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ABSTRACT 

 

Depleting carbon stock in tropical forests due to deforestation and forest degradation 

significantly causes increasing greenhouse gases emissions into the atmosphere. 

Mitigating climate change with the REDD+ mechanism requires accurate estimation 

and monitoring of the forest carbon stock changes. This study aimed at examining 

above-ground biomass (AGB) changes in a tropical montane forest of Ulu Padas, 

Sabah, between 2012 and 2017 using multi-temporal airborne Light Detection and 

Ranging (LiDAR) data. Indirect (i.e., estimating the AGB at each point in time and 

deriving the changes as their difference) and direct (i.e., estimating the AGB changes 

using the differences in LiDAR-derived variables) approaches were evaluated for 

estimating the AGB changes. Stepwise multiple linear regressions analysis was used 

to select model variables in both approaches. For indirect approach, the best AGB 

models had the adjusted R2 = 0.784 and adjusted R2 = 0.809 for 2012 and 2017, 

respectively. Overall, the relative RMSE of the AGB changes through the indirect 

approach was +1.413 Mg/ha/yr or 29.80 %. The direct approach produced an AGB 

change model (adjusted R2 = 0.321, RMSE = 6.37 Mg/ha/yr) with the change of 45th 

percentile of height (∆p45) and maximum height (∆ℎ𝑚𝑎𝑥) as the variables. The 

indirect approach was clearly superior to the direct approach for estimating the AGB 

changes. Based on the AGB change map derived from the indirect approach, the 

study area had a mean annual AGB increase of 8.91 Mg/ha/yr that occurred mostly at 

logged over forests. The mean annual AGB decrease rate was -7.49 Mg/ha/yr, mostly 

found at the state-land due to the land use conversions. This study demonstrated 

that the AGB changes in the montane forest can be accurately quantified using 

multi-temporal LiDAR data with the indirect approach. LiDAR based estimation and 

monitoring should be applied in the implementation of REDD+ projects in tropical 

forests. 
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ABSTRAK 

 

ANALISIS PERUBAHAN BIOJISIM ATAS TANAH DI HUTAN TROPIKA 
MONTANE DI SABAH MENGGUAKAN DATA LIDAR DATA  

MULTI-TEMPORAL 
 

Penurunan stok karbon di hutan tropika yang disebabkan oleh penebangan hutan 

dan degradasi hutan mengakibatkan peningkatan pelepasan gas rumah hijau ke 

atmosfera. Menggurangkan perubahan iklim dengan perlaksanaan mekanisme 

REDD+ memerlukan anggaran dan pemantauan perubahan stok karbon hutan yang 

tepat. Kajian ini bertujuan untuk mengkaji perubahan biojisim atas tanah (AGB) di 

hutan tropika montane di Ulu Padas, Sabah, antara tahun 2012 dan 2017 dengan 

menggunakan data Light Detection and Ranging (LiDAR) multi-temporal. Pendekatan 

secara tidak langsung (iaitu, menganggar AGB pada setiap titik waktu dan 

memperoleh perubahan sebagai perbezaannya) dan secara langsung (iaitu, 

menganggar perubahan AGB dengan menggunakan perbezaan pemboleh ubah yang 

dari data LiDAR) telah digunnakan bagi mengangar perubahan AGB. Analisis 

stepwise multiple linear regression telah digunakan untuk memilih pemboleh ubah 

yang digunakan dalam model untuk kedua-dua pendekatan tersebut. Model AGB 

terbaik bagi pendekatan secara tidak langsung untuk 2012 mempunyai R2 = 0.784 

dan untuk 2017 mempunyai R2 = 0.809. Secara keseluruhan, RMSE relatif untuk 

perubahan AGB dari pendekatan secara tidak langsung adalah +1.413 Mg/ha/yr atau 

29.80 %. Pendekatan secara langsung menghasilkan model perubahan AGB (R2 = 

0.321, RMSE = 6.37 Mg/ha/yr) dengan menggunakan dua pemboleh ubah iaitu 

perubahan persentil ketinggian ke-45 (∆p45) dan maksimum ketinggian (∆ℎ𝑚𝑎𝑥). 

Pendekatan secara tidak langsung adalah lebih efektif daripada pendekatan secara 

langsung untuk menganggarkan perubahan AGB. Berdasarkan pada peta perubahan 

AGB yang terhasil daripada pendekatan secara tidak langsung, kawasan yang 

mempunyai purata kenaikan tahunan AGB sebanyak 8.91 Mg/ha/yr belaku 

kebanyakannya di kawasan penebangan. Purata kadar penurunan AGB tahunan 

adalah -7.49 Mg/ha/yr, kebanyakannya berlaku di kawasan kampung yang 

disebabkan oleh perubahan penggunaan tanah. Kajian ini menunjukkan bahawa 

perubahan AGB di hutan montane dapat dianggar secara tepat dengan 

menggunakan data LiDAR multi-temporal melalui pendekatan secara tidak langsung. 

Anggaran dan pemantauan menggunakan LiDAR harus diaplikasikan dalam 

pelaksanaan projek REDD+ di kawasan hutan tropika. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

The tropical forest is known for its rich biodiversity, with almost 300 tree species 

found within a 100-hectare area (Suratman, 2012). This type of forest is recognised 

as one of the carbon-rich ecosystems that stores a substantial amount of carbon 

dioxide (CO2) (Philips and Lewis, 2014). Besides, there is at least 40 to 50 % of the 

total global forest carbon stock found within the tropical forest (Beer et al., 2010; 

Pan et al., 2011). The tropical forest is structurally complex across the broad forest 

environments, resulting in a relatively high turnover rate of carbon stock (Quesada 

et al., 2012). In terms of carbon sequestration, the tropical forest possesses an 

annual sequestration rate of 1.3 Gt of carbon (Lewis et al., 2009) and Grace et al 

(2014) report the tropical forest can sequester up to 1.85 Gt of carbon every year, 

in which 1.14 Gt C yr-1 in primary forest, 0.47 Gt C yr-1 in secondary forest and 0.24 

Gt C yr-1 in forest plantation. Thus, the tropical forest plays an important role in the 

global carbon cycle. 

 

According to the Intergovernmental Panel on Climate Change (IPCC) in the 

fifth assessment of climate change mitigation, forest and other land-use activities 

(e.g., logging and agriculture) are responsible for about 12 % of the net emission 

of carbon gases (IPCC, 2014). The anthropogenic activities remove or reduce the 

above-ground biomass of forest stands, which approximately half of the above-

ground biomass is carbon, affecting the carbon sequestration of the forests. As for 

the tropics, the annual loss rate in the forest areas was about 5.5 million hectares 

in the past decade. Moreover, deforestation and forest degradation in the tropical 
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region cause an annual gross emission of about 2.2 Gt to 2.8 Gt of carbon (Keenan 

et al., 2015, Harris et al., 2012; Achard et al., 2014). 

 

The depletion of the above-ground biomass that is caused by selective 

logging could be balanced by natural regeneration. However, when regenerated 

forests have a lower forest carbon stock compared to the carbon stock before the 

logging activities, resulting in the increase of net emission of carbon (IPCC, 2014). 

The reduction in forest carbon eventually leads to the increase of carbon dioxide 

concentration in the atmosphere, accelerating global climate change in recent 

decades. Since the 1990s, various mechanisms have been debated globally to 

reduce carbon emissions by reducing deforestation and forest degradation through 

a range of forest conservation and management activities as well as enhancing the 

forest carbon pool capacity.  

 

Reduction of Emission from Deforestation and Forest Degradation (REDD) is 

known as a global climate change mitigation framework under the United Nations 

Framework Convention on Climate Change (UNFCCC). The REDD was discussed in 

2005 at the 11th Conference of the Parties (COP) to reduce emission from 

deforestation and forest degradation in developing countries, and in 2007 at COP 

13, this framework was expanded to include a range of activities of conservation, 

sustainable forest management and forest carbon stock enhancement. The 

broadened version is known as REDD-plus (REDD+) (Hirata et al., 2012). The 

REDD+ mechanism contributes a good framework toward the global climate 

change problems. Implementing activities in the context of the REDD+ mechanism 

can increase forest carbon stock and reduce carbon footprints, resulting in the 

long-term reduction of forest carbon emission (Ochieng et al., 2016; UNFCCC, 2014; 

IPCC, 2006). Based on the REDD+ mechanism, results-based payments are offered 

to the REDD+ member countries for a significant emissions reduction of carbon 

(Achard et al., 2014; Ochieng et al., 2016). An accurate system of measure, report, 

and verify (MRV) that monitors carbon changes is key to the success of REDD+. 

However, it is only practicable if the carbon stock changes can be accurately 

estimated. 

 

https://www.sciencedirect.com/science/article/pii/S1462901116300788#bib0265
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In order to cater to the REDD + mechanism implementation, it is necessary 

to accurately quantify the above-ground biomass and it changes as an approach to 

understand the forest carbon pool dynamics. Advancement in remote sensing 

technology provides robust approaches for estimating above-ground biomass over 

a large area (Gleason and Im, 2011). Remote sensing technology has been 

considered as an effective method to estimate above-ground biomass in 

combination with field inventory data (Soenen et al., 2010, Baccini et al., 2017; 

Tsitsi, 2016) because this technology can delineate the Earth surface information 

accurately, cost-effectively, and repetitively at a different level of region coverage 

(Avitabile et al., 2012; Soenen et al., 2010; Kumar et al., 2017). High-spatial 

resolution of remote sensing data, such as satellite images (e.g., Quickbird and 

Worldview), airborne laser scanning data, and unmanned aerial photography, 

provides detailed forest structural information for estimating above-ground biomass 

(Kumar et al., 2016). Moreover, the high-spatial resolution datasets are able to 

solve and minimise data saturation problems (Tsitsi, 2016). Thus, remote sensing 

technology and data are needed to estimate above-ground biomass with high 

accuracy. 

 

Light detection and ranging (LiDAR) is a laser-based remote sensing 

technology that is utilised the pulses of light to measure a target distance 

(Reutebuch et al., 2005). Millions of pulses that are emitted and returned after 

hitting an object produce a three-dimension (3D) high-spatial detail model of the 

target area. Information such as slope, features and topography of a target area 

that are derived from the LiDAR data are valuable for a wide range of applications, 

such as in forestry and ecological applications (Melin et al, 2017). LiDAR has been 

widely applied for estimating and mapping the above-ground biomass (McRoberts 

et al., 2013, Kumar et al., 2017) because the LiDAR data provides promising forest 

height information and forest vertical structures (Xu et al., 2017; Urbazaev et al., 

2018). Overall, the forest information and parameters that are derived from the 

LiDAR data can accurately estimate above-ground biomass and produce high-

spatial resolution maps. 
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1.2 Problem Statement 

 

The accurate estimate of the above-ground biomass changes is one of the crucial 

requirements in the “Reduction of Emission from Deforestation and Forest 

Degradation–plus” (REDD+) project to mitigate the greenhouse effect in developing 

countries, providing an informative scheme for both developed and developing 

countries in combating the global climate change (Kissinger et al., 2012). As an 

effort for better monitoring the above-ground biomass in the forestry industry to 

improve forest governance approaches, Sabah Forestry Department has been 

involved in the Sabah EU–REDD + project that is funded by the European Union to 

contribute a sustained and low carbon development within the state. This practice 

is also in line with the current forestry sector development under thrust 4, objective 

6 stated in the Sabah Forest Policy 2018. Therefore, it is necessary to have fine 

spatial details and an accurate estimated above-ground biomass map in the tropical 

forest. 

 

According to the forest carbon accounting guidelines developed by 

Intergovernmental Panel on Climate Change (IPCC), forest biomass can estimate 

via three (3) tiers level, where higher tier level methods can generate more 

accurate results. Thus, there is necessary to estimate the above-ground biomass as 

well as its changes accurately using ground measurement data with a combination 

of the high-spatial resolution datasets in the tropical forest in Malaysia. 

 

High-resolution airborne and spaceborne remote sensing data have been 

studied to estimate the above-ground biomass in the tropical forest (Phua et al., 

2017; Jucker et al., 2018). Recent studies had proved that the forest vertical 

structures that are extracted from full-waveform LiDAR data are conducive to 

estimate above-ground biomass accurately in the tropical forest (Ioki et al., 2014; 

Kronseder et al., 2012; Bazezew et al., 2018). However, there is still a lack of study 

in deriving high accuracy of above-ground biomass in the tropical montane forest in 

Sabah using a discrete-return LiDAR sensor. 

 



 

5 

The above-ground biomass change map between 2000 and 2012 in tropical 

montane forest was estimated using LiDAR data and SRTM-DEM (Loh et al., 2020) 

and there is still lack of study in estimating above-ground biomass changes using 

multi-temporal LiDAR data. LiDAR data of the tropical montane forest in Sabah was 

scanned during 2012 and 2017. Therefore, provides an opportunity to estimate the 

above-ground biomass and its changes using the multi-temporal airborne LiDAR 

data. 

 

 

1.3 Justification 

 

The tropical forest is one of the main carbon sinks in the global carbon cycle. 

Anthropogenic activities such as deforestation and forest degradation had led to 

serious consequences in above-ground biomass reduction. Meanwhile, afforestation 

and reforestation restore the capacity of carbon sink, at the same time minimise 

carbon emission. These direct human-induced conversion activities put above-

ground biomass in a state of flux. Therefore, it is important to estimate the above-

ground biomass changes as an effort for planning the forest management 

strategies under the context of the REDD+ project. 

 

Airborne LiDAR, which are the discrete-return and full-waveform sensors, 

can delineate more precise forest structure information that can be used to provide 

detailed reference data to estimate above-ground biomass, especially in remote 

areas. Forest canopy and its structures have beelinen using a full-waveform LiDAR 

sensor in the tropical regions (Ioki et al., 2014; Bazezew et al., 2018; Wulder et al., 

2008; Asner et al., 2012; Coomes et al., 2017). Full waveform LiDAR sensor is 

popular among the forestry sector due to its backscattered energy in each emitted 

laser pulses that are able to fully access the forest canopy (Lefsky et al., 1999; Lim 

et al., 2003; Ussyshkin et al., 2010). However, studies using the discrete-return 

sensor to estimate above-ground biomass in the tropical montane forest were 

limited. Therefore, it is important to evaluate the discrete-return LiDAR sensor for 

characterising the forest structure and ground topography to estimate above-

ground biomass in the tropical montane forest. 


