation of stem cells into different cell types such as hepatocytes, 

chondrocyte, cardiomyocyte and insulin-producing cells (Toda et al., 2007). 

Even though HAMCs possess many unique characteristics, the Hayflick et al. 

(1961) theories suggest that stem cells are „finite‟ and have limited lifespan when 

cultured in vitro. After long term expansion of stem cells, these cells are believed 

to reach a state, which is known as „senescence‟. This phenomenon is famously 

known as cellular replicative senescence, where cells enter irreversible growth 

arrest phase and can no longer proliferate. This occurrence leads to reduced 

potency of the stem cells. Some studies reported that senescence is caused by 

DNA damage (Van Nguyen et al., 2007), telomere shortening (Chen et al., 2013); 

and has been associated with organismal aging (Jeyapalan et al., 2008).  

The pathway of cellular senescence has been associated with several genes 

such as p53, p21, pRB, p16 and also GADD45. p53 and pRB are both tumor 

suppressor genes that control cell proliferation in the cell cycle. In addition, they 

are major mediator of cellular senescence in MSCs. The p21 is a target gene of 

p53 which play role in p53/p21 senescence pathway. In addition, p16 is a CDK 
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binding protein that is commonly found in the senescence of MSCs, and is 

associated with the pRB/p16 senescence pathway. Activation of GADD45 through 

p53-dependent senescence pathway will cause senescence.  

After cells enter the irreversible growth arrest phase, they are known as 

senescent cells. The cells morphologically change from spindle shaped into 

enlarged and flattened shape, which is believed to alter its protein expression. At 

this point, senescence limits the potential of the stem cells to differentiate. Long 

term culture of HAMCs may experience senescence as early as passage 5. This will 

limits the potential of HAMCs in regenerative medicine. Thus, there is need to 

identify the senescence level at early and later passages in HAMCs. In addition, 

the specific senescence pathway of HAMCs is not yet fully understood and the 

level of expression of senescent-associated genes greatly confluence the 

senescence in HAMCs. Furthermore, accumulation of DNA damage in stem cells 

may cause tumour and HAMCs may acquire DNA damage during senescence.  

In the bigger context, cellular senescence is a potential cause of HAMCs 

limitation in therapeutic application. Thus the study of cellular senescence of 

HAMCs remains as major goal in the field of stem cells research. Many on-going 

studies are being done in order to fully understand the mechanism of the 

senescence in HAMCs. This is because researchers believe HAMCs may offer 

solution in cancer therapy, by using senescent stem cells to prevent cancer cells 

from proliferating and differentiating (Chen et al., 2013). 

To fully exploit the potential of stem cells, it is crucial to understand the 

mechanisms of cellular senescence in HAMCs. Therefore, this study focused on 

determining the cellular senescence of long-term culture in HAMCs. The level of 

senescence after long term culture of HAMCs was determined via morphological 

changes of cells and through the use of senescent-associated β-galactosidase 

assay. The expression of senescent-associated genes such as p53, pRB, p16, pRB, 

and GADD45 were also determined. These genes were chosen due to its 

involvement with senescence pathway (Lowe et al., 2004; Rosemary and 

Richardson, 2009; Rufini et al., 2013) and used to further explore the mechanisms 

when HAMCs enter senescence upon long term culture. In addition, the level of 

DNA damage in HAMCs after long-term culture was determined via comet assay, 
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telomerase assay and p53 mutation detection assay. The study will provide 

indications of the impacts of senescence to long-term cultured HAMCs.  

 

 

1.2 Research Questions 

 

The study produced some research question: 

1. Do HAMCS experience cellular senescence and if yes, then at what passage 

or stage does cellular senescence happen in HAMCs culture? What 

happened when HAMCs experience cellular senescence? 

2. Do genes such as p53, p21, p16, pRB and GADD45 involved in the 

senescence pathway of HAMCs and what is their level of expression 

throughout long term culture of HAMCs? 

3. Does senescence cause DNA damage and change the DNA structure of the 

HAMCs? 

 

 

1.3 Hypothesis 

 

It is hypothesized that a drastic drop in the cells viability and proliferation as well 

as an increase in DNA damage occurs when human amnion mesenchymal stem 

cells (HAMCs) are subjected to long term in vitro cultures when passage number 

increases.  

 

 

 


